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Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17,

CH-1951 Sion, Switzerland
2Instituto de Ciencia y Tecnologı́a del Carbono (INCAR), CSIC, Francisco Pintado Fe 26,

33011 Oviedo, Spain
3Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller

University Jena, Humboldtstrasse 10, 07743 Jena, Germany
4Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena),

Lessingstrasse 12-14, 07743 Jena, Germany
5Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2

1EW, United Kingdom
6Department of Energy Conversion and Storage, Technical University of Denmark,

DK-2800 Kgs. Lyngby, Denmark
7Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom

1

https://doi.org/10.26434/chemrxiv-2024-mm31v ORCID: https://orcid.org/0000-0003-4653-8562 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://orcid.org/0009-0005-5108-5061
https://orcid.org/0000-0002-2258-3011
https://orcid.org/0000-0003-4894-4660
https://orcid.org/0009-0003-7142-4425
https://orcid.org/0000-0002-7403-6642
https://orcid.org/0000-0002-5427-1610
https://orcid.org/0000-0002-5326-4902
https://orcid.org/0009-0000-3226-3639
https://orcid.org/0000-0001-7993-2879
https://orcid.org/0000-0002-5820-2452
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0002-3713-311X
https://orcid.org/0000-0002-6605-6002
https://orcid.org/0000-0001-9828-386X
https://orcid.org/0000-0001-5308-8542
https://orcid.org/0009-0003-0422-5610
https://orcid.org/0009-0000-9301-4505
https://orcid.org/0000-0002-2618-9775
https://orcid.org/0000-0002-6825-5777
https://orcid.org/0000-0001-5968-0336
https://orcid.org/0000-0002-7879-0140
https://orcid.org/0000-0001-6315-4398
https://orcid.org/0000-0002-2095-3082
https://orcid.org/0000-0001-9104-8138
https://orcid.org/0000-0002-7563-5655
https://orcid.org/0000-0002-0357-5729
https://orcid.org/0000-0003-1670-3985
https://orcid.org/0009-0008-5932-4583
https://orcid.org/0000-0002-4662-8448
https://orcid.org/0000-0002-5773-967X
https://orcid.org/0009-0000-6392-3994
https://orcid.org/0000-0002-5926-3628
https://orcid.org/0000-0001-7729-0673
https://orcid.org/0000-0002-9373-0058
https://orcid.org/0000-0002-5447-3925
https://orcid.org/0000-0003-1101-2376
https://orcid.org/0000-0003-2805-6375
https://orcid.org/0000-0002-6855-0012
https://orcid.org/0000-0002-1139-4709
https://orcid.org/0000-0002-5415-4086
https://orcid.org/0000-0003-0370-0873
https://orcid.org/0000-0002-8594-8292
https://orcid.org/0000-0002-6004-6946
https://orcid.org/0000-0002-5708-1855
https://orcid.org/0000-0003-4653-8562
https://doi.org/10.26434/chemrxiv-2024-mm31v
https://orcid.org/0000-0003-4653-8562
https://creativecommons.org/licenses/by-nc-nd/4.0/


8Department of Chemical Engineering & Biotechnology, University of Cambridge,
Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom

9Department of Computer Science, University of Chicago, Chicago, IL 60637, United
States

10Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439,
United States

11Laboratory of Catalysis and Organic Synthesis (LCSO), Institute of Chemical Sciences
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Abstract

The current generation of large language models (LLMs), like ChatGPT, have lim-
ited chemical knowledge. Recently, it has been shown that these LLMs can learn and
predict chemical properties through fine-tuning. In this work, we explore the potential
and limitations of this approach. We studied the performance of fine-tuning GPT-J-6B,
a public-domain version of the GPT family, for a range of different chemical questions.
We find that in most, if not all, cases, this approach outperforms the benchmark (ran-
dom guessing) for a simple classification problem. Depending on the size of the dataset
and the type of questions, we can also address more sophisticated problems. The most
important conclusions of this work are that, for all datasets considered, their conversion
into an LLM fine-tuning training set is straightforward and that fine-tuning with even
relatively small datasets leads to predictive models. These results suggest that the sys-
tematic use of LLMs to guide experiments and simulations will be a powerful technique
in any research study, significantly reducing unnecessary experiments or computations.
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1 Introduction

The traditional machine-learning workflow starts with the painstaking process of harvest-

ing the literature for the relevant data. Some help can be obtained from text harvesting

programs.1 These data can be used to find correlations in the properties or synthesis of

molecules or materials or correlations in any other relevant chemical question. For this,

it is crucial to describe the system with features fed into a model. Ultimately, the trained

model allows us to make predictions from the features of unknown materials. These models

typically improve when more data becomes available.

In chemistry and material science, however, the amount of experimental data is often, if

not always, a bottleneck. Therefore, it is essential to have some leverage. One way of doing

this is by expanding a dataset with computer simulations.2 Alternatively, we can leverage

knowledge of the system. For example, suppose we want to predict the pressure of a gas at

a given density and temperature; we can focus our machine learning (ML) on predicting the

deviations from the ideal gas law.3 Another option is to introduce descriptors with proper

inductive biases that capture our understanding of the underlying systems.4

Another way of leveraging knowledge is through transfer learning. Imagine that one

has a lot of data on some particular properties of a class of materials but, as is typical in

many practical applications, not enough data for the property of interest. An interesting

observation is that these models can be pre-trained (without supervision) on web-scale data

by simply predicting the next likely word to complete sentences. The (limited) available

experimental data for the property of interest can then be used to fine-tune this pre-trained

model.5 The mechanism of this fine-tuning or transfer learning is that one only re-trains

a small part of the transformer model (or of an added layer) and hence leverages all the

pre-trained information locked in the model’s part that remains unchanged. This fine-tuned

model can then be used to make predictions for these properties.

In this context, a remarkable recent discovery is that one can also use fine-tuned large

language models (LLMs) to answer chemistry and material science questions for which the

base LLM would not know the answer.6,7 For example, if we use GPT-3 (e.g., via ChatGPT)

to ask a specific chemical question, say, if the high-entropy alloy Tb0.5Y0.5is a single phase, it

will reproduce the knowledge is has. GPT-3 would not know the answer (GPT-4 knows more

chemistry8), hence it will likely not get an answer on such chemical questions. However, we

can fine-tune an LLM with experimental data of high-entropy alloys, of which we know

whether it is a single phase or not. This gives us a new model that only aims to predict
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whether a particular high entropy alloy is a single phase.

In addition, the fact that these LLMs use natural language as input instead of a descriptor

is one of its most attractive features; it creates a convenient way for researchers to interact

with data and tools. Numerous successful chemical applications exploiting this power of

LLMs exist today, ranging from tools that summarize literature to the deployment of “chat-

bots” for experimental instrumentation.9

These general-purpose LLMs are important because they do not require pre-training, can

be used for any chemical question, and do not require knowledge of machine learning. In

our previous work, we measured the potential of LLMs in solving chemical problems against

conventional machine learning.7 We showed that LLM models fine-tuned on classification,

regression, and inverse design problems can be competitive with current state-of-the-art

machine learning models. For this, we searched for chemical problems with a known ML

solution and validated our approach against it.

In this work, we want to go a step further and attempt to address relevant chemical ques-

tions from a more practical point of view. This implies that most of the data have not been

curated or selected previously for machine learning studies but are the data that researchers

have at hand. The case studies we presented are guided by the questions these researchers

have.

With the data, we performed simple “experiments.” First, we asked whether fine-tuned

LLMs show any signs of learning. To address this question, we split the dataset in half

and used a simple classification to test if the model would classify the data correctly on

a holdout set that the model has not seen in training. This first step was fine-tuning the

model using a standard setting without any optimization. For this step, we used an open-

source model (GPT-J-6B, 6 billion parameters), which we tuned using parameter-efficient

fine-tuning techniques.10–12 The model showed some learning for almost all problems. The

extent of learning depends on the dataset and the complexity of the question. Inevitably, the

performance of such models will not be optimal for every study; therefore, we optimized the

models by performing basic hyperparameter optimization in those cases.

In the next sections, we outline the methodology and then summarize the main conclu-

sions of each case study. The corresponding section of the SI provides a detailed account of

each study. The main aim of these summaries is to illustrate the range of chemical questions

that can be addressed. The discussion section summarizes the lessons we have learned from

these case studies.
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2 Methods

Researchers from different disciplines presented 21 datasets. We used these datasets in case

studies to better understand the potential and limitations of fine-tuning LLMs. For these

case studies, we used the open-source LLM GPT-J-6B.13 Rapid advancements in this field

lead to fast improvements and continuously updated models. While we recognize that there

are arguably more suitable models available today, we continued to perform experiments

with GPT-J-6B to maintain consistency and obtain comparable results in all case studies.

GPT-J-6B is a smaller model than GPT-3 (and GPT-4). Our previous results show that GPT-

3 typically performs better, i.e., it requires less training data to get similar performance.7

However, this increase in accuracy does not compensate for the fact that with GPT-J-6B,

anybody can reproduce our results. To structure the presentation of the results, we have

organized the case studies into three categories: materials and properties, reactions and

synthesis, and systems and applications.

Each case study was approached similarly. The first step requires converting the dataset

into a set of questions and answers that we can use for fine-tuning. To do this correctly, we

obtained some general knowledge of the systems’ scientific background. This background is

given in more detail in the SI and summarized at the beginning of each paragraph describing

the case studies. In the SI, one can also find more details on how the dataset was obtained.

The first test we carried out was a standard test to determine if our fine-tuned LLM

learned anything. This test was a simple classification problem in which we split the dataset

into two equally populated categories. Depending on the case study, these categories were

high/low, good/bad, optimal/non-optimal, etc. This simple classification allows for a simple

benchmark: random guessing. The minimum criterion the LLM should outperform on the

test set is to do better than random guessing. This random guess corresponds to the situation

where we have zero knowledge of the system. We will refer to this experiment as the “base

case,” in which random guessing was the benchmark. Hence, any model that does better

might be of practical use.

If our base case model outperformed the benchmark, the next step is to make the model

more useful. In most practical applications, one has more data on poor-performing mate-

rials than optimal materials. However, for fine-tuning LLMs, one also needs a reasonable

number of materials above the performance threshold, which distinguishes poor from top-

performing materials. This may require more data than we have available for a specific case

study and may require us to optimize the model further. This part will be specific to each
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case study.

We follow the same fine-tuning method as in our previous work (the reader is referred

to the original work7 for details on the fine-tuning) except that we only used GPT-J-6B.

In this procedure, the chemical context is formatted in a single representation as a question

(Table 1). The binary class is given as a numeric value, i.e., 0 or 1, representing the respective

chemical property.

Table 1. Example of a prompt used to fine-tune an LLM. This example is a typical classifi-
cation problem where we have split the dataset into two groups. In the example, we have a
<Property> of a <Material>, which can either be high or low. What is High or Low is deter-
mined by the threshold we want to use. In practice, we want the model to predict 0 or 1, so
in all training sets, we see that good/bad, single phase/two phases will be translated to 0 or
1.

Representation Completion Real
What is <Property> of <Material>? 0 or 1 Low or High

In the first iteration, default fine-tuning hyperparameter values were used (see Supple-

mentary Note 1). This allowed us to gain some insights into whether such an approach can

be used as a black box without expertise in using LLMs or if some tweaking is needed to get

sufficiently accurate results. After analyzing the first result, in some case studies, increasing

the number of epochs, i.e., the times the model sees the training data, significantly increased

the model’s performance. This gives us insights into the fine-tuning procedure. This second

step typically requires some more experience with these LLMs.
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3 Results and Discussion - Case Studies

3.1 Materials and Properties

Following a bottom-up approach, most chemical applications start from fundamental re-

search of the structure-property relationships. Therefore, it is no surprise that a thorough

understanding of the structures at hand is necessary before proceeding to field-specific ap-

plications. However, the chemical space is vast and complex, and finding optimal solutions

often requires extensive screening and analysis. Alternatively, chemical properties can be

predicted from the structural features of a molecule.14 We demonstrate how our approach

can help predict chemical properties in various case studies and more effectively guide com-

putational and experimental research.

Adhesive Energy of Polymers As a first example, we experimented with a computational

dataset of polymers and their respective adhesive free-energy on a polymer surface (see Sup-

plementary Note 2.1).15 Here, the question arises if we can predict the adhesive free-energy

from any hypothetical copolymer sequence. The polymers in the dataset were chains of 20

monomers, described as either an “A” or a “B” unit. We used the sequence string of the poly-

mers to predict the balanced binary classification of the adhesive free-energy (i.e., is this free

energy high or low). The fine-tuned LLM had an accuracy of 88%, which is 38% above the

random baseline (50%).

The remarkable aspect of these results is that we have a hypothetical model polymer

for which simulations compute the free energies. Yet, the LLM can correlate a sequence of

20 (arbitrarily chosen) characters of the type “A” and “B” to the free energy, suggesting no

potential data leakage.

Properties of Monomers Focusing on a more standardized and widespread descriptor of

molecular structures, we investigated the Simplified Molecular-Input Line-Entry System

(SMILES) notation. These textual strings capture the elemental composition, bonds, branches,

and stereochemistry of chemical compounds. The monomer database, computationally gen-

erated by Schneider et al. 16 , served as an ideal test case to validate the synergy of SMILES

and LLMs (see Supplementary Note 2.2). Schneider et al. 16 obtained from simulation many

different properties, including the glass transition temperature, cohesive energy density,

squared radius of gyration, and density of a wide range of monomers. We obtained four

unique binary classification case studies by taking the median for every property. We fine-

9

https://doi.org/10.26434/chemrxiv-2024-mm31v ORCID: https://orcid.org/0000-0003-4653-8562 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-mm31v
https://orcid.org/0000-0003-4653-8562
https://creativecommons.org/licenses/by-nc-nd/4.0/


tuned LLMs to predict the specific property from the monomer’s SMILES. For all cases, an

accuracy above 80% (average accuracy of 86% over the four properties) with non-optimized

hyperparameters was obtained.

Melting Point ofMolecules The following case study concerned the prediction of the melt-

ing point of small molecules (see Supplementary Note 2.3). The 274983 structures were all

represented by their SMILES notation and IUPAC name. Therefore, in this particular exam-

ple, we further explored the chemical representation and how it affects the quality of the

predictions.

As the melting point of many chemicals is reported, we first studied how well ChatGPT

(OpenAI’s GPT-3.5) can classify the melting point as high or low. Using the frontend inter-

face, we prompted “What is the melting point of ¡name of molecule¿?” and saw that only

50% of the time, it predicted this correctly, which is no better than random guessing. In

contrast, models trained on the IUPAC name reached an accuracy of 60%. Interestingly, our

fine-tuned models trained on the SMILES of the molecules could predict the melting point

with an accuracy of 69%.

Dynamic Viscosity of Molecules In this case study, we also used the SMILES notation of

some chemicals. Our objective was to predict their dynamic viscosity with fine-tuned LLMs

(see Supplementary Note 2.4).

As the dynamic viscosity value of many chemicals is also reported, we evaluated (via

ChatGPT) how well OpenAI’s GPT-3.5 model can classify the viscosity as high or low. Our

prompt was “What is the viscosity of ¡name of molecule¿?” Our results showed that viscosity

was not better predicted than random guessing, with an accuracy of 55% when the chemical

name was provided as input to the model.

In contrast, for a median split balanced dataset, with a training set size of 80 examples

and 30 fine-tuning epochs, our fine-tuned LLM model reached an accuracy of 80% for binary

classification. We also trained a model to predict whether a chemical had a dynamic viscosity

in the top 28% of the values in the dataset. After reducing the dataset size to obtain a

balanced dataset, we also obtained a predictive accuracy of 80% using a training set of 50

data points by increasing the number of fine-tuning epochs to 140.

Microstructural Properties of Magnesium Alloys Due to their lightweight, Mg alloys gain

popularity in structural applications where weight saving is of importance.17 Besides a small
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portion produced with powder-metallurgical processing,18–20 the majority of these alloys are

cast and subsequently subjected to thermo-mechanical treatment to obtain a microstructure

corresponding to a suitable property profile.21,22 To understand the connection between

process routes, their specific processing parameters, and microstructure evolution, we can

use the LLM’s modular and versatile way of featurizing to include all relevant parameters,

independent of the production route (see Supplementary Note 2.5).

We found that the fine-tuned models can deal with incomplete and multivariable inputs,

reaching accuracies of 84% to predict the classification of the material either belonging to

the class high or low amount of second phases. Interestingly, we acquired similar accuracies

when only using the production route to represent the model irrespective of the individual

process parameters. Despite the small dataset, the LLM is able to catch the material science

properties and classify them accordingly.

Phase SeparationPropensity of Proteins Phase separation of proteins and other biomolecules

is recognized as an important intracellular process that affects cellular compartmentalization

and regulation.23 However, the mechanisms that drive biomolecular phase behavior are still

under active investigation. Saar et al. 24 performed an in silico study to understand the link

between protein sequence and its liquid-liquid phase separation (LLPS). This is an interest-

ing challenge from a data-science perspective, as the protein sequences are long strings of

letters, each representing a single amino acid. Such non-numeric input often requires ad-

ditional data pre-processing steps and/or dedicated statistical techniques. Saar et al. 24 de-

veloped binary classifiers based on extracted physical features of the protein sequence and a

word embedding of the sequence made using a word2vec model. From these sequence-based

embeddings, the model was able to classify proteins based on their propensity to undergo

LLPS. Identifying proteins capable of undergoing LLPS into protein-rich biomolecular con-

densates is important for understanding cellular function and pathology.

This is an interesting case for an LLM model, as a protein represented by a string,

like RRGDGRRRG...GGGRGQGGRGR, can be inputted directly in the prompt (see Supplemen-

tary Note 2.6). We obtained accuracies reaching 95% for models that distinguish proteins on

their phase separation propensity, which is similar to the accuracy obtained by Saar et al. 24 .

We want to stress that no extra data manipulation was needed. The protein sequence as

received was used as input for the prompt, again demonstrating the versatility of LLMs.

In addition, we carried out some experiments in which we changed the original se-

quences (e.g., making them shorter or creating randomized sequences of the same letter/aminoacid
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composition). The most interesting observation was that a model trained on randomized se-

quences of the same letters resulted in a relatively small drop in accuracy from 95% to 86%,

which shows that a significant part (but not all) of the predictive ability can be obtained

from the protein’s sequence composition without any positional information of sequence or-

der. Interestingly, the addition of positional information was also not found to increase the

performance in predicting the apparent and shear modulus of materials.25

Structure ofNanoparticles Developing new nanomaterials for energy technologies requires

a deep understanding of the intricate relation between material properties and atomic struc-

ture. Solving the atomic structure of nanomaterials from their x-ray total scattering data is

challenging. Generative models such as Conditional Variational Autoencoder (CVAE) have

been proposed to obtain valid chemical structures from the scattering pattern.26,27 In this

case study, we predict the structure type of nanomaterials and the number of atoms in the

material from their scattering pattern. Predicting these values accurately is an easier task

than solving the structure, and the LLMs are more convenient to use for researchers than

CVAEs as they are purely based on natural language.

This is also an interesting case for an LLM model since the scattering pattern consists of

a very long series of numbers represented as a string. With our approach, we obtained an

accuracy of 94% to predict the structure type of nanoparticles from scattering patterns sim-

ulated from 7 highly unbalanced structure types with between 5 and 100 atoms (30 epochs,

1800 data points). We found that, for complex input variables, where the information is em-

bedded along long sequences, using a relatively large training set size, the fine-tuned model

can predict an unbalanced dataset with 7 classes. However, if the number of training data

points is very low (200), the fine-tuned model is not even predictive on a balanced dataset.

For the prediction of the number of atoms in the nanomaterial, we obtained accuracies of

91% and 85% for datasets with 4 and 10 balanced classes. However, from a practical point

of view, given the interest in predicting the number of atoms with very high accuracy, we

also developed a regression model. This model predicted the number of atoms with an R2 of

98% and a maximum absolute error (MAE) between 1 and 2 atoms (XGBoost baseline: R2 =

92%, MAE = 5.6), i.e., with excellent performance.
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3.2 Reactions and Synthesis

Going beyond chemical properties, we explored the potential of our methodology in predict-

ing reaction outcomes. Predicting reaction outcomes is a field in which conventional theory

has made little progress. The complexity and specificity of chemical reactions make devel-

oping a general theoretical framework extremely challenging.28 Practically, indicating the

success rate or yield could prioritize the synthesis of top candidates or omit protocols that

lead to certain failures, thereby saving resources, time, and money.

Activation Energy of Cycloadditions A first example in this regard is based on a previous

study that screened the influence of substituents of one of the reactants on the activation

energy of bioorthogonal tetrazine-alkene cycloadditions. From a total of 966 different re-

actants, the free energy barrier was computed using density functional theory (DFT, see

Supplementary Note 3.1). We took the median free energy as the threshold for ‘good’ reac-

tants for the specific reaction and the SMILES notation to represent the molecule in question.

With a training set size of 250 examples, our LLM model reached an accuracy of 94%, sig-

nificantly higher than a random guess, i.e., 50% for a balanced dataset.

This case study is a great example of how machine learning, specifically LLMs, can signif-

icantly impact expensive computational studies. This model can be used as a first screening

to filter out poor-performing structures. More expensive calculations can then be used for a

more detailed analysis of well-performing structures.

Free Energy of Catalyzed Cleavage Reaction In the same category of organic reaction, a

reaction dataset on a Ni-catalyzed aryl ether cleavage reaction was explored.29 (see Supple-

mentary Note 3.2). Similarly, a large computational study was performed to gain knowl-

edge about the efficiency of a set of catalysts. Our LLM-based approach has the potential

to minimize expensive calculations and predict whether new molecules might be a suitable

candidate for this reaction. As we know the chemical structure of the catalysts, we can base

our predictions on the SMILES notation as inputs. For a median split base case, an accuracy

of 90% was reached.

While excellent in performance, the scientific relevance of evaluating these systems based

on a single threshold is limited. Rather, a small range of continuous descriptor values is of-

ten considered ‘good’. All values above and below this range are then considered ’poor’.

From the dataset of catalysts, only 3.8% was labeled a ‘good’ catalyst. As a result, we were
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forced to reduce significantly our training set to get a balanced dataset. Nevertheless, even

with a training size of 100 data points, the model was able to correctly classify 79% of the

test data.

An interesting future strategy would be to use an LLM model combined with more ex-

pensive quantum calculations. Initially, one would aim for a band of ‘good’ structures that is

broader than one would like from a catalysis point of view but more balanced to get a more

accurate model. Then, if we get more ‘good’ materials, we would retrain the model with a

narrower band.

Yield of Catalytic Isomerization A catalytic isomerization was examined in this case study

(see Supplementary Note 3.3). The dataset is part of a scoping study where the catalytic

activity of PtBr2 was assessed. Apart from the starting material, all reaction conditions were

kept constant. The amount of data is limited, with 16 experimental entries. In addition, the

noise in the data is expected to be rather high as both the starting material and the product

are not very stable. We were interested in predicting the success of the isomerization based

on the yield (¿50%). Even after optimizing hyperparameters, no valuable models could be

created.

Despite the low predictive power of the models, this case study exemplifies an untouched

application of LLMs in chemical research, namely scoping studies. Such studies are tradi-

tionally performed to gain a thorough understanding of whether a reaction is successful and

how efficient the reaction is. While the amount of different substrates tested can be large,

they often still screen a small fraction of the chemical space. Predicting the outcome of sim-

ilar structures based on a set of experimentally assessed reactions could accelerate material

discovery.

Kinetics of Polymerization This case study focused on an experimental kinetic polymer

screening (see Supplementary Note 3.4). The dataset contained 23 entries with different

monomer-monomer concentration combinations, each with their experimental measured ki-

netic profile. Our objective was to predict the polymerization rate from the reaction condi-

tions, i.e., we used the monomer representation and the monomer concentration as input

variables. Given the smaller size of the dataset, hyperparameters were modified slightly to

obtain acceptable performances. When comparing different representations of the monomer,

we see that fine-tuned models based on the SMILES of the monomer (accuracy of 76%) do

better than models based on the IUPAC name of the monomers (accuracy of 57%). We also
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noticed that reactions with a polymerization rate close to the binary split threshold, i.e., the

median of the dataset, remained difficult to predict.

Not only are high-throughput kinetic screenings an excellent way to gain in-depth in-

sights into reaction mechanisms, but they also produce datasets that can be used to train ML

models and guide further research and development. Here, only two reaction parameters

were varied. Combining screenings in a multi-parameter landscape with predictive models

could accelerate polymer synthesis optimizations.

PhotocatalyticWater Splitting Activity of MOFs Following with reactions, in this case, we

explored a dataset containing 95 MOF structures with different properties related to photo-

catalytic water splitting, as obtained from DFT calculations (see Supplementary Note 3.5).

Such DFT calculations require significant computational resources.

In this study, we predicted various photocatalytic properties of MOFs, thereby assess-

ing whether a given material has the right band alignments for water splitting and absorbs

visible light. We used the elemental composition of the MOF’s linker and metal node to rep-

resent the material. The fine-tuned models could successfully predict the various properties

with accuracies of ¿85%.

Photocatalytic CO2 Conversion Activity of MOFs We explored another example of the use

of MOFs, in this case study for photocatalytic CO2 conversion (see Supplementary Note 3.6).

The dataset (n = 77) contained the catalyst system (metal source, linker, phase, sacrificial

agent, and cocatalyst), the band gaps of the MOF and cocatalyst, and the photocatalytic

activity studied. This data allowed us to investigate the use of different parameters in the

prompt as predictors of the photocatalytic activity of MOFs. When we used the catalytic

system, we obtained an accuracy of 65%. When we combined the SMILES notation and

the catalytic system parameters in the prompt, for a total of six features as predictors, the

accuracy increased to 68%. However, the predictions of this model were not better than

random guessing for samples with higher values of photocatalytic activity. We probably

need more data to predict the outcome of complex processes such as photocatalysis. On

the other hand, adding the values of band gaps, conducting band, and valence band to the

prompt, i.e., seven extra features, did not increase accuracy (58%).

Success of MOF Synthesis In this case related to the synthesis of materials, an interesting

dataset of MOFs was investigated (see Supplementary Note 3.7). The objective here was to
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predict the success of the synthesis of a MOF given experimental parameters extracted from

reaction protocols. Interestingly, the majority of reported protocols often lead to the desired

product, hindering the creation of a balanced dataset and subsequently making unbiased

predictions hard.

This quantity issue is reflected in the provided dataset, which has only 25 different re-

action conditions. Taking a yield of 20% as the threshold for success could create a fairly

balanced dataset. After training for just 10 epochs on a training set size of 20 examples, the

fine-tuned models could not recognize the prompt/completion structure and thus failed to

output a meaningful prediction. Using a training set size of 20 and increasing the number

of epochs to 50 leads to the expected binary responses, i.e., 0 or 1, with an average accuracy

of 89%.

3.3 Systems and Applications

Here, we explore the potential of LLMs to predict the outcomes of different systems and

applications.30 Knowing the effect of processing parameters on process performance can

help to optimize a system and increase its efficiency. Gaining knowledge of the influence of

the experimental conditions on the results can allow us to tailor the process according to our

specific objectives.

Gas Uptake and Diffusion of MOFs In this case, an extended version of the SMILES no-

tation of MOFs was explored.31 Here, the MOFid, a combined string of the SMILES of the

individual building blocks that construct a MOF, served as the chemical descriptor in pre-

dicting its gas uptake and diffusion (see Supplementary Note 4.1).32 In an extensive com-

putational study, Daglar and Keskin 31 simulated hydrogen, nitrogen, helium, and methane

gas uptake and diffusion in more than 5000 structures, which served as our dataset. These

eight individual case studies yielded an average accuracy of 68% for predicting the different

properties. Notably, these results are in line with the models in the original work.

Some MOFs (e.g., ZIFs) have different isomers with the same chemical building blocks.

Therefore, it is interesting to investigate whether adding further details on the structure in

the prompt will improve learning. Apart from the MOFid, and the uptake and diffusion

values, Daglar and Keskin 31 included 20 additional simulated features of the MOF struc-

tures, all of which are numeric and grouped based on their chemical and physical relevance.

We used a combined feature vector (per group) to create a prompt for predicting the binary
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class, i.e., above or below the median, for helium diffusion. In the first experiment, we in-

cluded the largest cavity diameter, pore limiting diameter, and the pore size ratio, i.e., group

A. Secondly, a prompt with the density, pore volume, porosity, and surface area, i.e., group

B, was created. For these “single group” experiments, we obtained an accuracy of 68% and

62%, respectively, for groups A and B. Only when we combine groups A and B, thus creat-

ing a prompt with seven features, we obtained a performance improvement (73% accuracy).

Adding eight extra features related to the elemental composition increased the accuracy to

77%.

Hydrogen Storage Capacity of Metal Hydrides A potential replacement for fossil fuels is

hydrogen. One of the disadvantages of hydrogen compared to fossil fuels is its low energy

density. Finding ways to store hydrogen is, therefore, an important research theme. Metal

hydrides are a promising class of materials for their capacity to store hydrogen.33

The heat of formation of a metal hydride is often used as an indicator for their potential

hydrogen storage use. Theoretically, this value is related to the equilibrium pressure. We,

therefore, started our experiment by validating if fine-tuned LLMs could capture this rela-

tion. The ML-HydPARK dataset created by Witman et al. 34 contains 430 metal hydrides with

their respective heat of formation and equilibrium pressure (see Supplementary Note 4.2).

In these initial experiments, we used the median heat of formation as the threshold for the

binary classification. We fine-tuned an LLM that could answer the question, “Is the heat of

formation, and thus its potential for hydrogen storage, of a metal hydride with an equilib-

rium pressure of ¡value¿ high or low?”. Such models indeed predicted the heat of formation

from a material’s equilibrium pressure with an accuracy of 76%.

In an alternative approach, we hypothesized that the metal in the material is an indi-

cator of success. We substituted the equilibrium pressure with the elemental formula of

the material and repeated the training. Instead of a numeric feature, we now describe the

material with a simple textual string, fully exploiting the potential of LLMs. These binary

classification models performed significantly better, with an accuracy of 84%. A possible

explanation for this increase in performance might be rooted in the augmented information

present in the chemical composition of the material. When we combined both the pressure

and the chemical formula in the feature vector, we saw a slightly higher accuracy than with

the model trained on only pressure values, suggesting that the additional chemical informa-

tion had extra predictive power.

From a practical point of view, a realistic threshold for defining promising materials
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would be useful. As suggested by the literature, this range (heat of formation values between

−40 kJmol−1 to −20 kJmol−1) created a slightly unbalanced dataset. Nevertheless, acceptable

performances were still achieved with accuracies of 75%.

CO2 Adsorption of Biomass-derivedAdsorbents In this example, we investigated a dataset

on the synthesis of activated carbons from different biomass precursors for CO2 capture by

adsorption processes35 (see Supplementary Note 4.3). From these data, we analyzed two bi-

nary classification case studies to predict whether the BET surface area and CO2 adsorption

capacity of biomass-based adsorbents are high or low.

The dataset contains data on 33 biomass precursors and ten activating agents. We fine-

tuned LLMs to predict the BET surface area and CO2 adsorption capacity from the biomass

precursor, activation conditions, adsorbent textural properties, and adsorption conditions.

An interesting aspect of this example is that, unlike in conventional machine learning mod-

els that require conversion to numerical values, the biomass precursor’s name and the acti-

vating agent’s chemical formula were entered as textual strings into the model.

By taking the median as the threshold to classify adsorbent materials, an accuracy of 84%

was obtained for the prediction of CO2 adsorption capacity from precursor activation condi-

tions, activated carbon textural properties, and adsorption conditions, with non-optimized

hyperparameters. Since the dataset is smaller (training set of 65 data points), we had to in-

crease the number of fine-tuning epochs from 30 to 140 to predicting the BET surface area

from precursor activation conditions with an accuracy of 72%. We also found that models

trained without the precursor name performed slightly worse than models trained on the

full feature vector, indicating that the model could also learn some trends associated with

the biomass name.

Under a more practical classification, we also evaluated a threshold value that would

allow us to predict which materials are really ‘good,’ which forced us to reduce the training

set to obtain a balanced dataset. Nevertheless, CO2 adsorption capacity was predicted with

an accuracy of 82% by increasing the number of fine-tuning epochs to 100. Likewise, using a

smaller dataset, BET surface area was predicted with 75% accuracy by increasing the number

of fine-tuning epochs to 200.

Thermal Desalination of Water In this case study, we focused on thermal desalination

of saline or brackish water sources (see Supplementary Note 4.4). Knowing the behavior

of thermal desalination units is crucial to optimize their design.36 Here, we evaluated two
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case studies to predict the Gain Output Ratio (GOR), which is a measure of the thermal

energy utilization efficiency, and the specific heat transfer surface, which will determine the

size of the plant of a solar desalination system from the number of effects and the steam

temperature.

The dataset was split to obtain a balanced binary classification problem. The relatively

small size of the dataset forced us to use a maximum training set size of 25 example prompts.

The first model with non-optimized hyperparameters showed no predictive power. By in-

creasing the number of epochs from 30 to 100, we obtained an accuracy of 83% for the

specific heat transfer surface and 92% for GOR.

We also trained binary classification models using unbalanced datasets to simulate a

more realistic case for finding top-performing conditions. The model did not perform bet-

ter than the random guessing baseline of 80% to predict the specific heat transfer surface,

given an accuracy of 80%, but showed acceptable performance in predicting GOR, with 93%

accuracy.

Detection Response of Gas Sensors Following with applications, in this example, we ana-

lyzed a dataset on the sensing behavior of gas sensors (see Supplementary Note 4.5). Here,

the objective was to predict the detection response of gas sensors by training a model using

data from 56 different experimentally analyzed conditions, varying three design parameters:

sensor type (i.e., core-shell and composite sensors), zinc oxide concentration, and operating

temperature.

A binary classification model trained on 45 example prompts (100 epochs) could predict

whether a given sensor was in the top half performing conditions with 89% accuracy.

Stability of Gas Sensors In the field of gas sensor applications, we also explored a dataset

on the long-term stability of gas sensors (Supplementary Note 4.6). In this case, the objective

was to predict whether a SnO2-based gas sensor is stable or not as a function of the type of

dopant material, its dosage, and the calcination temperature during synthesis. By accurately

predicting stability, a more efficient search for ideal sensors could accelerate the field of gas

sensing.

With a rather small dataset of 19 data points, this case study tested the limits on the size

of the training set. With slightly optimized hyperparameters by increasing the number of

epochs to 120, a predictive accuracy of 71% was achieved for a binary classification model

that was able to predict whether a sensor was stable, i.e., had a response loss between days 5
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and 15 of less than 12%.

Gasification of Biomass A dataset on the biomass gasification process was also used to

validate our predictive framework in applications,37 such as thermochemical conversion

of biomass to produce energy carriers. The data described the H2/CO ratio in the syngas

obtained from the gasification of solid biomasses (see Supplementary Note 4.7). Here, we are

interested in predicting whether the gasification process of a given biomass gives a H2/CO

ratio higher than 1.8, meaning that it is suitable for fuel and chemical synthesis. Since data

points with such values only represent 30% of the overall dataset, we were forced to reduce

its size to obtain a balanced dataset. With a relatively small training set of 25 data points,

we increased the number of epochs to 140 to obtain an accuracy of 70%, i.e., higher than the

benchmark value of 50% (random guess).

4 Discussion

In chemistry, we mostly have to deal with a limited amount of data. Hence, it is essential

to use leverage in any machine-learning approach applied to chemistry. In an LLM, one

leverages the linguistic nuances, patterns, and knowledge captured in correlations harvested

from large quantities of internet text. This new source of data, combined with using natural

language to interface with the model, makes this approach, potentially, more powerful than

machine learning models trained only on conventional data sources.

In this work, we tried to obtain some insights into the performance of such LLMs by

looking at 21 case studies describing many different systems, ranging from predicting simple

thermodynamic properties to device performance. The obvious question is whether it works.

In this section, we try to answer these questions in parts.

We must remember that the original corpus of text used to train these models was not

specifically curated for chemical questions. It is remarkable that we can create specific solu-

tions for a range of chemical subfields, spanning from a molecular level to reaction kinetics

to high-end applications.

In most of these case studies, the LLMs demonstrated their ability to predict basic structure-

property relationships. Various cases concerning reactions showcased that LLMs can pre-

dict reaction outcomes and yield determination, thereby facilitating reaction optimizations,

scoping studies, or catalyst designs. In our applied chemistry cases, the versatility of our
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approach was further underscored by predicting system parameters, thereby assisting the

optimization of real-life chemical processes.

Our results also make clear that the LLM approach works best with a reasonably bal-

anced dataset. However, in practice, one is often interested in the (small) subset of top-

performing materials, and we observe that the training set quickly becomes too unbalanced

to make sufficiently accurate predictions. The solution to this problem is to start with a

model trained on a less narrow window. We typically observe that depending on the size

of the dataset, this approach is better than random guessing. So, for problems that are too

complex or for which we do not have any intuition, we already gain. If we then collect more

data in the region of interest, we can narrow the window, making the model increasingly

useful.

Our study also provided useful insights into more specific issues related to featurization,

feature importance and the size of the dataset.

Featurization Can we translate the prediction of the properties of a material or a chemical

reaction into a set of simple questions and answers that can be used to fine-tune an LLM?

Conventional machine learning requires featurization, i.e., converting the chemical system

into a feature vector that quantifies the similarity between systems one wants to compare.

Especially in experimental datasets, feature extraction is not as obvious as it might seem.

Indeed, many tools and molecular fingerprints exist, but these often pose a burden for non-

experts aiming to integrate machine learning into their workflows.

As the case studies show, translating a chemical question into a prompt for fine-tuning is

straightforward. The primary challenge is choosing how to represent a material or chemical.

One can try one of a number of different representations or even use a combination of such

representations (see fig. 1). Standardized notations like SMILES can be exploited to repre-

sent chemical structures in LLMs. The readability of SMILES strings makes them convenient

for researchers and chemical toolkits to interpret. We show that text-based descriptors like

SMILES (see ‘Melting Point of Molecules’ study), MOFid (see ‘Gas Uptake and Diffusion

of MOFs’ study), or even non-standardized strings (see ‘Adhesion Energy of Polymers’ and

‘Structure of Nanoparticles’ studies) perform well in connecting structural information with

physical/chemical properties or reaction outcomes.

Machine learning approaches become even more powerful when dealing with multiple

variables. Thus, we extended our prompts with additional data to allow for multi-variable

predictions. For instance, in the ‘Hydrogen Storage Capacity of Metal Hydrides’ study, we
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Figure 1. Accuracy of the different representations. The color indicates the particular case
study. The same color coding is used in fig. 2 to compare between all case studies. In the left
figure, the annotations are the representations used in the prompting. In the right figure,
the size of the circles is related to the number of epochs that are used.

combined molecular information and equilibrium pressure in one prompt to predict a ma-

terial’s heat of formation. Interestingly, we noticed that this longer prompt outperformed

the model that was only trained on the pressure data. Similar trends are also seen in the

‘Gas Uptake and Diffusion of MOFs’ and ‘Photocatalytic Water Splitting Activity of MOFs’

studies. This methodology becomes particularly interesting for predicting the experimen-

tal success of a synthetic reaction. Reported reaction protocols are generally described as a

combination of textual (e.g., reagents, solvent system) and numeric (e.g., reaction time, tem-

perature) data. In the ‘CO2 Adsorption of Biomass-derived Adsorbents’ study, the dataset

consisted of 8 variables used to fine-tune the models. Again, models trained without one of

the textual variables performed slightly worse, highlighting the synergy between text-based

data and LLMs.
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Feature Importance Feature importance is often an interesting analysis of a trained ML

model to know which features carry the most weight in the model. Synthetic chemists also

do this daily by asking, for example, “Which parameter do I most likely need to vary to get

the desired result?”. Combining natural language and machine learning, i.e., using LLMs,

could facilitate this process and create an understandable approach to optimizing chemical

systems. By iteratively removing one particular feature in the multi-variable prompt and

assessing the accuracy of the resulting fine-tuned model, the influence of the respective pa-

rameter on the final objective can be evaluated. We used this approach in the ‘Gas Uptake

and Diffusion of MOFs’ dataset. We saw high accuracies when structures were represented

as 20 individual features. By removing descriptors, we noticed a drop in accuracies, hinting

at the importance of the omitted descriptors on the final predictions.

Size of the dataset Data quantity, as well as quality, plays an important role in fine-tuning

LLMs. We explored datasets ranging from as few as 20 to as many as 5000 entries. Fig.

2 summarises the accuracies that we obtained for the different datasets. We see that our

approach works well for datasets in the low-data regime. A consistent trend over all ex-

periments suggests that models trained on larger datasets have excellent predictive perfor-

mance. We typically get accuracies above 80%, allowing us to make balanced training sets if

one wants to identify a (much smaller) sub-set of interesting materials.

On the other end of the plot, i.e., really small datasets (¡ 20 data points), the LLMs initially

have difficulties predicting any meaningful output. For experiments with small datasets, we

slightly optimized the hyperparameters to elevate the robustness of the models. By increas-

ing the number of times that the models see the training data, i.e., the number of epochs dur-

ing training, the performance of these models came close to large dataset models in terms of

accuracy (see fig. 1 (right)).

5 Conclusions

For most, if not all, of these 20 case studies, the LLMs performed (much) better than random

guessing. This is a remarkable result, given that the LLMs were not pre-trained on the bulk

of scientific literature. In addition, our effort in making a predictive model using an LLM is

modest. We also have to note that GPT-J-6B is by now an old and small model and that we

did not carry out a full fine-tuning.

We focused on binary classifications that provide a simple ‘yes’ or ‘no’ answer. We see
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Figure 2. Accuracy as a function of the size of the dataset. The color indicates the case
study and the size of the circles is related to the number of epochs used.

such tasks as a first step; if the LLM did not outperform random guessing, we would con-

clude that there has been no learning. If we can sufficiently accurately predict such a simple

classification, one can proceed to develop a regression model as the next step. Yet, even

binary classifications can be useful, especially in experimental settings where a continuous

value is often unnecessary to streamline decision-making. An accurate binary classifier can

already facilitate various aspects of today’s research. For example, ML-based screenings of a

particular chemical system can significantly reduce computational resources or experimen-

tal work, e.g., “Is it worth doing this experiment?”.

Even a modest accuracy can be helpful if the alternative is random guessing. Moreover,

we also show that these models improve significantly if more data is collected. In this con-

text, we must mention the importance of balanced datasets. In most practical cases, there

are many more failures than successful experiments. Hence, in our training, we had to re-

duce the training set to have a reasonably balanced dataset. If we were to use literature data,

we would have the opposite problem. In most, if not all, studies, only successful results

are published. Machine learning, like human learning, learns even more from its failures.38

Thus, if we want to take full advantage of the tools explored here, we need to rethink how

data are reported.39

In addition to the remarkable performances of the trained models, we also want to stress
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that natural language in ML models facilitates various aspects of the case studies. By obvi-

ating the need to featurize the chemical system, this use of textual descriptors of molecules

points to an attractive alternative interface to chemical knowledge suitable for non-experts.

Moreover, we noticed that natural language greatly improves scientific interpretation, effec-

tive discussions, and communication between different research fields.

Data and code availability

The datasets and Jupyter Notebooks used in this work are available at https://github.com/

JorenBE/GPT-Challenge.
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