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Abstract 

Using liquid organic hydrogen carriers for the trans-oceanic shipment of hydrogen 

requires selective and low-cost dehydrogenation catalysts. Machine learning methods 

can accelerate the discovery of these catalysts. The state-of-the-art machine learning 

methods are however limited by challenges associated with building predictive models 

for large cyclic intermediates that adsorb and react on low-symmetry active sites. 

Focusing on methyl cyclohexane dehydrogenation to toluene, an industrially relevant 

hydrogen carrier, we introduce a machine learning approach to accelerate the design 

of selective and cost-effective catalysts. Using inputs to a gaussian process regression 

model that are inspired by physical theories of chemisorption, we predict the adsorption 

energies of large hydrocarbon intermediates that are encountered during methyl 

cyclohexane dehydrogenation. Across bimetallic active sites of nanoclusters having 

varied shapes and compositions, our model yields mean absolute errors of 0.11 – 0.25 

eV on test sets and utilizes under 100 datapoints per reaction intermediate. This model 

is integrated with a microkinetic model to identify promising catalysts. Modifying Pt 

nanoclusters with IB, IIB, and post-transition elements like Cu and Sn increases 

dehydrogenation rates, reduces unselective reactions, and lowers Pt utilization, 

consistent with prior experiments. This work presents a scalable, and efficient 

framework for designing bimetallic catalysts for dehydrogenating hydrogen carriers.  
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1 Introduction 

Liquid organic hydrogen carrier technology is central to the trans-oceanic shipment of 

hydrogen1,2. Discovering cost-effective catalysts that selectively dehydrogenate the 

hydrogen carriers while minimizing side-reactions is essential for the widespread 

deployment of this technology. Currently, these catalysts are discovered using trial-

and-error methods that modify existing catalysts that were developed for other 

dehydrogenation reactions like naphtha reforming and light alkane dehydrogenation3. 

First principles calculations and more recently, machine learning methods have 

introduced accelerated paradigms for catalyst discovery4,5,6,7. It is inevitable that such 

computational methods will be essential in discovering catalysts for dehydrogenating 

hydrogen carriers that need to meet stringent stability and selectivity requirements. Yet, 

the computational guided discovery of catalysts has thus far been limited to reactions 

involving small molecules like oxygen electrolysis8, ammonia synthesis9, ammonia 

oxidation10, methane oxidation11, CO and CO2 hydrogenation12,13, C2-C3 alkane 

dehydrogenation14,15,16,17, and acetylene semi-hydrogenation18. Establishing similar 

predictive models for catalytic reactions involving larger molecules as seen in 

dehydrogenating hydrogen carriers is not feasible using the current state-of-the-art 

because of four limitations. First, larger reaction intermediates like unsaturated cyclic 

hydrocarbons adsorb across multiple atoms of an active site, with the active sites in 

turn, possessing low symmetry. Second, the diverse structural (e.g., coordination 

numbers) and chemical environments (e.g., composition of first nearest neighbors) 

further complicate accurate predictions of adsorption energies using machine learning 

models that have been otherwise effective for small molecules19. Third, the high 

computational cost of building datasets involving such larger reaction intermediates 

like cyclic hydrocarbons precludes the use of data-heavy approaches like deep 

learning20. Fourth, the reaction kinetics cannot always be represented by one or two 

rate determining steps as is done for reactions involving small molecules like N2 and 

O2. Instead, reaction kinetics can only be calculated after knowing the energetics of all 

reaction intermediates. To overcome these four challenges, a new machine learning 

paradigm is required that employs minimalistic training datasets, is transferable across 

different active site motifs in structurally and chemically complex systems and is 

efficient to deploy across large cyclic hydrocarbons. 

In response to these challenges, we introduce a machine learning approach that 

guides design of catalysts used for the dehydrogenation of methyl cyclohexane to 

toluene. This particular liquid organic hydrogen carrier is selected because it has been 

demonstrated in pilot plant and more or less ready to be scaled up by industry21,22. The 

endothermic dehydrogenation reaction necessitates high temperatures, typically 

above 500 K, and requires a catalyst23. While Pt is a promising catalyst for methyl 

cyclohexane dehydrogenation, its high cost and low selectivity to toluene hinder the 

wide-spread applications24. Too-strong adsorption of toluene leads to undesirable side 

products like benzene, bibenzyl-toluene, and coke, diminishing the efficacy of this 

technology25. The quest of discovering tailored catalysts that maintain or enhance 

reactivity and selectivity while minimizing the Pt loading remains a pressing concern. 
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One promising strategy to address this challenge is to use bimetallic nanoclusters (Pt-

M) where Pt is combined with earth-abundant elements denoted as M. The introduction 

of element M modulates the electronic environment of the active sites and can improve 

catalytic performance while lowering the Pt content. Prior experimental studies have 

reported that using Pt-Sn, Pt-Pb, and Pt-Zn bimetallic catalysts improves the rate and 

selectivity of methyl cyclohexane dehydrogenation reaction26,27, suggesting that 

alloying with late transition metals and metalloids is a viable pathway for discovering 

new catalysts. 

The Pt-M alloys span a wide-range of morphologies and compositions that complicates 

the selection of metal M. Trial-and-error based experiments are both time- and 

resource-intensive. To streamline the catalyst design efforts for methyl cyclohexane 

dehydrogenation, we introduce an innovative machine learning framework. This 

framework capably predicts the adsorption energies of unsaturated diverse C7 

hydrocarbons that are encountered as reaction intermediates. These adsorption 

energies are inserted into a microkinetic model. The machine learning model assesses 

the reaction energetics and rates for methyl cyclohexane dehydrogenation over 

bimetallic active sites exhibiting diverse coordination environments and compositions. 

Using physics-inspired model inputs both reduce the computational cost of training the 

model while yielding seamless transferability across different nanoparticle shapes and 

compositions beyond the training dataset. Our machine learning framework identifies 

that elements with a full d-band can increase reactivity and prevent overtly strong 

adsorption of toluene thus reducing unwanted byproducts such as benzene. This 

paradigm can not only be used for designing tailored catalysts for dehydrogenating 

hydrogen carriers but has the potential to streamline similar catalyst design efforts for 

reactions involving large organic molecules as encountered during biofuel production 

and plastic depolymerization. 

 

2 Methods 

2.1 Density functional theory (DFT) calculations 

Density Functional Theory calculations were conducted using the Quantum 

ESPRESSO package28 within the Atomic Simulation Environment (ASE) environment 
29. Total energies were self-consistently calculated using the Perdew–Burke–Ernzerhof 

exchange-correlation functional30. Long-range dispersion corrections were accounted 

for using Grimme’s D3 approach31. Core states were simulated with Vanderbilt ultra-

soft pseudopotentials32 Kinetic energy cutoffs of 500 eV for plane waves and 5000 eV 

for electron densities were applied. All calculations were spin-paired. Electronic states 

were smeared by 0.1 eV using the Fermi-Dirac distribution, to enable convergence of 

the total energies. Nanoparticles (cubo-octahedral, decahedral, and octahedral) and 

gas-phase molecules were simulated in supercells having sizes such that periodic 

images were separated by at least 9 Å of vacuum along the x, y, and z directions. Total 

energies were converged to a numerical tolerance of 10-5 eV. Forces were minimized 

https://doi.org/10.26434/chemrxiv-2024-bj36p ORCID: https://orcid.org/0009-0002-4793-4081 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-bj36p
https://orcid.org/0009-0002-4793-4081
https://creativecommons.org/licenses/by-nc/4.0/


6 

 

during geometry optimization until a threshold of 0.05 eV Å-1. All atoms of the 

adsorbates and the nanoparticles were relaxed during this geometry optimization. 

Transition state energies were calculated using the machine-learning enhanced 

nudged elastic band (ML-NEB) method introduced by Garrido Torres et al.33 These 

transition states were confirmed using a vibrational frequency analysis by verifying the 

presence of an imaginary mode along the reaction coordinate. The vibrational 

frequencies were calculated through numerical differentiation of the forces using a 

second-order finite difference approach with a step size of 0.015 Å. For these 

vibrational frequency calculations, the metal atoms of the nanoparticle were fixed in 

their optimized geometries, with only the adsorbate atoms being relaxed. Zero-point 

energies (ZPE) were determined using these vibrational frequencies. Entropies of gas 

molecules were calculated using the ideal gas assumption. The vibrational entropies 

of adsorbates were computed under the harmonic approximation. Vibrational 

frequencies less than 12 cm-1 and imaginary modes that were not along the reaction 

coordinate, were replaced by 12 cm-1 based on prior literature study34. Input and output 

files the DFT calculations are available on GitHub via 

https://github.com/CLinSim/ML_LOHC. Images of atomic structures were generated 

with scripts that are also available on the same GitHub website. Additional details are 

provided in the Supporting Information.  

2.2 Gaussian process regression (GPR) model to estimate adsorption energies 

of reaction intermediates of methyl cyclohexane dehydrogenation 

We first constructed a dataset comprised of adsorption energies of methyl cyclohexane 

dehydrogenation intermediates that were adsorbed on different Pt-M nanoclusters. 

Individual GPR models were trained for each C7 reaction intermediate. The features 

employed reflect properties inferred from physics-based models and are discussed in 

section 3.1. The kernel function and hyperparameters of the GPR model were trained 

using the fitrgp function in MATLAB. Feature inputs for the GPR model are computed 

using the composition and the coordination environment of an active site and its first 

nearest-neighbors. MATLAB scripts employed for calculating the features, performing 

training, validating, and testing of the GPR model, establishing the active learning 

workflow, and for visualizing the results are available on Github via 

https://github.com/CLinSim/ML_LOHC. 

2.3 Microkinetic modelling 

We constructed a dual site microkinetic model to assess the impact of varying the 

composition of bimetallic nanoparticles on the rates of methyl cyclohexane 

dehydrogenation. C7 hydrocarbons and atomic hydrogen was assumed to adsorb on 

different active sites. The microkinetic model includes elementary steps for methyl 

cyclohexane adsorption, six successive C-H dissociations, toluene desorption, and H-

H association. Reaction energies of elementary steps on a given active site of a 

bimetallic nanoparticle were determined using the GPR model that is discussed in 

section 2.2. Intrinsic activation barriers were computed using a 

Brønsted−Evans−Polanyi (BEP) relationship; such linear relationships are broadly 
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established for C-H activation35. The BEP relationship was determined using intrinsic 

activation barriers that were computed on Pt55 nanoparticles using DFT. The reaction 

network was simulated in MATLAB under a fixed conversation of 5% with 95 kPa 

methyl cyclohexane, 5 kPa toluene and 15 kPa hydrogen at a temperature of 600 K. 

The pseudo steady state hypothesis was employed for adsorbed species. Where 

possible, numerical simulations were confirmed using an analytical expression for the 

reaction rates. Further details of the microkinetic model are found in the Supporting 

Information. 

 

3 Results 

3.1 Gaussian process regression (GPR) model for predicting the adsorption 

energy of toluene 

The GPR model was first built for predicting the adsorption energy of toluene (ΔEads,TOL) 

across a diverse range of Pt-M bimetallic nanoclusters. This choice is guided by the 

importance of adsorbed toluene in dictating the selectivity of methyl cyclohexane 

dehydrogenation. The strong adsorption of toluene increases the propensity of 

deleterious C-C scission that forms benzene25. Figure 1 shows the compositional and 

configurational space from which bimetallic clusters are selected to train the GPR 

model for predicting ΔEads,TOL. This training set encompasses variations in the doping 

element M, the local coordination- and compositional-environment of the active site 

and its first nearest neighbors, and the morphologies of nanoclusters. The active site 

is characterized by the metal atoms that are proximal to the unsaturated carbon atoms 

of the adsorbate. Tuning the composition of the active site and its first nearest 

neighbors has the highest impact on the chemisorption energies of bimetallic 

catalysts36. Changes in the composition of the second nearest neighbors and beyond 

have a progressively diminished impact on chemisorption energies. This is because of 

the well-established screening effects shown by d-electrons37,38. Hence, we restrict our 

focus to tuning the composition of elements that constitute the active site and its first 

nearest neighbors. 
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Figure 1. The range of Pt-M bimetallic nanoparticles (where M is the doping element) 

that form the dataset used to train the GPR model for predicting the adsorption energy 

of toluene. The training dataset spans different doping metals (colored elements are 

the doping elements used as M), different local active site configurations on (100) and 

(111) facets of the nanoparticle, and nanoparticle morphologies exhibiting varied 

shapes and sizes. 
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Figure 2 (a) The primary features used in the GPR model are the coordination number, 

cohesive energy, electronegativity, and 𝑑̅𝐶−𝑃𝑡/𝑀, the average bond length between all 

the unsaturated carbons with their nearest metal atoms. (b) One example of calculating 

the adsorption energy of toluene using the trained GPR model (ΔEads, GPR) under a 

series of 𝑑̅𝐶−𝑃𝑡/𝑀 from 2.0 to 3.0 Å. The Pt-M nanocluster, where M is V that is used 

in this example is illustrated in (a). The value of ΔEads, GPR is shown by the purple line 

and the uncertainty at each 𝑑̅𝐶−𝑃𝑡/𝑀  is plotted using the vertical black lines. The 

corresponding ΔEads, GPR with the least uncertainty, indicated by the red arrow, is 

considered as the predicted adsorption energy.  

 

Intermediates like toluene adsorb across two to four metals atoms of the active sites 

in multi-dentate adsorption modes. These metal atoms span diverse coordination 

numbers and compositions, resulting in heteroatomic active sites. A single descriptor 

for chemisorption will not work for such structurally and compositionally complex 

heteroatomic active sites. Moreover, linear models like scaling relationships lose their 
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accuracy on heteroatomic active sites39. To overcome the challenges associated with 

multi-dentate adsorption at such complex active sites, we employ Gaussian Process 

Regression (GPR). The features of the GPR model are selected based on insights 

from physics-based models of chemisorption. These features include the bulk 

cohesive energy of metal atoms (Ecoh) and the electronegativity according to the 

Pauling scale (χ), as presented in Figure 2a. Ecoh represents the stability of elements 

that constitute the active site. The choice of Ecoh is inspired by the inherent relationship 

between stability and reactivity as shown in computational models like the “alpha-

scheme” 40,41 and as inferred from calorimetry measurements42. χ is selected as an 

electronic descriptor for metal atoms43 and is an important feature in other physics-

based and machine learning models of chemisorption of small adsorbates44,45. The 

strength of the chemical bond between the adsorbate and the active site, an essential 

aspect of the molecule-metal interaction45, is characterized by the average carbon-

metal bond length, denoted as 𝑑̅C−Pt/M  and included as a primary feature. 

Recognizing that adsorption energies can be structure-sensitive46, we calculated these 

atomic properties weighted by the coordination environment of the active site. A three-

dimensional fingerprint [F1, F2, F3] was established for each Pt-M active site. F1, F2, 

and F3 are defined by the following equations: 

𝐹1 =
1

𝑛𝑎𝑠𝐸𝑐𝑜ℎ,𝑏𝑢𝑙𝑘
∑ (𝐸𝑐𝑜ℎ,𝑖 × ∑ 𝐸𝑐𝑜ℎ,𝑗

1𝑁𝑁

𝑗

)

𝑎𝑠

𝑖

 (1) 

𝐹2 =
1

𝑛𝑎𝑠𝜒𝑏𝑢𝑙𝑘
∑ (𝜒𝑖 × ∑ 𝜒𝑗

1𝑁𝑁

𝑗

)

𝑎𝑠

𝑖

 (2) 

𝐹3 =
∑ 𝑑𝐶−𝑃𝑡 𝑀⁄

𝑎𝑠
𝑖

𝑛𝑎𝑠
 (3) 

In Eqn. 1-3, “as” refers to the atoms belonging to the active site, “1NN” refers to the 

first nearest neighbor metal atoms, nas is the total number of active-site atoms, and 

n1NN is the total number of 1NN atoms. A detailed example of calculating these features 

is shown in Figure S3 of the supporting information. The values of Ecoh and χ are 

obtained from established databases47,48. Ecoh,bulk and χbulk are the cohesive energy and 

electronegativity values of the bulk element in the bimetallic nanocluster. The product 

of the features of atoms in the active site and the first nearest neighbors in Eqn. 1 and 

2 represent the pair-wise interactions between atoms in the active site and the first 

nearest neighbors.  

For training the model, we applied GPR with exponential kernel functions, using the 

fingerprint [F1,F2,F3] extracted from DFT-optimized geometries over a dataset 

consisting of 131 ΔEads,TOL. The only feature that requires DFT-optimized geometries 

in the fingerprint is, 𝑑̅C−Pt/M. However, when we apply the GPR model to a new active 

site outside the training dataset, 𝑑̅C−Pt/M  is not known a priori. Thus, 𝑑̅C−Pt/M  is 

treated as a variable in such situations. We harness the intrinsic uncertainty estimation 

capabilities of GPR to find the specific value of 𝑑̅C−Pt/M that minimizes the uncertainty 
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in predicting ΔEads,TOL. Thus, no DFT-derived inputs are needed when predicting 

adsorption energies using our GPR model. Figure 2b illustrates the application of the 

GPR model for predicting ΔEads,TOL on a Pt52-Mo3 nanocluster, wherein two Pt atoms in 

the active site and one Pt atom in the nearest neighbor of the active site are replaced 

by Mo atoms. We computed both ΔEads,TOL and its uncertainty across 𝑑̅C−Pt/M ranging 

from 2.1 to 2.9 Å. The ΔEads,TOL corresponding to the smallest uncertainty was 

determined as the predicted adsorption energy. For the Pt52-Mo3 nanocluster, the 

averaged bond length and the adsorption energy were predicted to be 2.18 Å and –

2.96 eV, closely matching the DFT-calculated results of 2.16 Å and –2.89 eV 

respectively. 

 

 

Figure 3 (a) Parity plot of the GPR model for predicting the adsorption energy of 

toluene. The 131 data points were randomly divided into training, validation, and 

testing datasets. The mean absolute error across these datasets is stated. (b) and (c) 

show the distribution in the elemental composition and the distribution of the active 

sites for adsorbed toluene. (d) Workflow of the active learning simulator. 30 structures 
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were selected randomly from the 131 data points to train a GPR model. The GPR 

model was used to predict the ΔEads for the remaining data points. The data points 

exhibiting an uncertainty > b (b is 0.15 eV) were calculated by DFT and added to the 

training set. The training and testing process was iteratively continued until the MAE 

of the testing data was smaller than a (a is 0.15 eV). (e) MAE on the test set as a 

function of iterations of the active learning simulator. (f) Number of training data points 

as a function of iterations of the active learning simulator. 

 

Figure 3a presents a parity plot of the GPR model that is constructed using a dataset 

of 131 ΔEads,TOL that correspond to various Pt-M configurations shown in Figure 1. We 

divided the total dataset into training and testing subsets using an 80-20 split. Model 

training ensued using a five-fold cross-validation approach on the training set. Further 

details about the training, validation, and testing process are stated in the Supporting 

Information. To rigorously assess the model's accuracy, we computed the mean 

absolute error (MAE) not from a single division of the 131 ΔEads,TOL but over 100 

random splits, as shown in the trends in Figure S5. Averaged over 100 iterations, the 

MAE on the training dataset, validation dataset, and testing dataset are 0.06 eV, 0.15 

eV, and 0.14 eV, respectively. The resultant validation and testing MAE values are 

consistently 0.15 eV or lower, which is comparable to, or surpasses, the precision of 

existing models for smaller adsorbates on nanoclusters49,50,51. The similarity of MAEs 

between the validation and testing data confirms the absence of overfitting. The 

distributions of the doping element M and the active site geometries within the dataset 

of 131 points are depicted in Figures 3b and 3c. Due to the selection of physics-

inspired features, the GPR model makes accurate prediction across diverse doping 

elements and different active site geometries. 

While the dataset of 131 points is already modest when compared to other neural 

network based machine learning models52, we demonstrated the potential to further 

condense the training set size via active learning. We clarify that this technique was 

not utilized while assembling the dataset for ΔEads,TOL but it is anticipated to be 

beneficial for retraining the model for other cyclic hydrocarbons in future studies. 

Furthermore, this active learning simulation determines the minimal dataset size 

required for building a GPR model that predicts ΔEads,TOL within a given precision. We 

randomly selected 30 structures from the 131 points as an initial training dataset, with 

the remainder serving as testing dataset. Testing data with uncertainties exceeding 

0.15 eV were computed via DFT and incorporated into the training pool. This iterative 

process continued until all testing data achieved an MAE below 0.15 eV. The active 

learning simulator's workflow is outlined in Figure 3d, and the iterative reduction of 

MAE against the training dataset size is plotted in Figure 3e. Remarkably, after three 

iterations, we attained a testing MAE under 0.15 eV using a training set of only 98 data 

points for ΔEads,TOL. The result proves that accurate predictions for intricate 

multidentate adsorptions on heteroatomic active sites of bimetallic nanoclusters are 

feasible with fewer than 200 DFT calculations (98 calculations on the clean nanocluster 

and an additional 98 calculations for toluene adsorbed on the nanocluster). 

https://doi.org/10.26434/chemrxiv-2024-bj36p ORCID: https://orcid.org/0009-0002-4793-4081 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-bj36p
https://orcid.org/0009-0002-4793-4081
https://creativecommons.org/licenses/by-nc/4.0/


13 

 

3.2 Transferability of the GPR model to new active sites, elements, and 

adsorbates 

 

 

Figure 4 (a) Dependence of the adsorption energy of toluene on the doping index for 

55-atom Pt-Mo, Pt-Cu and Pt-Zn nanoparticles having CUBO morphologies. This 

doping index represents the concentration of M in the active site and its 1st nearest 

neighbors. (b) The adsorption energy of toluene is predicted on active sites containing 

doping elements outside the training set. The structure of the nanocluster is shown on 

the right. In both (a) and (b), solid circles were adsorption energies calculated by DFT 

and open diamonds were adsorption energies predicted by GPR. A parity plot 

comparing the model against DFT calculated adsorption energies is shown in the 

Supporting Information (Figure S6). 

 

Given the small MAE of the GPR model, we now test the veracity with which this model 

determines directional trends in ΔEads,TOL as the identity and concentration of doping 

elements is varied. To quantitatively encapsulate both the concentration and spatial 

distribution of M atoms relative to the active site, we introduced a metric termed as the 

doping index in Eqn. (4). 

𝐷𝑜𝑝𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥  =   ∑ 𝑤𝑖

𝑀 𝑎𝑡𝑜𝑚𝑠

𝑖

× (
𝐶𝑁𝑖

12
) (4) 
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In Eqn. (4), wi is the coefficient indicating the location of M, defined as 0.5 if M is a first 

nearest neighbor and 1 if M is part of the active site. An illustration of calculating the 

doping index for a Pt52Cu3 nanocluster is provided in the Supplementary Information.  

Employing a variety of Pt-M structures not previously used in the training dataset, we 

generated structural models of nanoclusters with differing doping indices and 

estimated their ΔEads,TOL using the GPR model. Figure 4a illustrates the sensitivity of 

ΔEads,TOL to the modification of the local environment around the active site with three 

different elements Mo, Cu and Zn. Mixing Pt with Mo exhibited negligible effects on 

ΔEads,TOL; increasing Cu concentrations proportionally weakened ΔEads,TOL ; while minor 

amounts of Zn were sufficient to significantly weaken ΔEads,TOL. With increasing doping 

index, the trends in the ΔEads,TOL predicted by the GPR model are consistently aligned 

with DFT calculated adsorption energies. This directional alignment validates the 

capability of the GPR model in discerning the impact on ΔEads,TOL through subtle 

changes in composition of the active site and its first nearest neighbors. For higher 

doping index values of Zn, a slight deviation in predicted ΔEads,TOL relative to DFT 

results is observed. This deviation is attributed to the restructuring of the Pt-Zn 

nanocluster at high Zn concentrations. Such restructuring in nanoclusters after 

adsorption is not accounted in our GPR model, but could potentially be addressed 

through machine learned force fields53.  

We conducted further tests of the GPR model on Pt-M alloys where M is taken from 

the 3rd to 5th periods of the periodic table, as depicted in Figure 4b. The close match 

between the GPR-predicted ΔEads,TOL against DFT calculated values validate our 

approach. Interestingly, this model is extrapolatable to elements outside the training 

set. Pt-Pb however, emerges as an exception. Pb provides a sufficiently strong 

repulsion towards toluene that the interaction between the Pt-Pb site and toluene is 

almost physisorption. Since the GPR model is trained on structures with chemisorption, 

the higher errors for physisorption are expected. Screening across various metals, we 

find that the elements with a full d-band, such as Cu, Zn, Sn and Pb, weaken the 

adsorption energy of toluene, thus enabling swift desorption of the dehydrogenated 

product and preventing side-reactions to benzene. Hence such elements can be 

considered as promoters for methyl cyclohexane dehydrogenation. 
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Figure 5 (a, b) Transferability of the GPR model to 55-atom core-shell nanoclusters 

with Pt in the shell. The core elements are marked at each point. The adsorption 

energies of toluene in (a) are predicted using the GPR model presented in Figure 3. In 

(b), the fingerprints are corrected for the effects of strain resulting in an improved 

agreement between the GPR-predicted and DFT-derived adsorption energies. (c, d) 

Transferability of the GPR model to Cu-rich bimetallic nanoclusters (Cu-M). The 

distribution of M is plotted in the pie chart. The toluene adsorption energies in (c) are 

all predicted using the same GPR model presented in Figure 3. In (d), an additional 

linear correction is applied to each predicted adsorption energy, where the coefficients 

(p1, p2) in the linear fitting y = p1*x + p2 are obtained using a leave-one-out method. 

The MAE in (d) refers to the leave-one-out error. 

 

Figure 4 confirms that the GPR model can competently describe how changes in 

composition around a single active site influences ΔEads,TOL. We now test the validity 

of the model against changes in composition at the level of an entire nanocluster. 

Figure 5a shows that the GPR model trained on randomly doped Pt-M nanoclusters 

yields significantly higher error on core-shell Pt-M nanoclusters (Pt as the shell and 

different M as the core) resulting in a MAE of 0.33 eV. While the GPR model can 

correctly simulate the ligand effects on adsorption (Figures 3 and 4), this model does 

not include the effects of strain on adsorption energies. Given the mismatched lattice 

constants of elements in the core and the shell54, such effects induced by strain need 

explicit consideration. We observed a positive correlation between the prediction error 
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and the geometric area of the active site, as shown in Figure S7. This correlation 

indicates that the high error is because the effects of strain are ignored. We therefore 

adjusted the fingerprints by incorporating the influence of geometric area of the active 

site as shown in Eqn. (5). The geometric area of the active sites of core-shell 

nanoclusters and Pt55 are derived using their lattice constants and are listed in the 

Supporting Information. Figure 5b shows that after adjusting the fingerprints, MAE 

reduces to 0.17 eV, confirming the validity of our model to core-shell structures after 

correcting for strain effects.  

∆𝐸ads,strain corrected = ∆𝐸ads,original (
𝐴𝑟𝑒𝑎𝑃𝑡55

𝐴𝑟𝑒𝑎𝑐𝑜𝑟𝑒−𝑠ℎ𝑒𝑙𝑙
)

2

 (5) 

The transferability of the GPR model trained on Pt-rich nanoclusters to Cu-rich Cu-M 

nanoclusters is tested in Figure 5c. We calculated ΔEads,TOL on 13 Cu-M structures, 

including different morphologies and compositions (monometallic Cu, Cu-Pt, Cu-Co, 

Cu-Ru and Cu-Ni). Although the MAE is high in Figure 5c, this error is systemic and 

the GPR-predicted ΔEads,TOL is highly correlated with the DFT calculated ΔEads,TOL for 

the considered structures. Therefore, a linear function is used to correct the predicted 

adsorption energy as shown in Eqn. (6). 

∆𝐸𝑎𝑑𝑠,𝐺𝑃𝑅
′ = 𝑝1∆𝐸𝑎𝑑𝑠,𝐺𝑃𝑅 + 𝑝2 (6) 

In Eqn. (6), ∆𝐸𝑎𝑑𝑠,𝐺𝑃𝑅  is the adsorption energy predicted by the GPR model and 

∆𝐸𝑎𝑑𝑠,𝐺𝑃𝑅
′  is the result after linear fitting. The parameters p1 and p2 are fitted to the DFT 

calculated Cu-M data. In Figure 5d, we use the leave-one-out approach to validate the 

linear fitting. Each time one of the 13 data points was used as the testing datapoint, 

and p1 and p2 are trained to the remaining 12 training data. The MAE in Figure 5d is 

averaged over the total 13 tests. After a simple linear correction, the MAE decreases 

from 1.04 eV to 0.29 eV, affirming the utility of such linear corrections to extend the 

validity of the GPR model to bimetallic compositions that go beyond the training set. 

Figure S8 shows the histograms of F1 and F2 in Cu-rich and Pt-rich datasets. The 

difference in F1 and F2 between the two datasets explains the increase of MAE when 

transferring the GPR model trained on Pt-rich nanoclusters to Cu-rich. Pt and Cu 

present distinct cohesive energies (Pt: 5.30 eV/atom, Cu: 3.49 eV/atom) and 

electronegativities (Pt: 2.28, Cu: 1.90). The GPR model is expected to perform even 

better on alloys with similar cohesive energies and electronegativities as Pt.  
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Figure 6 Transferability of the GPR model that is trained to the adsorption energies of 

toluene, to predict the adsorption energies of other C7 intermediates. (a) Adsorption 

energies of C7 species are predicted using the GPR model trained to the adsorption 

energies of toluene (GPR-TOL model); (b) Adsorption energies of C7 species are 

predicted using a linear correction to outputs from the GPR-TOL model; (c) Adsorption 

energies of C7 species are predicted using individual GPR models that are trained 

separately to each C7 species. For (b) and (c), the training-testing dataset was split 

using the leave-one-out method. The testing MAE stated is calculated by averaging 

the absolute error over all possible leave-one-out combinations in the data set. (d) The 

structures of different C7 intermediates considered.  

 

Thus far, a GPR model trained on physics-inspired fingerprints predicts adsorption 

energies of large adsorbates like toluene with accuracies on-par with other machine 

learning models built for simpler adsorbates6, 10, 51. Extensive testing of this model 

proved its transferability across different active site structures and diverse nanocluster 

compositions. We finally extend this GPR model trained on ΔEads,TOL to predict the 

adsorption energies of other C7 reaction intermediates seen during methyl 

cyclohexane dehydrogenation. These intermediates range from C7H13 to C7H9. In 

Figure 6, the adsorption energy of reaction intermediate C7Hx was referred to the 

energy of gas phase toluene and (x-8)/2 H2 as defined in Eqn.(S1b). The MAE is found 

to be 0.33 eV averaging over all the C7Hx adsorbates as shown in Figure 6a. The 
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relatively large MAE is caused due to the structural difference between toluene and 

other C7Hx adsorbates. It is reasonable that the transferability of hyperparameters 

trained for one adsorbate to other adsorbates is determined by the structural similarity 

between the two adsorbates, i.e. sharing the same functional group or adsorbing in a 

similar configuration. For example, the GPR model trained on toluene, can however 

be directly used to predict the adsorption energy of benzene (see Figure S9) with a 

MAE of 0.18 eV. Thus, the GPR model can be applied to molecules of similar structures 

without further training of the hyperparameters. However, the model is less accurate if 

the adsorption configuration of intermediates (e.g., C7H12 and C7H13) changes. To 

reduce the error, we used a linear regression to correlate the model-predicted 

adsorption energies (GPR-TOL) with DFT-derived values for each reaction 

intermediate. This approach resembles what was used in Figure 5 for extending a 

model trained on Pt-rich nanoclusters to Cu-rich nanoclusters. The predicted 

adsorption energies after this linear regression are plotted in Figure 6b with a reduced 

MAE of 0.20 eV. The MAE after the linear regression (MAElinear) for each intermediate 

is listed in Table 1. 

 

Table 1 The total number of adsorption energies of each reaction intermediate on 

bimetallic Pt nanoclusters that are calculated using DFT. The MAEs for different 

models are also stated.   

 C7H13 C7H12 C7H11 C7H10 C7H9 

No. of data 48 27 26 26 24 

MAElinear (eV) 
(GPR-TOL model + 
linear correction) 

0.18 0.24 0.16 0.19 0.25 

MAEGPR, validation (eV)  
(Individual GPR-C7 
model) 

0.18 0.19 0.13 0.26 0.27 

MAEGPR, test (eV)  
(Individual GPR-C7 
model) 

0.12 0.13 0.12 0.19 0.29 

 

In addition to such linear regressions, training individual GPR models for each C7 

intermediate can also be built to increase the predictive accuracy. Using individual 

GPR models, the mean MAE across all the C7 adsorbates decreases from 0.33 eV to 

0.16 eV, as shown in Figure 6c. Further details about the accuracy of the individual 

GPR models are provided in Table 1. For C7 adsorbates other than toluene, we only 

calculated 25-40 adsorption energies. Hence the MAEs between the individually 

trained GPR models and the linear regression appear to be similar. But the prediction 

accuracy of the GPR models can be further improved with larger datasets. The active 

learning procedure developed in Figure 3b can help to accelerate the training of such 

models. Figure 6c, together with Figure 5b and 5d, confirm that our physics-inspired 
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primary features accurately represent the interaction between unsaturated carbon 

atoms and low-coordinated metal atoms that are part of heteroatomic active sites. 

Upon constructing and validating the GPR model, we will now harness this model to 

understand how tuning the composition of the active site and the first nearest 

neighbors impacts the kinetics of methyl cyclohexane dehydrogenation.  

 

3.3 Screening the kinetics of bimetallic active sites for methyl cyclohexane 

dehydrogenation  

 

 

Figure 7 Elementary reaction steps for MCH dehydrogenation. The active site for the 

adsorption of C7 hydrocarbons is represented by * while the active sites for the 

adsorption of atomic hydrogen (HΔ) is Δ.  

 

A microkinetic model is developed to calculate the reaction kinetics. The energetics 

inputted into the microkinetic model are obtained from the GPR models that were 

formulated and validated in sections 3.1 and 3.2. The reaction pathway of methyl 

cyclohexane dehydrogenation is shown in Figure 7, containing 10 elementary steps 

and 9 reaction intermediates. The 10 elementary steps include the adsorption and 

desorption of methyl cyclohexane, toluene, and H2, the C-H cleavage steps and the H-

H recoupling step. Since the microkinetic model is applied to evaluate the performance 

of different bimetallic catalysts, we simulated the turnover frequency under a fixed 5% 

conversion, where the pressures of methyl cyclohexane, toluene and hydrogen are 

constant as 95 kPa, 5 kPa and 15 kPa, respectively. Dual-site model was applied in 

the simulation where C7 and H species adsorb at different active sites, marked by * 

and Δ, respectively.  
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Figure 8 (a) Nine Pt-M active sites of 55-atom nanoclusters having a CUBO 

morphology. Nine doping elements (M) are considered. For each Pt-M active site 

structure shown in (a), four compositions of Pt and M in the first nearest neighbors are 

selected, leading to 36 structures per Pt-M system. (b) Turnover frequencies for methyl 

cyclohexane dehydrogenation are computed at 5% conversion at 600 K, 95 kPa methyl 

cyclohexane, 5 kPa toluene, and 15 kPa hydrogen. The size of each data point 

represents the surface coverage of C7H8* (θTOL) at steady state. Monometallic Pt is 

used as the reference. Zn and Cu in ① are the elements used in the training dataset 

while the other elements in ② are outside the training dataset. Larger marker sizes 

indicate a lower θTOL; (c) Distribution of the most abundant surface species plotted for 

each doping element M. 14 → 8 on the x-axes refer to percentage coverage of C7H14* 

→ C7H8*. 

 

Utilizing the GPR models shown in Figure 6b, we determined the reaction energy for 

each elementary step of the methyl cyclohexane dehydrogenation pathway. To simplify 

https://doi.org/10.26434/chemrxiv-2024-bj36p ORCID: https://orcid.org/0009-0002-4793-4081 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-bj36p
https://orcid.org/0009-0002-4793-4081
https://creativecommons.org/licenses/by-nc/4.0/


21 

 

the catalyst screening process, we assumed that zero-point energies and entropies of 

adsorbed species are insensitive to the chemical composition of the Pt-M active site. 

Thus, these values are determined on the reference active site on the Pt55 nanocluster. 

These assumptions are valid because contributions from zero-point energies are 

typically below 0.10 eV and changes in vibrational entropy during surface reactions 

involving chemisorbed species are typically small. These assumptions are supported 

by Table S5 and by previous studies in the literature13,40. Since we are focusing on Pt-

rich alloys, and since HΔ diffuses rapidly at 600 K55, the adsorption energy of HΔ was 

approximated to that observed on Pt55. Given that C7H14* is physiosorbed, the 

adsorption energy at a different Pt-M active site was regarded as the same as the 

adsorption energy of C7H14* on Pt55. The activation barriers are inferred using a 

Brønsted−Evans−Polanyi (BEP) relation, with a BEP coefficient of 0.74 derived from 

dehydrogenation steps on Pt55 (Figure S2). This BEP coefficient is indicative of a late 

transition state for C-H bond breakage—a commonality in light alkane 

dehydrogenation reactions56,57. Such BEP relationships are established approaches 

for estimating the activation barriers of C-H scission reactions that have been 

generalized across different types of active sites, including bimetallic alloys58. We 

determined the reaction kinetics at different Pt-M active sites, with the terrace site at 

Pt55 chosen as the reference active site. 36 configurations of Pt-M are generated for 

nine M elements. These elements include Ag, Cu and Zn, which weaken the adsorption 

energy of toluene (Figure 4b). As show in Figure 8a, we first select 9 different active 

site motifs. For each active site we randomly replaced 1, 4, 7 and 10 Pt atoms from 

the first nearest neighbors by M. Notably, the predictions assume a pristine nanocluster 

surface; however, microkinetic simulations reveal a full layer of adsorbed toluene 

covering Pt55. Hence, the effects of surface coverage on the desorption energy of 

toluene are explicitly included. An empirical term representing coverage effects is 

computed to be 0.53 eV based on analyzing the coverage-dependent adsorption 

energies of toluene. The positive value of this term implies a weakening in the 

adsorption energy of toluene with increasing surface coverage, as shown Figure S10. 

The magnitude of this coverage effect for toluene is similar to what has been observed 

in the literature for the adsorption energy of phenol under high surface coverages59,60. 

Here we assumed that the coverage effect is always 0.53 eV, irrespective of the identity 

of the C7 species that are most abundant under pseudo steady state conditions. Future 

work will refine this term through experimental validation61. For each active site, we 

calculated the turnover frequency and the surface coverage of adsorbed toluene, θTOL. 

The θTOL is connected to the likelihood of benzene formation, since a high θTOL
 

increases the rate of deleterious C-C scission forming CH3* and adsorbed benzene. 

In Figure 8a, the magnitude of θTOL is inversely proportional to the size of the datapoints. 

For catalysts exhibiting turnover frequencies resembling monometallic Pt active sites, 

the surfaces are covered by adsorbed toluene and the reaction rate is hindered by the 

sluggish desorption of toluene. For catalysts exhibiting turnover frequencies that are 

higher than monometallic Pt active sites, the desorption of toluene is faster and is no 

longer the only rate-determining step. The rate determining steps are qualitatively 

inferred by inspecting the forward, reverse, net rates, and the surface coverages. 
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Figure 8b shows the distribution of the most abundant surface species (C7Hx*, where 

x ranges from 8 to 14). The reference Pt site was not plotted as adsorbed toluene was 

the most abundant species on Pt. Replacing Pt environments with M enables the faster 

desorption of toluene, but at the expense of increasing the activation barriers for C-H 

bond scission, as inferred from the BEP relationship. Hence a higher concentration of 

M leads to sluggish kinetics of C-H bond scission mainly from the first and second 

dehydrogenation step. As inferred from Figure 8b, the dehydrogenation of C7H10 can 

also be rate-limiting for certain elements such as Sb, Sn, Pb, Ag and Ga.  

In general, we found that modifying Pt nanoclusters with elements from group IB and 

IIB, and post-transition metals results in weakened interactions of toluene with the 

active site and, consequently, higher reaction rates. Such alloys also reduce the cost 

of the catalyst by reducing the composition of Pt in the catalyst formulation. 

 

4 Discussion 

Cyclic reaction intermediates seen in dehydrogenation of hydrogen carriers like methyl 

cyclohexane adsorb in multidentate configurations on active sites. For bimetallic 

nanoclusters, such active sites are moreover heteroatomic in composition and span 

diverse coordination numbers. These complexities have impeded the use of in silico 

methods to design effective catalysts for dehydrogenating liquid organic hydrogen 

carriers. We overcome these challenges using a novel catalyst design workflow that 

leverages the uncertainty quantification capabilities of Gaussian Process Regression 

(GPR). By selecting physics-inspired atomic properties as primary features, our 

machine learning model predicts adsorption energies of reaction intermediates using 

markedly smaller datasets as accurately as state-of-the-art approaches that are built 

for smaller adsorbates on less complex active sites12,51,62. Such physics-inspired 

features also lead to a model that is transferable across variations in the structure and 

composition of not only the active site but also of the entire nanocluster. Combining 

these GPR models with a microkinetic model, we developed a machine-learning 

assisted catalyst screening method to identify Pt-based bimetallic nanoclusters for the 

dehydrogenation of methyl cyclohexane. A high-throughput screening over different 

transition metals and active site configurations, we found that elements from groups 

IB and IIB, and post-transition metals are promising promoters for methyl cyclohexane 

dehydrogenation. 

Our findings align with experimental observations of the dehydrogenation of both light 

alkanes and methyl cyclohexane. Similar increases in selectivity were obtained by 

facilitating the desorption of unsaturated hydrocarbon products through alloying with 

group 1B elements. During propane dehydrogenation63, Pt-Cu and Pt-Ag exhibited a 

96% selectivity towards propylene that exceeds the 90% selectivity seen on 

monometallic Pt. Experimental studies also reported Pt/Cu single-atom alloys as coke-

resistant C–H activation catalysts64. Similarly, post-transition metals (Pb, Sn, Sb) were 

reported as promoter to Pt nanoparticles for ethane dehydrogenation65. 
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For methyl cyclohexane dehydrogenation, experimental studies reported that the 

desorption of toluene is the rate-determining step on Pt catalyst66,67, an observation 

that is congruent with our microkinetic analysis on active sites located at the (100) facet 

of nanoclusters. Furthermore, including other transition metal, like Cu, Zn, Ga and Sn, 

facilitated the desorption of toluene and limited the formation of coke68,27,69. These 

experimental findings are also consistent with our computational predictions. Beyond 

the elements with a full d band, enhanced reactivity and selectivity were obtained by 

alloying Pt with Fe, Co, Mo, Mn, and Ti27,70. In contrast, our GPR model predicts that 

the metallic form of these elements will not weaken the adsorption energy of toluene 

relative to monometallic Pt (Figure 4), and thus these elements should not promote the 

reactivity and selectivity of methyl cyclohexane dehydrogenation. The deviation for Fe 

and Co may be caused by the spin polarization which was included in the DFT 

calculation and the GPR model. Mo, Mn, and Ti however exist in the form of oxides 

under the reaction temperature of 500~650 K during methyl cyclohexane 

dehydrogenation. Unlike their metallic counterparts, such oxide clusters may weaken 

the adsorption energy of toluene. Furthermore, interactions of these oxides with the 

catalyst support (usually Al2O3 or SiO2), can influence the acidity of the support. Tuning 

the acidity of supporting material has been reported to influence the reactivity and 

selectivity of dehydrogenation reactions71. Although the effects of the support are not 

discussed in the present work, they are a natural next extension of our computational 

framework. Herein, we aim to overcome the first step of building an in-silico catalyst 

design paradigm that is capable of identifying bimetallic active sites for such complex 

reaction pathways. 

In general, our computational findings align with strategies employed in the 

dehydrogenation of light alkane and methyl cyclohexane over bimetallic catalysts, 

underscoring the utility of a secondary metal components in weakening product-

catalyst interactions.  

 

 

Figure 9 Applications of our machine learning model to catalytic reactions involving 

large molecules. The capabilities of computing reaction energetics at each active site 

of the nanocluster can be harnessed to determine the overall reaction kinetics across 
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the nanoparticle. Explicit considerations of bifunctional coupling between different 

active sites of the nanoparticle are possible. This framework is translatable to other 

liquid organic hydrogen carriers and to cyclic hydrocarbons that are precursor to coke.  

 

We outline the applications of our method to other catalytic systems in Figure 9. The 

GPR model predicts active-site-specific adsorption energies of cyclic organic species. 

This capability can be leveraged to map the reaction energetics, and when paired with 

a microkinetic model, the reaction kinetics over all the possible active sites of a 

nanocluster. These active site distributions can either be characterized from 

experiments or generated using theoretical models of nanoclusters72. Moreover, the 

active-site-specific reaction energetics provided by the GPR model can be used to 

determine the extent of bifunctional coupling between active sites, as has been 

postulated for bimetallic alloys73. In addition to evaluating the reaction kinetics of 

methyl cyclohexane dehydrogenation intermediates, the active learning simulator can 

be used to retrain the model for other cyclic organic species. The reaction energetics 

of such adsorbates are useful in understanding the deactivation rate of bimetallic sites 

through coking. The formation of coke is the most frequent cause of catalyst 

deactivation in industrial processes74. As coke molecules are formed from unsaturated 

species like alkenes, aromatics, cyclic alkenes, and cyclic dienes74, the likelihood of 

poisoning a bimetallic active site can be also predicted by our GPR model. A similar in 

silico paradigm can be applied directly to identify improved catalysts for the reverse 

reaction, the hydrogenation of toluene to methyl cyclohexane75, and other 

heterogeneous catalysis of large organic compounds having complex reaction 

pathways. 

 

5 Conclusions 

The computational-guided design of tailored catalysts for dehydrogenating liquid 

organic hydrogen carriers is limited by the complexities of predicting adsorption 

energies of unsaturated cyclic hydrocarbons on low-symmetry active sites. To 

circumvent these limitations, we present a physics-inspired machine learning model 

that predicts the adsorption energies of species encountered during the 

dehydrogenation of methyl cyclohexane, a hydrogen carrier that is deployed at 

industrial scale. We formulate a gaussian process regression (GPR) model that 

leverage its intrinsic uncertainty quantification capabilities and uses inputs that are 

inspired by physical theories of chemisorption. The model inputs include cohesive 

energies of bulk metals, electronegativity, and carbon-metal bond lengths. Across 

structurally and chemically complex active site environments in bimetallic alloys, this 

GPR model rapidly and accurately predicts the adsorption energies of reaction 

intermediates observed during methyl cyclohexane dehydrogenation. Notwithstanding 

the complexities of multi-dentate configurations of C7Hx (x = 8 – 13) species that adsorb 

on low-symmetry active sites, the model predicts adsorption energies with mean 

absolute errors ranging from 0.12 eV to 0.29 eV on blind test sets. The physics-inspired 
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inputs ensure seamless transferability of this model across active sites located in 

nanoclusters having varied morphologies and compositions. 

The energetics derived from the GPR model are used to compute rate constants of 

elementary steps of methyl cyclohexane dehydrogenation. Using this microkinetic 

model, we perform a high-throughput virtual screening of bimetallic nanocluster 

catalysts for methyl cyclohexane dehydrogenation. Our model identifies Pt-based 

nanoclusters alloyed with metals featuring a complete d-band (group IB, IIB, and post 

transition elements) as optimal catalysts, aligning with experimental observations in 

the literature. Such bimetallic compositions not only accelerate the rate of toluene 

desorption but concomitantly lower the surface coverage of toluene. The latter 

prevents deleterious side reactions like the demethylation of toluene to benzene. The 

scalable and efficient approach introduced in this work marks a significant 

advancement in the predictive design of catalysts for reactions involving large cyclic 

hydrocarbons that react on low-symmetry active sites. The framework introduced in 

this work can be translated to design tailored catalysts for dehydrogenating other types 

of liquid organic hydrogen carriers, thus accelerating the deployment of technologies 

that enable the trans-oceanic shipment of low-carbon hydrogen. 
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