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Abstract

We report the formulation and implementation of an extended Frenkel exciton model

(EFEM) designed for simulating the dynamics of multichromophoric systems, taking into ac-

count of the possible presence of inter-chromophore charge transfer states, as well as other

states in which two chromophores are simultaneously excited. Our approach involves con-

structing a Hamiltonian based on calculations performed on monomers and selected dimers

within the multichromophoric aggregate. The nonadiabatic molecular dynamics is addressed

using a surface hopping approach, while the electronic wavefunctions and energies required

for constructing the EFEMare computed utilizing the semiempirical floating occupationmolec-

ular orbitals-configuration interaction (FOMO-CI) electronic structure method. However, our

approach can in principle be adapted to ab initio methods. To validate our method, we simu-

late the singlet fission process in a trimer of 2,5-bis(fluorene-9-ylidene)-2,5-dihydrothiophene

(ThBF) molecules, embedded in their crystal environment, comparing the results of the EFEM

to the standard “supermolecule” approach.
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1 Introduction

The interaction between two (or more) chromophores can lead to the migration of charge or ex-

citation energy between them, causing changes in their electronic states.1,2 This phenomenon

is observed in various systems such as biological systems,3–5 molecular crystals,6–8 or covalent

dimers,9–11 where chromophores are in fixed positions and orientations. In such way, the inter-

action among excited states of different chromophores can persists over time, influencing the

dynamics significantly.

The photoinduced nonadiabatic dynamics of an isolated chromophore can differ substantially

when it interacts with surrounding chromophores.7,12,13 Depending on the environmental con-

ditions, various outcomes are possible: excimers may form across multiple chromophore, pro-

tons, and electrons may migrate to adjacent chromophores, and excitons can propagate through

supramolecular ensembles. Understanding these interactions is crucial for the correct description

of the photodynamics of multichromophoric systems.

However, conducting nonadiabatic dynamics simulations inmultichromophoric systems presents

significant computational challenges, necessitating the adoption of a “divide and conquer” strat-

egy. An example of such an approach is offered by exciton models, which enable explicit full-

dimensional simulations of nonadiabatic dynamics in complex multichomophoric systems.13–17

Recently, some of the authors have developed a Frankel exciton model that successfully de-

scribes the photodynamics of systems where local excitations (LE) dominate the dynamics.10

However, Frenkel excitonmodels are designed to describeweakly coupled “monomer-like” singlet

LE, i.e., multichromophoric arrays where there is no significant wavefunction overlap between

the LE states. Moreover, Frenkel exciton Hamiltonians inherently lack the capability to describe

charge transfer (CT) states and multiple excitations belonging to different chromophores (also

designated as monomers in the following).

In recent years, several excitonic models have been proposed that extend beyond the tra-

ditional Frenkel exciton models, incorporating features like CT states, double excitations and
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triplet states.18–26 These models primarily focus on the computation of the electronic energies of

the multichromophoric system. However, in order to perform on-the-fly nonadiabatic molecular

dynamics simulations, there is a crucial need for the evaluation of analytical energy gradients

and nonadiabatic couplings, which poses a significant challenge in this context.

Inspired by existing exciton models, particularly those outlined in Refs.,18–20 we introduce

an extension of the traditional Frenkel exciton model, hereby referred to as the extended Frenkel

exciton model (EFEM). This model incorporates CT states and accounts for multiple excitations

across two distinct chromophores, enabling for example the study of systems undergoing singlet

fission (SF).

In the implementation of our Frenkel exciton model presented in Ref.,10 a QM/MM calcula-

tion is performed for each individual monomer, where a given monomer is represented by the

QM part, while the interaction with the rest of the system is taken into account at the MM level

with electrostatic embedding. In the model proposed here, in addition to the QM/MM calculation

performed for each individual monomer, a QM/MM calculation is performed also for each (se-

lected) pair of chromophores, i.e. a dimer. Fig. 1 (panel A) shows a schematic representation of

the different QM/MM calculations that one could perform to describe a trimer within the EFEM.

A B C
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A B C

A B C
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MONOMERS DIMERS AB A*B AB* A+B- A-B+
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Figure 1: Panel A: Schematic representation of the QM/MM calculations to describe a trimer in
the EFEM. The orange circles represents the QM part while the black ones the MM part. Panel B:
Schematic representation of the diabatic Hamiltonian for a dimer AB.

We made use of the semiempirical floating occupation molecular orbitals-configuration in-

teraction (FOMO-CI) method to evaluate the relevant electronic wavefunctions and energies.27

However, the applicability of the approach proposed is not limited to a semiempirical framework
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and can in principle be extended to ab initio approaches.

In analogy to the Frenkel exciton model proposed by us previously,10 the exciton coupling

between LE states can be computed, either exactly, within the semiempirical formalism adopted,

or resorting to transition atomic charges. Instead, the couplings involving CT states are computed

using a method described in Ref.,28 where a diabatization scheme is employed in the states of

the dimeric targets. This allows us to extract the diabatic state energies of each dimer and the

couplings between them. The nonadiabatic molecular dynamics is here dealt with by the SH

method, but the implementation we proposed is compatible with other dynamical approaches.

The paper is structured as follows: first, we describe our implementation of the EFEM in a

semiempirical framework. Next, we investigate the singlet fission dynamics in a trimer of 2,5-

bis(fluorene-9-ylidene)-2,5-dihydrothiophene (ThBF) molecules as a test case. In particular, the

EFEM results are compared with those previously obtained by some of us29 with the standard

approach, in which the electronic structure method is applied to the whole trimer.

2 Method

In this section, we present the EFEM implementation. Hereafter,NM represents the total number

of monomers, whileND denotes the number of dimers considered in the model. The Latin letters

a, b, etc., are used to label the monomers, while the Greek letters µ, ν, etc., represent the dimers.

Additionally, the Latin letters i, j, etc., are used for the states belonging to the monomers, and

the Latin letters r, s, etc., are used for the states belonging to the dimers. Moreover, from now

on, we will refer to the CT and multiexciton dimeric states as “non-LE”.

2.1 The EFEM Hamiltonian

The EFEM electronic Hamiltonian can be expressed as follows:

HEFEM = HFEM +Hnon−LE. (1)

4

https://doi.org/10.26434/chemrxiv-2024-b5532 ORCID: https://orcid.org/0000-0002-0945-2906 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-b5532
https://orcid.org/0000-0002-0945-2906
https://creativecommons.org/licenses/by-nc-nd/4.0/


whereHFEM is the Frenkel exciton model (FEM) Hamiltonian, which accounts for the LE states.

In the present model, we maintained the same implementation ofHFEM described in a previous

work by some of us,10 which is summarized in Section 2.1.1. TheHnon−LE term in Eq. 1 is added

to take into account non-LE states, and includes the coupling with (some of) the LE states. Its

definition is provided in Section 2.1.2.

2.1.1 LE site energies and couplings

The operatorHFEM which appears in Eq. 1 is defined as

HFEM = Egs|gs⟩⟨gs|+
NM∑
a

na∑
i

(εai + Egs)|ai⟩⟨ai|+
∑
a,b ̸=a

na∑
i

nb∑
j

Vai,bj|ai⟩⟨bj|. (2)

where Egs is the ground-state energy (defined in Section 2.2, Eq. 9), εai represent the so-called

“site energies” of the LE states of each monomer a, Vai,bj is the electronic coupling between two

LE states on different monomers a and b, and NM is the total number of monomers. |ai⟩ is the

wavefunction of the ith LE state of monomer a, which in our implementation is determined as

the antisymmetrized product of the i-th excited state of monomer a with the ground states of all

the other monomers, computed in separate QM/MM calculations:

|ai⟩ = φ0
1 ∧ φ0

2 ∧ . . . ∧ φi
a ∧ . . . ∧ φ0

NM
. (3)

Similarly, the ground state wavefunction |gs⟩ is defined as the antisymmetrized product of the

ground states of all the individual monomers:

|gs⟩ = φ0
1 ∧ φ0

2 . . . ∧ φ0
NM

. (4)

To compute the coupling terms Vai,bj , we assume that all the electronic states considered belong

to the same spin manifold and that the distance between the chromophores is large enough to

neglect the exchange interaction. Under these assumptions, Vai,bj can be approximated by the
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Coulomb integral30

Vai,bj ≃
∫

ρ
(a)
0i (r1)ρ

(b)
0j (r2)

r12
dr1dr2 (5)

where ρ
(a)
0i is the transition density for the two monomeric states φ(a)

0 and φ
(a)
i , and similarly

for ρ(b)0j . In the semiempirical method adopted, evaluating Eq. 5 is notably simpler compared to

ab initio methods. This is because, within the NDO approximation, all three- and four-center

two-electron integrals are neglected. Despite this simplification, determining the Vai,bj couplings

can still be computationally demanding even for semiempirical methods. To address this issue,

various approximated approaches have been developed and utilized for computing the inter-

chromophore Coulomb integral. Among these, the most commum method involves simplifying

transition densities to transition dipoles. This simplification enables the representation of exci-

tonic coupling elements through the Coulomb interaction between transition dipoles. However,

this approximation may lead to less reliable results when the distance between chromophores

is shorter than the spatial dimension of the chromophores.31 Here, to evaluate Eq. 5, we reduce

the transition densities to a set of transition atomic charges and compute Vai,bj as their Coulomb

interaction:

Vai,bj ≃
∑
A∈a

∑
B∈b

qA,aiqB,bj

RAB

(6)

where qA,ai is the transition atomic charge between the ground state and the excited state i lo-

calized at atom A on chromophore a (and similarly for qB,bj), and RAB is the distance between

atoms A and B. The transition atomic charges are obtained using the TrESP method,32 which

involves the fitting of the electrostatic potential arising from a given electron density. We stress

that in our previous study, when we calculated excitonic couplings using Eq. 6, the outcomes

of nonadiabatic dynamics were practically indistinguishable from those obtained when evalu-

ating excitonic couplings with Eq. 5.10 Therefore, we regard this approximation as suitable for

computing the coupling between LE.

In order to construct HFEM (Eq. 2), a series of NM QM/MM calculations is performed, in

each of which a given chromophore a represents the QM moiety, while the rest of the system is
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treated at the MM level with electrostatic embedding. From the QM/MM calculations we have

then access to the individual chromophores energies εai and wavefunctions φi
a, from which |ai⟩

and Vai,bj (Eq. 3 and 6) are computed.

2.1.2 Non-LE site energies and couplings

The non-LE part of the EFEM Hamiltonian (Eq. 1) is defined as follows:

Hnon−LE =

ND∑
µ

nµ∑
r

(εµr + Eµ
gs)|µr⟩⟨µr|+

ND∑
µ

nµ∑
r

NM∑
a∈µ

na∑
i

Vµr,ai|µr⟩⟨ai|+

+

ND∑
µ

nµ∑
r

nµ∑
s ̸=r

Vµr,µs|µr⟩⟨µs|

(7)

where εµr represent the site energies for the non-LE states, Eµ
gs is a dimer-specific ground state

energy (defined in Section 2.2, Eq. 10), Vµr,ai is the electronic coupling between a LE state and

a non-LE state, Vµr,µs represents the coupling between two non-LE states, and ND is the total

number of considered dimers. Moreover, |µr⟩ represents the rth electronic excited state localized

on dimer µ and nµ is the number of states |µr⟩ considered. In our approach, we determine |µr⟩

as the antisymmetrized product of the r-th diabatic state of a specific dimer µ with the ground

states of all other monomers which do not belong to the considered dimer (µ):

|µr⟩ = φ0
1 ∧ φ0

2 ∧ . . . ∧ φr
µ ∧ . . . ∧ φ0

NM
. (8)

It is important to note that in Eq. 7 only the electronic couplings between LE states and non-

LE states within the same dimer are taken into account. This is reflected in the third term on

the right-hand side of Eq. 7, where a must belong to µ. Additionally, the electronic couplings

between non-LE states of different dimers, denoted as Vµr,νs with µ ̸= ν, are neglected (i.e. set to

zero) in Eq. 7. However, we note that the absence of these electronic couplings does not exclude

the possibility of having transitions between non-LE of different dimers during the dynamics, as

these states can interact through the nonadiabatic couplings (evaluated as described in Section
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2.5).

The site energies εµr, couplings Vµr,ai and Vµr,µs, and wavefunctions φr
µ are obtained perform-

ing separated QM/MM calculations for each of the ND dimers. However, the procedure is more

complex than for the monomers, as it involves a diabatization step. In particular, from a QM/MM

calculation for a dimer, the electronic adiabatic states of the given dimer are computed. Next, to

define the LE and non-LE states, we use a diabatization scheme previously developed by some of

us.28 Specifically, for each QM dimer, we first localize the molecular orbitals (MOs) on the two

monomers, and then diabatic states are determined by rotating the (previously computed) adia-

batic states so as to maximize the overlap with a predefined set of references,28 which are models

for the LE and non-LE states of interest. The same rotation matrix is used to build a diabatic

Hamiltonian for each dimer, from which the site energies εµr and couplings Vµr,ai and Vµr,µs are

extracted. On the other hand, the site energies of LE states and couplings between them, ob-

tained from the diabatization, are discarded, as these quantities are computed from monomeric

QM/MM calculations, as described in Section 2.1.1. A consequence is that the states |µr⟩ and |ai⟩

with a ∈ µ, which are assumed to be orthogonal, are only approximately so, as they are built

with different sets of molecular orbitals. In the present implementation this poses no problem,

as the coupling between these states is evaluated as the electronic coupling Vµr,ai (through the

diabatization procedure referred above), rather than as nonadiabatic coupling.

As a typical example, let’s consider a dimer consisting of monomers a and b, for which the

following diabatic states are computed: the ground state (AB), two LE states localized on either

monomer a (A∗B) or b (AB∗), and two charge transfer states (A+B− and A−B+). The Hamilto-

nian in this diabatic basis is shown in Figure 1B. The first diagonal matrix element is the energy

of the ground state AB of the dimer, which is set to zero for simplicity. The light green elements

are the couplings between AB and the excited states. The dark pink elements are the site ener-

gies of the two LE states A∗B and AB∗, while the light pink elements represent the electronic

couplings between them. Finally, the dark blue elements correspond to the site energies of the

non-LE states A+B− and A−B+, and the light blue elements represent the electronic couplings
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between the non-LE states and between a non-LE state and a LE state. From a QM/MM calcula-

tion on the dimer, we only extract the dark and light blue elements of the Hamiltonian in Figure

1B, while the pink and green elements are not utilized.

2.2 Ground-state energy

The EFEM ground-state energy is defined as

Egs =

NM∑
a

[E(QM/MM, a)]− (NM − 1)E(MM) (9)

where E(MM) represents the energy of the whole system calculated at the MM level, and

E(QM/MM, a) is the ground-state QM/MM energy of monomer a. A detailed derivation of

Eq. 9 is provided in Sec. S1 of the SI.

Egs is used to compute the energy of each LE state, defined as the sum of Egs and the corre-

sponding site energy (Eq. 2). Instead, for the energies of the non-LE states, we had to introduce

dimer-specific ground-state energies Eµ
gs, defined as follows:

Eµ
gs,0 =

NM∑
a/∈µ

[E(QM/MM, a)] + E(QM/MM,µ)− (NM − 2)E(MM)

Eµ
gs = Eµ

gs,0 + λ(µ).

(10)

In Eq. 10, E(QM/MM, a) is the ground-state QM/MM energy of monomer a (not belonging to

dimer µ), E(QM/MM,µ) is the diabatic ground-state QM/MM energy of dimer µ, and λ(µ) is

an empirical shift dependent on the specific dimer considered, which was introduced to ensure

consistency between the absolute energies of non-LE states and those of LE states. In principle,

λ(µ) could depend on the nuclear coordinates, but in practice that dependence is needed only

if the monomers are subject to large rearrangements. In particular, in the test case we have

considered (see section 3, equation 17), it was possible to take λ(µ) as a constant.
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2.3 Adiabatic states

The diagonalization of the EFEM electronic Hamiltonian HEFEM (Eq. 1) yields the electronic

adiabatic wavefunctions (the ground-state |gs⟩ and the excited states |K⟩), and the corresponding

energies Egs (Eq. 9) and EK . The wavefunctions |K⟩ are linear combinations of |ai⟩ and |µr⟩

(defined in Eqs. 3 and 8):

|K⟩ =
∑
a,i

cai,K |ai⟩+
∑
µ,r

cµr,K |µr⟩ (11)

where cai,K and cµr,K are the elements of the orthogonal matrix c that diagonalizes HEFEM .

Therefore, the corresponding adiabatic energies EK are given by

EK =
∑
a,i

|cai,K |2(εai + Egs) +
∑
c,i

∑
b,j

cai,Kcbj,KVai,bj+

+
∑
µ,r

|cµr,K |2(εµr + Eµ
gs) +

∑
µ,r

∑
a,i

cµr,Kcai,KVµr,ai +
∑
µ,r

∑
µ,s

cµr,Kcµs,KVµr,µs.

(12)

We anticipate that, in our EFEM implementation, the adiabatic basis so obtained is employed

for the time propagation of the SH trajectories, as SHworks best in the adiabatic representation.33

In fact, unlike the electronic couplings (here represented by the off-diagonal elements ofHEFEM ),

the nonadiabatic couplings are well localized in regions of near degeneracy, thereby minimizing

the number of transitions required and reducing the need for extensive velocity rescaling after a

hop. This is especially important in multichromophoric systems, to avoid nonphysical transitions

between distant monomers. Additionally, working in the adiabatic representation eliminates the

need for special considerations regarding the superexchange effect.29,34

2.4 Energy gradients

The gradients of the ground state energy Egs and of the dimer specific energies Eµ
gs (Eq. 9 and

10) with respect to nuclear coordinates are computed using the gradients of the QM/MM ground

state energies of all monomers a and dimers µ, and the gradient of the MM energy for the whole

10
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system.

The calculation of the energy gradients of the adiabatic excited states K requires computing

the derivatives of the HEFEM matrix elements with respect to nuclear coordinates, while the

derivatives of the variationally optimized coefficients cai,K and cµr,K (obtained by diagonalizing

HEFEM ) do not contribute to the gradients. Specifically, the gradient of a given adiabatic excited

state K is given by

∇EK =
∑
a,i

|cai,K |2(∇εai +∇Egs) +
∑
c,i

∑
b,j

cai,Kcbj,K∇Vai,bj+

+
∑
µ,r

|cµr,K |2(∇εµr +∇Eµ
gs) +

∑
µ,r

∑
a,i

cµr,Kcai,K∇Vµr,ai+

+
∑
µ,r

∑
µ,s

cµr,Kcµs,K∇Vµr,µs.

(13)

The derivatives of the LE site energies,∇εai, are obtained from the monomeric QM/MM calcula-

tions as the difference between the gradient of the energy of the excited state φi
a and the gradient

of the energy of the ground state φ0
a of monomer a. The gradients of the couplings between LE,

∇Vai,bj , are obtained as derivatives of Eq. 6 with the assumption of neglecting the dependence of

the transition charges qA,ai on the nuclear coordinates.10

The calculation of the derivatives of the non-LE site energies∇εµr, as well as of the electronic

couplings∇Vµr,ai and∇Vµr,µs, requires computing the gradients of the diabatic Hamiltonian for

each dimer µ. Assuming that the diabatic states of each dimer do not depend on the nuclear

coordinates (i.e. that they are strictly diabatic states), the derivative of the diabatic Hamiltonian

Hdia with respect to a nuclear coordinate, Qα, is given by

∂Hdia

∂Qα

= T † ∂E

∂Qα

T + T †GαT (14)

Gα = gαE −Egα (15)

where E is a diagonal matrix containing the energies of the adiabatic states of the dimer, gα
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is the nonadiabatic coupling matrix, and T is the unitary matrix that transforms the adiabatic

basis into the diabatic one. A detailed derivation of Eq. 14 is provided in Section S2 of the SI.

Once ∂Hdia

∂Qα
has been computed (using Eq. 14), the derivatives ∇Vµr,ai and ∇Vµr,µs are extracted

from the off-diagonal elements of ∂Hdia

∂Qα
, while its diagonal elements are used to compute ∇εµr,

determined as the difference between the gradient of the energy of the excited state φr
µ and the

gradient of the energy of the ground state φ0
µ of dimer µ.

2.5 Nonadiabatic dynamics

In our EFEM implementation, the nonadiabatic dynamics of the multichromophoric system is

treated using Tully’s fewest switches surface hopping (FSSH).35 In particular, the nuclearwavepacket

dynamics is approximated using a swarm of independent classical trajectories, each propagated

on the adiabatic states obtained by diagonalization of HEFEM (Section 2.3). Along each trajec-

tory, the electronic time-dependent Schrodinger equation (TDSE) is integrated and the electronic

coefficients are used to compute transition probabilities between states, which are employed at

each time step to decide whether a nonadiabatic transition (i.e. a hop) can occur.

In this work, we adopt the local diabatization (LD) formulation of FSSH.36 At variancewith the

standard implementation of FSSH, the LD algorithm is exempt from problems caused by crossings

between (almost) noninteracting electronic states (often termed “trivial unavoided crossings”),

which are common in multichromophoric systems, making LD particularly well-suited for inves-

tigating the dynamics of such systems. In the LD scheme, the nonadiabatic coupling vectors are

not explicitly computed, but the wavefunction overlap matrix within a given time step is required

to integrate the electronic TDSE. In general, the wavefunction overlap matrix element between

two adiabatic states K and L for a given time step ∆t′ of the nuclear trajectory is defined as

SKL(t, t+∆t′) = ⟨K(t)|L(t+∆t′)⟩ . (16)

Within the semiempirical framework adopted in this work, the molecular orbitals (MOs) ob-
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tained from QM/MM calculations for different monomers or dimers are orthogonal, because they

are linear combinations of distinct sets of orthogonal atomic orbitals (AOs). In this context, the

calculation of the wavefunction overlap matrix (Eq. 16) simplifies significantly, as described

in detail in Section S3 of the SI. In a nutshell, the wavefunction overlap between LE states is

given by the product of the overlaps of the individual monomers, while the overlap between

non-LE states of the same dimer requires the additional evaluation of the wavefunction overlap〈
φr
(ab)(t)|φs

(ab)(t+∆t′)
〉
. For the latter, we assume that the dimer states are strictly diabatic and

we set that integral to one if s = r, and to zero if s ̸= r. The same hypothesis is employed for

the overlaps between LE and non-LE with a monomer in common, which in our implementa-

tion are set to zero. On the other hand, the calculation of the overlap between non-LE states of

dimers sharing one monomer (e.g. ab and bc) is more complicated and requires the construction

of “trimer-like” wavefunctions, each combining a monomer and a dimer wavefunction, which are

then used to evaluate the integrals
〈
φr
(ab)(t) ∧ φ0

c(t)|φ0
a(t+∆t′) ∧ φs

(bc)(t+∆t′)
〉
. Additionally,

all the overlaps between non-LE states of two distinct dimers (i.e. without amonomer in common)

are equal to zero, due to the orthogonality of their MOs.

We note that the cost of computing overlaps between trimer-like wavefunctions can increase

significantly, because of the large number of Slater determinants involved. One strategy to alle-

viate this issue is to consider only determinants with CI coefficients above a certain threshold,

followed by wavefunction renormalization. The calculation of those trimer-like overlaps is im-

portant in our EFEM implementation because it allows for transitions between non-LE states of

dimers with only one monomer in common, for which the electronic couplings are neglected

(Section 2.1.2).

2.6 EFEM dynamics workflow

In our EFEM implementation, the semiempirical QM/MM calculations for monomers and dimers

are done with MOPAC-PI,37 interfaced with the molecular mechanics TINKER 8.5 program pack-

age.38 The SH dynamics is performed using the Newton-X package,39 modified to run the exciton
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dynamics. The workflow of the EFEM SH dynamics is as follows:

1. Perform monomeric QM/MM calculations (one for each monomer);

2. Perform dimeric QM/MM calculations, including diabatization;

3. Perform an MM calculation for the entire system;

4. Using the results from steps 1-3, construct and diagonalizeHEFEM , compute the adiabatic

energy gradients (Section 2.4) and the overlap matrix (Eq. 16, Section 2.5);

5. Provide energies, gradients, and the wavefunction overlap matrix to the driver responsible

for nuclear dynamics, which integrates the electronic TDSE, assesses hopping probabilities,

and calculates the new nuclear coordinates and velocities;

6. Repeat steps 1-5 until the desired trajectory endpoint.

To reduce the total computation time, the calculations of steps 1-3 can be executed in parallel.

3 Test case: singlet fission dynamics in ThBF

As a test case for our EFEM implementation, we investigate the singlet fission (SF) process in a

trimer of ThBF embedded in its crystal environment (Fig. 2). The same system was studied by

some of us using a standard QM/MM scheme in which the whole trimer was the QM part, while

the rest of the crystal was described at the MM level.29 The latter work, referred to as “trimer-

full-QM” from now on, will be used here as a reference to assess our proposed EFEM. We believe

that the selected system is a good test case for EFEM, because its SF dynamics involves not only

LE states but also two different kinds of non-LE, namely the multiexciton double triplet states

(TT) and the CT states.
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i) ii)

iii)

a

b
c

Figure 2: i) Side view of the ThBF crystal, ii) top view of the ThBF crystal and iii) ThBFmonomer.
The S atoms are in yellow, the C atoms are in gray and the H atoms are in pink. The highlighted
trimer was investigated using EFEM.

3.1 Computational details

The dynamics simulations were performed using the same crystalline cluster of ThBF considered

for the trimer-full-QM calculations in our previous work.29 In particular, we have considered a

cluster containing 490 ThBF molecules, arranged in a 7x7 array of columns, each containing 10

slip-stacked molecules. The three molecules highlighted in Fig. 2, which are in the center of the

cluster, were treated using EFEM. All the other molecules of the cluster were described at the

MM level. To preserve the crystal structure during the dynamics, the coordinates of 162 MM

molecules at the boundary of the cluster were frozen during the dynamics, while the other 328

molecules were free to move.

The electronic energies and wavefunctions of the QM monomers and dimers were obtained

using the FOMO-CImethod36 with the semiempirical PM3Hamiltonian,40 previously re-parametrized

for the ThBF molecule.41 Each ThBF monomer was treated with an active space of 2 MOs and

2 electrons. Consistently, for each dimer, an active space of 4 MOs and 4 electrons was used.

In the QM/MM calculations, the MM molecules were described using the OPLS force field and
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the interaction between the QM and MM subsystems was treated with electrostatic embedding.42

We note that, at each time step of our EFEM simulations, six QM/MM calculations are required:

three monomeric QM/MM calculations and three additional QM/MM calculations for the follow-

ing dimers: ab, bc, and ac. In particular, the QM/MM calculations for the dimers included the

diabatization procedure referred above (see section 2.1.2), from which 6 diabatic states are ob-

tained, representing (considering dimer ab) the ground state AB, the two localized excitations

on the two monomers (A∗B and AB∗), the TT state, and two CT states (A+B− and A−B+). The

diabatization was performed by rotating the first 12 adiabatic singlet states in order to maximise

the overlap with respect to the 6 reference models representing the diabatic states wanted. This

choice (using a larger number of adiabatic states with respect to the diabatic references) allowed

to avoid problems with intruder states. To reduce the computational cost, the gradient of each

dimeric diabatic Hamiltonian was computed by neglecting the second term in the RHS of Eq.

14, according to the hypothesis that Gα ≈ 0. This approximation was tested and validated as

described in Section S4 of the SI.

A distribution of coordinates and velocities was generated by performing a ground-state ther-

mal equilibration of the QM/MM system at 300 K with the Andersen thermostat,43 which was

propagated for 14 ps. A total of 98 initial conditions (i.e., coordinates and velocities) were ex-

tracted from the last 10 ps of the thermalization and the corresponding initial electronic states

were selected according to their transition dipoles from the ground state within an energy win-

dow ranging from 2.25 eV to 2.45 eV. In the SH simulations, we used the LD algorithm for the

integration of the electronic TDSH,36 with an integration time step of 0.1 fs (both for the nuclear

and the electronic degrees of freedom). The overlap quantum decoherence correction scheme44,45

was applied to each trajectory with the Gaussian width σ = 1.0 a.u. and the minimum overlap

threshold Smin = 0.005 to be consistent with Ref.29 The rescaling of the nuclear velocities after

a hop was performed in the direction of the nuclear momentum.

The λ(µ) constant shifts for the dimer ground-state energies (Eq. 10) were defined at the
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starting geometry of each trajectory according to the following equation

λ(µ) = Egs(t = 0)− Eµ
gs,0(t = 0) + ∆ (17)

where Egs end Eµ
gs,0 are defined in Eqs. 9 and 10, respectively. The constant ∆ = 0.5 eV was

introduced in order to obtain starting energies that are in agreement with the trimer-full-QM

ones.29

We have considered a basis of 13 diabatic states, as schematically represented in Fig. 3. In

particular, these states are the ground state S0S0S0, three LE states (S1S0S0, S0S1S0, and S0S0S1),

and 9 non-LE states. The latter are represented by three singlet combination of two triplets,

TTS0, TS0T and S0TT ; and six CT statesA+B−S0,A−B+S0,A+S0C
−,A−S0C

+, S0B
+C− and

S0B
−C+, where A, B and C indicate the three monomers treated with EFEM.

HOMO

HOMO

HOMO

HOMO

LUMO

LUMO

LUMO

LUMO

a b c a b c a b c

S0S0S0 S1S0S0 S0S1S0

S0S0S1 TTS0 TS0T

S0TT A+B-S0 A-B+S0

A-S0C+ S0B+C-A+S0C-

HOMO

LUMO

S0B-C+

Figure 3: Schematic representation of the diabatic states included in the EFEM simulations for
the ThBF trimer.

As in our previous work,29,46 we found it convenient to analyse the SF dynamics simulations
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using an alternative basis of electronic states, hereafter referred to as the excitonic basis. The

latter was defined by diagonalizing two specific blocks of the electronic Hamiltonian matrix in

the diabatic basis, corresponding to the 3 × 3 submatrix of the LE states, and the 6 × 6 block

of the CT states. In this way, the following excitonic states are obtained: (i) three delocalized

combinations of LE, labelled S⋆
1−3, (ii) the three TT states (TTS0, S0TT , and TS0T ), and (iii) six

delocalized CT states, CT1−6.

3.2 Ground state thermal dynamics and absorption spectrum

In Fig.4 we present the transition energies in the excitonic representation, obtained from the

ground state thermal equilibration. These energies closely match the ones obtained in the trimer-

full-QM simulations,29 the main difference being a slightly larger spacing among the CT states.

From Fig. 4, it can be observed that the excitation energies of the three TT states (TTS0, S0TT ,

and TS0T ) oscillate around ∼1.7 eV, in good agreement with the trimer-full-QM. The standard

deviation of the TT energies is about 0.19 eV in our EFEM simulations, which is very close to

the value of 0.2 eV for the trimer-full-QM. The LE state energies oscillate around 2.1 eV in both

the EFEM and the trimer-full-QM simulations, with much smaller fluctuations compared to the

TT states, the standard deviation of LE being 0.04 eV and 0.03 eV for EFEM and trimer-full-QM,

respectively. This difference in energy fluctuations between LE and TT can be attributed to the

more steep potential energy surface of the TT states in the Franck-Condon region compared to

LE states, as indicated by the difference between vertical and adiabatic transition energies: 0.37

eV for the TT and 0.01 eV for LE states.41
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Figure 4: Transition energies (eV) in the excitonic representation, obtained from the ground state
thermal equilibration of the ThBF trimer embedded in its crystalline environment. The reported
results are obtained by averaging over time intervals of 20 fs.

 0

 2

 4

 6

 8

 10

 12

 1.8  1.9  2  2.1  2.2  2.3  2.4  2.5

M
ol

ar
 e

xt
in

ct
io

n 
co

ef
f. 

(1
05  M

-1
 c

m
-1

)

energy (eV)

Total
S1
S2
S3
S4
S5
S6
S7
S8
S9

S10
S11
S12

Figure 5: Absorption spectrum obtained from the ground state thermal equilibration of the ThBF
trimer using EFEM.

The transition energies evaluated along the thermalization trajectory, together with the tran-
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sition dipoles, were used to calculate the absorption spectrum reported in Fig. 5. If compared

to the trimer-full-QM results,29 the absorption spectrum calculated with the EFEM model show

a very good agreement, apart from a red-shift of approximately 0.3 eV. Despite this shift, the

maximum of the most intense band agrees well with the spectroscopic data: 2.30 eV in toluene

solution and approximately 2.38 eV in crystalline thin film.47

To characterize the nature of the electronic states, in Table 1 we report the squared overlaps

of the adiabatic states with the excitonic basis, averaged along the thermal equilibration. Notably,

the S6 state is most of the time the brightest combination of LE and provides the most important

contribution to the spectrum, in agreement with the trimer-full-QM results.29 During the ground-

state dynamics, the S6 state can acquire a significant contribution from theCT1 state and, at those

geometries, the bright state becomes S7 or even S8. The latter states are most of the time of CT

character, while the lower-lying S4 and S5 states are most often dark combinations of LE and

contribute to the absorption spectrum with weak bands centered at approximately 1.95 eV and

2.12 eV, respectively. The three low-lying excited states S1, S2, and S3 are dominated by the

double triplet states TTS0, S0TT , and TS0T . Since the transition from S0S0S0 to the TT states

is optically forbidden, those states do not contribute significantly to the absorption spectrum.
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Table 1: Average weights (squared overlaps) of the excitonic states in the 12 lower lying singlet
adiabatic states obtained from the ground state thermal equilibration. Only weights ≥ 0.1 are
reported in parentheses. The averaged transition energies (in eV) are also shown, together with
the squared transition dipole moments (in au).

State Energy (eV) excitonic states (weights) µ2
S0→Sn

(au)

S0 0.000 S0S0S0 (1.00) −

S1 1.578 TTS0 (0.24), S0TT (0.21), TS0T (0.52) 0.03

S2 1.710 TTS0 (0.28), S0TT (0.35), TS0T (0.27) 0.15

S3 1.808 S∗
1 (0.21), TTS0 (0.32), S0TT (0.30), TS0T (0.16) 0.35

S4 1.952 S∗
1 (0.67), TTS0 (0.13), S0TT (0.11) 1.53

S5 2.117 S∗
2 (0.92) 2.08

S6 2.293 S∗
3 (0.76), CT1 (0.21) 43.80

S7 2.454 S∗
3 (0.20), CT1 (0.77) 12.54

S8 2.599 CT2 (0.97) 3.48

S9 2.755 CT3 (0.99) 0.45

S10 2.898 CT4 (1.00) 0.08

S11 3.545 CT5 (1.00) 0.00

S12 3.865 CT6 (1.00) 0.00

The largest electronic couplings are found between first neighbor LE states. In particular,

⟨S1S0S0|Ĥel|S0S1S0⟩ and ⟨S0S0S1|Ĥel|S0S1S0⟩, averaged over the thermalization trajectory, eval-

uate respectively to 138 and 131 meV, in very good agreement with the trimer-full-QM result29

(131 and 134 meV). This agreement is not surprising, considering that the exchange interaction is

neglected in the semiempirical framework.10 However, it is a confirmation that the Coulomb cou-

pling between LE states is correctly represented by the interaction between transition charges.

In Table 2 we report the electronic Hamiltonian matrix elements in the excitonic basis, computed

with EFEM and averaged over the thermalization trajectory. In comparing with the trimer-full-

QM results, one has to take into account that in EFEM the couplings with the ground state S0S0S0

are zero by construction. For all the other couplings, the agreement with the trimer-full-QM re-
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sults29 can be considered as semiquantitative, with vanishingly small Ĥel matrix elements (of the

order of 0.1 meV or less) between S∗ and TT states, and larger couplings between S∗ and CT

states and between TT and CT states. In particular, we stress that both the couplings between

non-LE states and the couplings between LE and non-LE states are well reproduced.

Table 2: Average electronic Hamiltonian matrix in the excitonic representation, obtained from
the ground state thermal equilibration of the ThBF trimer using EFEM. All the matrix element
are expressed in meV. For the off diagonal matrix elements, the absolute value is considered, and
only the elements ≥ 0.1 meV are shown. The matrix elements involving CT5 and CT6 are not
reported.

Ĥel S0S0S0 TTS0 S0TT TS0T S∗
1 S∗

2 S∗
3 CT1 CT2 CT3 CT4

S0S0S0 0.0 0 0 0 0 0 0 0 0 0 0
TTS0 0 1748 0.0 0.0 0.1 0.1 0.1 2.8 3.1 6.2 8.0
S0TT 0 0.0 1743 0.0 0.1 0.1 0.1 3.2 5.7 9.7 9.6
TS0T 0 0.0 0.0 1654 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S∗
1 0 0.1 0.1 0.0 1918 0 0 9.1 9.4 7.2 6.3

S∗
2 0 0.1 0.1 0.0 0 2114 0 7.3 7.4 6.2 6.2

S∗
3 0 0.1 0.1 0.0 0 0 2313 9.4 9.0 7.5 6.3

CT1 0 2.8 3.2 0.0 9.1 7.3 9.4 2434 0 0 0
CT2 0 3.1 5.7 0.0 9.4 7.4 9.0 0 2597 0 0
CT3 0 6.2 9.7 0.0 7.2 6.2 7.5 0 0 2754 0
CT4 0 8.0 9.6 0.0 6.3 6.2 6.3 0 0 0 2897

3.3 Simulation of the excited state dynamics

In this section, we present the surface hopping (SH) nonadiabatic dynamics simulations for the

ThBF trimer that we performed using EFEM. A total of 98 SH trajectories were computed. 71

trajectories were initiated from S6, 22 from S7, 4 from S8, and 1 from S5.

Figure 6a shows the time evolution of the excitonic state populations, averaged over all the SH

trajectories, that we obtained in the EFEM simulations. The corresponding adiabatic and diabatic

populations are reported in Figures S6 and S7 of the SI. For comparison, in Figure 6b we also

report the excitonic state populations obtained in the trimer-full-QM simulations.29 To facilitate

the analysis of the simulations, in Figure 6 the CT states, the dark excitonic states S∗
2 and S∗

1 ,

and the TT states are grouped together. Moreover, in Table 3 we report the total number of hops
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between of excitonic states obtained in the SH simulations using EFEM.

At the beginning of the simulation, the most populated state is S∗
3 , which is the bright com-

bination of the LE states. However, a non negligible fraction (20%) of the starting population is

found on CT states (mainly CT1 and CT2). In the first 500 fs after the excitation, S∗
3 decays to

the dark combinations of LE, S∗
2 and S∗

1 , and to a lesser extent to the CT states (Figure 6a and

Table 3). Additionally, the CT states acquire population from the LE states, as indicated by the

negative net flow for the CT → S∗
1−2 and for the CT → S∗

3 transitions in Table 3 (0-500 fs). At

longer times (> 500 fs), both the dark excitonic states, S∗
2 and S∗

1 , and the CT states transfer most

of their population to the TT states (Table 3, 500-4000 fs), which are the most populated states at

the final time of the simulations (4000 fs, Figure 6a). These fluxes of population are schematically

illustrated in Figure 7.
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Figure 6: Populations of the excitonic states as functions of time, obtained in the surface hopping
simulations using EFEM (this work, panel a) and in the simulations based on the trimer-full-QM
(populations taken from Ref.,29 panel b). The double triplet, the dark excitonic, and the charge
transfer states are grouped together and indicated as TT, S∗

1,2, and CT, respectively. The reported
populations are obtained by averaging over all the surface hopping trajectories and time intervals
of 10 fs.
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Table 3: Transitions between pairs of excitonic states (i, j). The charge transfer, the dark excitonic
and the double triplet states are grouped together and indicated asCT , S∗

1,2, and TT , respectively.
Presented are the number of transitions for two distinct time ranges (0-500 fs and 500-4000 fs).
The net flow is the difference between the i → j and the j → i transitions. We recall here that
the total number of trajectories is 98.

States 0-500 fs 500-4000 fs

i j i → j j → i net i → j j → i net

S∗
1−2 S0 2 0 2 6 1 5

S∗
3 S0 0 0 0 1 0 1

S∗
1−2 TT 5 4 1 37 19 18

S∗
3 TT 1 1 0 11 8 3

CT TT 10 2 8 72 32 40
S∗
3 S∗

1−2 143 86 57 288 278 10
CT S∗

1−2 98 129 -31 459 468 -9
CT S∗

3 104 119 -15 272 262 10

Figure 7: Schematic representation of the main net fluxes of population obtained from the nona-
diabatic surface hopping simulations for the ThBF trimer using EFEM. The solid arrows indicate
the main population fluxes during the dynamics, while the dashed arrows represent secondary
fluxes.

The aforementioned population dynamics, obtained using EFEM, is qualitatively in good

agreement with the trimer-full-QM simulations.29 However, in the EFEM simulations, the CT

states acquire a larger population compared to the trimer-full-QM, with a maximum value of

∼0.6 in the EFEM simulations and of ∼0.3 for the trimer-full-QM (see Figure 6). On the other

hand, the dark excitonic states, S∗
2 and S∗

1 , are less populated in the EFEM simulations with re-
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spect to the trimer-full-QM, their maximum population value being ∼0.4 for EFEM (Figure 6a)

and ∼0.7 for the trimer-full-QM (Figure 6b). As a consequence, in the EFEM simulations the TT

states are mainly populated by transitions from the CT states and to a lesser extent by conver-

sion from the dark excitonic states S∗
2 and S∗

1 (Table 3). Instead, in the trimer-full-QM most of

the transitions towards the TT states take place from S∗
2 and S∗

1 , rather than the CT states.29 In

part, these discrepancies between EFEM and trimer-full-QM can be attributed to the fact that the

starting population of CT states is larger in the EFEM simulation (0.20 versus 0.08 for trimer-full-

QM). Probably more important is the larger energy decrease of theCT1 state during the dynamics

with EFEM, as it is apparent from Table 4, where we show energy differences and couplings at

the transitions between pairs of excitonic states and at the beginning of the simulation. For ex-

ample, CT1 is found about 480 meV above S∗
1 at t = 0, and drops below S∗

1 (by about 40 meV)

at transition times during the simulation. Although the trimer-full-QM approach shows a quali-

tatively similar trend (CT1 decreases in energy by about 440 meV compared to S∗
1 ), the decrease

in energy of the CT1 state is quantitatively lower compared to the EFEM simulation. The faster

decrease in energy of CT1 in the EFEM simulation, if compared with trimer-full-QM, is also evi-

dent from Figure S9, where the energies of the excitonic states, averaged over all the trajectories,

are reported as functions of time. According to the above discussion, the decrease in energy of

CT1 is the cause, rather than the consequence, of the increase in its population.

Additional minor differences between the EFEM and trimer-full-QM simulations can be iden-

tified in the population dynamics of the ground state (S0) and the TT states. Specifically, in our

EFEM simulations the S0 state is populated to a slightly greater extent and the initial rise of the

TT population is slightly faster, compared to the trimer-full-QM (Figure 6). At the final time of

the EFEM simulations (4000 fs), the populations of the long-lived S0 and TT states are 0.083 and

0.732 (Table S1). Assuming that the S∗
1−3 and CT states keep decaying to S0 and TT with the same

average proportion of the first 4000 fs, we obtain the following asymptotic populations: 0.102 for

S0 and 0.898 for the TT states. Thus, in our EFEM simulations, the SF quantum yield (two triplet

states for each TT state) is 1.80, which is very close to the SF yield of 1.77 extracted from the TT
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asymptotic population for the trimer-full-QM.29 This result indicates that the discrepancies in

the population dynamics between EFEM and trimer-full-QM do not significantly affect the final

SF quantum yield extracted from the TT states, which is almost the same in the two kinds of

simulations.

Table 4: Energy differences and electronic couplings in the excitonic basis, evaluated at the start-
ing time and at the transitions between pairs of excitonic states, averaged over the full swarm of
trajectories. Energies and couplings are reported in meV.

States at transitions at t = 0

i j Hjj −Hii |Hij| Time (fs) Hjj −Hii |Hij|

S∗
3 CT1 -17 17 1171 82 9

S∗
3 CT2 223 16 1143 259 9

S∗
3 CT3 428 15 1221 409 8

S∗
3 CT4 630 15 1468 570 6

S∗
3 S∗

2 -194 0 1100 -201 0
S∗
2 S∗

1 -178 0 1310 -194 0
CT1 S∗

1 37 14 1635 -477 9
CT1 TTS0 -241 13 1765 -675 3
CT1 S0TT -326 15 1227 -706 3
S∗
1 TTS0 10 0 1842 -198 0

S∗
1 S0TT 71 0 1381 -229 0

4 Conclusions

In this work, we introduced an extended Frenkel exciton model (EFEM) specifically designed for

nonadiabatic dynamics simulations of multi-chromophoric systems. Our EFEM allows to describe

not only the local excitations (LE) of the single chromophores (monomers) but also excited states

(non-LE) belonging to chromophore pairs (dimers), such as charge-transfer and multi-excitonic

states.

In our EFEM implementation, the total electronic Hamiltonian (HEFEM ) is built by perform-

ing a series of QM/MM calculations, one for each selected monomer and dimer of the investigated

system, in addition to a calculation at the MM level for the whole system. In our implementa-

tion, each QM/MM calculation is performed using the semiempirical FOMO-CI method. While
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the energies of the LE states and the couplings between them are obtained directly from the

monomeric QM/MM calculations, as in our previous work,10 the non-LE block of HEFEM and

the couplings between LE and non-LE states are computed by constructing diabatic electronic

states for each QM dimer, using a procedure based on the localization of molecular orbitals.28

The adiabatic electronic states of the multi-chromophoric system are then computed by diag-

onalization of HEFEM and the derivatives of HEFEM with respect to the nuclear coordinates

are used to determine the adiabatic energy gradients. To simulate the nonadiabatic excited state

dynamics we employed Tully’s fewest switches surface hopping (FSSH),35 within its local diaba-

tization (LD) formulation.36 In this regard, we showed how to compute the wavefunction overlap

matrix within a given time step of the dynamics using EFEM.

To validate our EFEM implementation, we investigated the singlet fission (SF) process in a

trimer of ThBF molecules embedded in its crystal environment and we compared the results with

those obtained in simulations based on a standard QM/MM scheme for the whole trimer (trimer-

full-QM).29 We found that EFEM satisfactorily reproduces the population dynamics for the trimer-

full-QM, with moderate discrepancies mainly due to the greater involvement of the CT states in

EFEM,which undergo amore pronounced energy decrease and acquire a larger population during

the dynamics, compared to the trimer-full-QM. These differences in the population dynamics

have little effect on the SF quantum yield extracted from the asymptotic TT population, which

turned out to be essentially the same in the EFEM and trimer-full-QM simulations, indicating the

suitability of our EFEM approach.

In conclusion, our implementation of EFEM combined with SH nonadiabatic dynamics en-

ables the study of excitation energy transfer, charge transfer and multi-exciton generation in

large multi-chromophoric systems. We believe that our proposed EFEM represents a promis-

ing approach for advancing our understanding of fundamental processes in complex molecular

assemblies and holds promise for applications in various fields such as materials science and

biological systems.
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