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Abstract 

Native mass spectrometry (nMS) is increasingly popular for studying intact protein quaternary 
structure. When coupled with ion mobility, which separates ions based on their size, charge, and shape, 
it provides additional structural information on the protein complex of interest. In this study, we present 
a novel prototype TIMS (trapped ion mobility spectrometry)-Quadrupole-SID (surface-induced 
dissociation)-Time of Flight, TIMS-Q-SID-TOF, instrument for nMS. The modifications include changing the 
TIMS cartridge from concave to convex geometry electrodes and operating TIMS at 425 kHz to improve 
the trapping efficiency for high mass-to-charge (m/z) ion mobility analysis, such as 3 and 4 MDa hepatitis 
B virus capsids. The quadrupole radiofrequency driver was lowered to 385 kHz, which extends the 
isolation range from 3,000 to 17,000 m/z and allows isolation of a single charge state of GroEL at 16,200 
m/z with an isolation window of 25 m/z. Finally, a 6-mm thick, 2-lens SID device replaced the collision cell 
entrance lens. SID dissociated 801 kDa GroEL into all combinations of subcomplexes, and the peaks were 
well-resolved allowing for confident assignment of product ions. This is the first time a novel prototype 
timsTOF Pro for nMS has been introduced with high resolving power ion mobility separation coupled to 
high m/z quadrupole selection and SID for protein complex fragmentation with product ion collection and 
detection across a broad m/z range of 1,500 to 40,000.  

 

Introduction   

Trapped ion mobility spectrometry (TIMS) is a high-resolution ion mobility spectrometry 
technique that was first introduced by Park and co-workers in 2011.1,2 Unlike traditional drift tube ion 
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mobility cells (DTIMS), which use ions flying through a stationary gas in the drift tube, TIMS separates ions 
by using an opposing electric field and a moving column of gas to measure the analyte’s ion mobility.3 
TIMS has been coupled to a Q-TOF and FT-ICR mass spectrometer and is widely applied in proteomics and 
metabolomics, including cross-linking mass spectrometry.4–8 Recently, Panczyk et al. demonstrated that a 
commercial TIMS-Q-TOF can perform nMS analysis on protein complexes up to 60 kDa with TIMS.9 Borotto 
and co-workers showed that commercial TIMS-Q-TOF could also characterize protein structure up to 66 
kDa by top-down sequencing and collision-induced unfolding by activation within the TIMS device.10,11 
Bleiholder and co-workers used and modified tandem TIMS-Q-TOF to characterize the structure of a 
glycoprotein, avidin, and small proteins.12,13  Fernandez-Lima and co-workers reported that the modified 
convex TIMS cartridge with a low radio frequency (RF) driver improves the ion mobility analysis of TIMS 
up to 800 kDa with a single peak resolution (Rp) of 85 compared to DTIMS with an Rp of 60 for protein 
complexes around or above 200 kDa.14–16 Because nMS use is continuing to expand17–21, and coupling it 
with IMS provides additional protein and protein complex structural information22–24, we aimed to adapt 
TIMS1–3,25 to perform nMS for studying and understanding large, complex protein structures up to the 
mega-Dalton (MDa) range with a high energy deposition tandem mass spectrometry (MS/MS) activation 
method, surface-induced dissociation (SID).26–29 The Wysocki lab has extended SID development to 
investigate protein structure and subcomplex connectivity for macromolecules.27,30–32 SID cleaves protein 
complexes at their weakest non-covalent interfaces and generates subunits with a charge state 
approximately proportional to the relative fragment ion mass.30,33 Currently, nMS has been applied to 
measure the structures of macromolecules in the MDa mass range, such as adeno-associated virus capsids 
(3.5 – 5 MDa), antibody-bound capsids species (5 – 17 MDa), and oligomerized 20S proteasome (0.7 – 9.6 
MDa), which are important for producing biotherapeutics.34–37 The Wysocki lab has demonstrated that 
SID is currently the only activation method capable of extensively dissociating these MDa biomolecules, 
making it a valuable tool for investigating the structure of AAVs.38  

Here, we modified a commercial TIMS-Q-TOF mass spectrometer to study the structures of high 
molecular weight (MW) protein complexes. The modifications include changing the TIMS cartridge 
geometry to convex, lowering the RF frequency for both the TIMS device and quadrupole, and installing 
a 2-lens SID device.39 With these novel modifications, the application of nMS with ion mobility and SID on 
this prototype platform ranges from 50 kDa to at least 4 MDa. 

 

Experimental Section 

Materials and Sample Preparation. More details on materials and selected protein complexes can be 
found in Supporting Information. All protein complexes were buffer exchanged into 200 mM ammonium 
acetate using size exclusion chromatography spin columns (Bio-Rad) with a 6 kDa mass cutoff and charge-
reduced using 20% (v/v) triethylammonium acetate (TEAA) because we have found that lower charge 
state precursors of protein complexes give more native-like fragmentation patterns by SID in general.40 
The sample stock solution concentrations were measured using nanoDrop and diluted in the range of 0.7 
to 3 µM per complex with or without charge reduction. For T=3 and T=4 hepatitis B virus (HBV) capsids, 
the concentration was 6 µM per monomer and 4.8 µM per monomer after charge reduction. For the RAS-
SOS complex analysis, 3 µM SOS was mixed with 2 µM HRasWT-GTP and immediately introduced into the 
mass spectrometer via a pulled glass capillary. 

Instrumentation and experiments. Experiments were conducted on a timsTOF Pro (TIMS-Q-TOF) (Bruker 
Inc., Billerica, MA), modified for the research presented here. A 385 kHz RF frequency quadrupole driver 
was installed to extend the quadrupole isolation range from 3,000 m/z with a commercial 1 MHz RF 
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frequency quadrupole driver to 17,000 m/z. Here, we used protein complexes for quadrupole calibration 
up to 12,000 m/z, which can isolate a single charge state at 16,200 m/z with an isolation width of 25 m/z 
(Figure S1). In general operation, the “TIMS In” pressure was reduced to 2.2 mbar. The "Accumulation 
time” and "Ramp Time” of the TIMS device were adjusted to 100.0 ms and 1,000.0 ms (10.00 % Duty 
Cycle), respectively. The “Funnel 1 RF” was 300.0 volt peak-to-peak (Vpp). The “Collision Cell In”, which 
determines the m/z transferring range, was 150.0 V. The “Pre Pulse Storage”, a delay for collecting ions 
between “Transfer Time” and “TOF Pulser On”, was 35.0 µs. The “Transfer Time” is the time corresponding 
to transmitting ions from the collision cell to the TOF stage and was set to 140.0, 320.0, and 520.0 µs 
depending on the size of the protein complex. Increasing the “Transfer Time” can transfer larger ions to 
the TOF. The “Collision Gas Flow Rate” was 35.0 % for the ESI Tuning Mix (Agilent, Santa Clara, CA) and 
88.0 % for protein complexes. The default “Delta Values”, which control TIMS parameters (Figure S2), was 
used for all the experiments. More details of the typical settings for nMS can be found in the Supporting 
Information (Table S1). 

All samples were loaded to in-house pulled borosilicate glass capillaries and ionized and 
introduced using a custom Bruker nanoelectrospray ionization source. The ionization is performed by 
bringing platinum wire into contact with the sample solution and setting cap voltage to (0.8 – 1.0 kV). The 
instrument was mass calibrated using ESI Tuning Mix. The SID experiments were conducted with or 
without single charge state isolation using the quadrupole, as noted in the Results section, and the SID 
potentials were varied appropriately to initiate the fragmentation of different sizes of chosen analytes 
(Supporting Information shows the tuning and operation of SID, Table S2 and S3). For pre-ion mobility ion 
activation experiments, the Δt6 value was run from 10.0 to 200.0 V.10,13 The instrument was operated 
using Bruker’s otofControl 6.2 software, and the data were analyzed using DataAnalysis 5.3. 

 

Results and Discussions 

To evaluate the performance of the modified instrument (Figure 1), several model protein 
complexes, including 53 kDa streptavidin (SA), 64 kDa homotetrameric avidin (AV), 103 kDa concanavalin 
A (Con A), 147 kDa alcohol dehydrogenase (ADH), 58 kDa cholera toxin B (CTB), 115 kDa C-reactive protein 
(CRP), 90 kDa his-tagged toyocamycin nitrile hydratase (His-TNH), 801 kDa wild-type GroEL, and 3 MDa 
T=3 and 4 MDa T=4 HBV capsids, were chosen and are discussed below.30,35,40,41 HRas*GTP-SOS-HRas 
complex was used to evaluate TIMS-Q-SID performance.42  
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Figure 1. The instrument diagram of the modified Bruker timsTOF Pro. The TIMS cartridge has convex 
geometry electrodes and is operated at 425 kHz. The quadrupole is operated at 385 kHz to extend the 
isolation range to 17,000 m/z. The 2-lens SID device replaces the entrance lens of the collision cell. 

 

Extending the Mass-to-charge Ratio Range for Protein Complex Ion Mobility Analysis. Initially, the TIMS-
Q-TOF instrument was configured with a concave TIMS cartridge (Figure S3a) with an 830 kHz RF TIMS 
driver, which can trap ions up to 6,000 m/z.9 In the work described here, the TIMS cartridge was changed 
to a convex electrode geometry (inset of Figure 1 and Figure S3b) coupled with a 425 kHz RF frequency 
TIMS driver to enhance the trapping efficiency for species up to 38,000 m/z. The performance of the TIMS 
device with convex electrodes was verified with selected model protein complexes, which ranged in mass 
f r o m  5 0  –  8 0 1  k D a  ( 4 , 5 0 0  –  1 8 , 5 0 0  m / z ) .  

To test the effective m/z range of this modified TIMS device, lower-mass complexes and 180-mer 
T=3 and 240-mer T=4 HBV capsids, with masses of ~3 MDa and ~4 MDa, respectively, were 
investigated.35,43 The mobility peaks for different charge states of lower-mass complexes, SA and ADH, 
were mostly baseline resolved (Figure S4). Figure 2a shows the MS spectrum of T=3 and T=4 HBV. With 
the modified TIMS cartridge, T=3 and T=4 capsids were trapped successfully during the ion mobility 
analysis (Figure 2b). The m/z peaks of each distribution are partially resolved, and the charge states of the 
central distribution of each HBV capsid can be determined. T=3 and T=4 capsids were also further charge-
reduced with TEAA, and the result is shown in Figure S5. We were still able to trap the charge-reduced 
T=3 and T=4 capsids (28,000 – 39,000 m/z), determine their approximate charge state, and separate the 
overlapped species using this modified TIMS device (Figure S6).  
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Figure 2. a) The spectrum of ~33 nM 180-mer (T=3, ~3 MDa) and ~25 nM 240-mer (T=4, ~4 MDa) HBV 
capsids (~ 6 µM per monomer) in 200 mM ammonium acetate. b) The mobiligram of T=3 and T=4 capsids. 
The modified TIMS cartridge trapped both T=3 and T=4 capsids and measured their ion mobilities. 

Performance of a Two-lens Surface-induced Dissociation Device. The SID device design on this 
instrument was inspired by the designs of Snyder et al.39 The device is simplified to a 2-lens system (inset 
of Figure 1). The overall width of this device along the ion optical axis is 6 mm, which is the width of the 
collision cell entrance lens that was removed. The SID surface and extractor were combined into a ring 
electrode with a 3 mm diameter aperture. The deflector is a half-moon-shaped electrode. Both surface 
and deflector were made with tight-tolerance corrosion-resistant 316 stainless steel. An insulated spacer 
made of polyether ether ketone (PEEK) material was placed between the surface and the deflector to 
prevent an electrical short circuit. The surface was controlled by an existing spare system voltage on the 
instrument, and the deflector was controlled using the voltage typically supplied to the collision cell 
entrance lens (Focus 2 L3). To examine the performance of the installed SID device, selected 
homotetrameric (SA, AV, ADH, ConA) and homopentameric (CTB and CRP) model protein complexes and 
heterohexameric His-TNH were fragmented by SID, and results are shown in Figure 3. 
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Figure 3. SID spectra of a) 11+ streptavidin at SID 440 eV, b) 11+ avidin at SID 880 eV, c) 19+ alcohol 
dehydrogenase at SID 3,040 eV, d) 13+ concanavalin A at SID 1,105 eV, e) 11+ cholera toxin B at SID 880 
eV, f) 18+ C-reactive protein at SID 1,080 eV, and g) 13+ His-tagged toyocamycin nitrile hydratase at SID 
1,170 eV. The results were consistent with the reported data.30,44,45 Monomers, dimers, trimers, 
tetramers, and pentamers are represented by red, brown, green, purple, and blue dots, respectively. 
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The largest protein complex fragmented here to test the SID performance was 14-mer 801 kDa 
GroEL, normal charge in 200 mM ammonium acetate and charge-reduced species using TEAA (Figure S7). 
We isolated 68+ and 47+ GroEL at 11,850 and 16,950 m/z, respectively, with an isolation window of 200 
m/z using quadrupole, and fragmented them using SID. The SID energies were adjusted to 7,520 eV and 
7,480 eV, respectively, to compare their results under an approximately equal SID energy level. Figure 4 
shows the SID results from both selected ions. After deconvolving the spectrum using UniDec46, the results 
show that, after SID, 47+ GroEL (Figure 4d) has fewer monomers and 13-mers formed, and it is more 
favorable to produce 7-mers, which reflects a more native-like structure compared to the SID result of 
68+ GroEL (Figure 4b). 

 

Figure 4. The SID spectra of a) 68+ and c) 47+ GroEL at SID energy 7,480 and 7,520 eV, respectively. The 
deconvolved mass spectra show the relative abundance of SID products from b) 68+ and d) 47+ GroEL. 
The red arrows indicate the selected 68+ and 47+ GroEL precursors. The legend shows different 
subcomplexes of GroEL SID products and their representative symbols. The asterisk represents a 
deconvolution error. These deconvolution error peaks are assigned from an atypical m/z peak distribution 
(asymmetric peak heights from the centroid peak). 

Analysis of a complex mixture using the modified TIMS-Q-TOF. When the sample is a complex mixture, 
sometimes the protein complex of interest can overlap with others under the same m/z. Using TIMS to 
separate the mixture by ion mobility (IM) and isolating a narrow m/z range of interest before SID makes 
the identification of SID fragments easier. GTPase, Ras, is a key component of the mitogen-activated 
protein kinase signaling pathway, cycling between guanosine diphosphate-bound inactive and guanosine 
triphosphate (GTP)-bound active states.47 It forms a complex with a specific guanine nucleotide exchange 
factor, Son of Sevenless (SOS). Ras*GTP binds at the distal site, which modulates the activity of SOS, while 
Ras binds at the active site, facilitating nucleotide exchange.42,48 To investigate the HRas-SOS complex 
structure, HRas*GTP and SOS were mixed and ionized and 4 different proteins and protein complexes, 
HRas*GTP, SOS, HRas*GTP-SOS, and HRas*GTP-SOS-HRas, were observed in the MS1 spectrum (Figure 
5a). We were interested in studying the structure of the full HRas*GTP-SOS-HRas complex. However, from 
the mobiligram shown in Figure 5b, there were always other protein complexes and overlapped 
HRas*GTP-SOS-HRas in m/z. Those overlapped protein complexes, which could not be separated without 
IM or by narrowing the m/z range using quadrupole, were also fragmented when performing MS/MS on 
HRas*GTP-SOS-HRas. Therefore, using TIMS to separate overlapped species prior to quadrupole isolation 
and MS/MS can improve the structure analysis of the HRas*GTP-SOS-HRas complex. 

To perform SID and characterize the HRas*GTP-SOS-HRas complex, the mixture was first 
separated using TIMS. We then isolated a narrow m/z range of interest, and 16+ HRas*GTP-SOS and 20+ 
HRas*GTP-SOS-HRas were isolated. These two complexes were then fragmented by SID. To identify the 
SID fragments of 20+ HRas*GTP-SOS-HRas, we generated the SID spectrum of 20+ HRas*GTP-SOS-HRas 
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by extracting its mobility peak (Figure 5c). The result shows that HRas*GTP-SOS-HRas dissociates into two 
species: HRas and HRas*GTP-SOS, and HRas*GTP retains on SOS after SID. This indicates that HRas*GTP 
binds more strongly with SOS than HRas. It’s also interesting to note that HRas carried about half of the 
charges from the precursor after being dissociated from the complex, which was not anticipated. 
Typically, SID fragments carry charges proportional to the mass of the precursor.27,29,32 This suggests that 
HRas undergoes structural rearrangement to depart from the complex, which is similar to results reported 
for some other complexes.49 To understand the effect of GTP on HRas’ structure stability, further study is 
required. Overall, by combining TIMS separation and quadrupole isolation, we were able to study the 
structure of HRas*GTP-SOS-HRas using SID without any interference from other complexes in the mixture.  

 

Figure 5 a) The mass spectrum and b) the mobiligram of the HRas-SOS complex. c) The SID result of 20+ 
HRas*GTP-SOS-HRas at SID 1,400 eV. The shaded yellow area represents the isolation using quadrupoles, 
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while the white area represents the extracting mobility area (1.07 – 1.11 1/K0) used to generate the SID 
spectrum after quadrupole isolating at 4,800 m/z with a width of 100 m/z. 

Conclusions 

Here, we demonstrated that with a low RF frequency convex TIMS device, we are able to mobility-
separate charge-reduced 3 and 4 MDa T=3 and T=4 HBV capsids. A single charge state of charge-reduced 
GroEL could be selected at m/z 16,200 with a 25 m/z isolation window with the low RF frequency 
quadrupole driver. Also, a 2-lens SID device was able to fragment 801 kDa GroEL and investigate its subunit 
connectivity. Significantly, the peaks of fragments at high m/z are well resolved, which improves the 
identification of different subcomplexes. SID can also be used as a tool to probe the structural information 
of ions of interest. The detection limit of this instrument is also outstanding. We were able to perform 
nMS for HBV capsids in the concentration range of 20 to 50 nM. Moreover, with TIMS, when characterizing 
a specific protein complex from a complex mixture using nMS, we were able to differentiate those SID 
fragments from others. This simplifies the interpretation of SID products from the complex mixture.  

Supporting Information 
 
Additional materials, instrument parameters, SID operation, supporting figures of the mass spectra of 
isolated 49+ GroEL, diagram of the TIMS device, electrode geometry of concave and convex TIMS 
cartridges, mass spectra of streptavidin and alcohol dehydrogenase and their extracted mobility peaks, 
charge-reduced T3 and T4 HBV mass spectrum and mobiligrams, and SID spectra of selected model 
protein complexes. 
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