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Abstract 

The discovery of optimal conditions of chemical reactions is a labor-intensive, time-
consuming task that requires exploring a high-dimensional parametric space. 
Historically the optimization of chemical reactions has been performed by manual 
experimentation guided by human intuition and Design of Experiments where one 
reaction variable is modified at any one time to find optimal conditions for one specific 
reaction outcome. Recently a change of paradigm in chemical reaction optimization 
procedures has been enabled by the advances in lab automation and the introduction 
of machine learning algorithms, where multiple reaction variables can be 
synchronously optimized to obtain optimal reaction conditions requiring a shorter 
amount of experimental time and minimal human intervention. Herein, we review the 
state-of-the-art of high-throughput automated chemical reaction platforms and 
machine learning algorithms that are currently used to drive the optimization of 
chemical reactions, highlighting the limitations and future opportunities that this new 
field of research encounters. 

1. Introduction 

Organic synthesis plays a crucial role in drug discovery, polymer synthesis, material 

science, agrochemicals, and specialty chemicals. Their synthesis and process 

optimization require substantial resources and are labour-intensive, often performed 

by exploring a single variable in search of optimal conditions while disregarding the 

intricate interactions among competing variables within the synthesis process. The 

complexity of the problem highly increases considering that process optimization often 

requires solutions that meet multiple targets, such as yield, selectivity, purity, cost, 

environmental impact, etc. In recent years, the advancement of artificial intelligence 

(AI), machine learning (ML) and automation has produced a shift in paradigm for 

chemical synthesis optimization techniques. By leveraging on ML models to predict 

reaction outcomes and ML optimization algorithms, this new framework has 

demonstrated the ability to navigate the complex relationships between reaction 

variables and to find global optimal conditions in fewer number of experiments than 
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traditional methods [1,2]. In addition, machine-guided multi-objective optimization 

(MOO) has emerged as a promising framework to obtain reaction conditions that 

perform optimally for multiple target objectives, enabling researchers to explore 

diverse solution spaces and uncover optimal conditions that strike a balance between 

consonant and/or conflicting targets. In addition, the incorporation of lab robotics into 

chemical synthesis has enabled the development of closed-loop optimization 

platforms capable of executing optimization campaigns rapidly with minimal human 

intervention, relieving experimenters from labour-intensive tasks and reducing the 

overall process development lead time [3,4]. 

A standard workflow and general methodology for organic reaction optimization 

through ML methods is shown in Figure 1. The workflow comprises (i) careful design 

of experiments; (ii) reaction execution with commercial high-throughput systems or in-

house designed reaction modules; (iii) data collection by inline/offline analytical tools; 

(iv) applying optimization algorithms on collected data points to map with the target 

objectives; (v) prediction of optimal solutions and (vi) experimental testing of 

suggested optimization results. Through an examination of methodologies, algorithms, 

and various case studies, the article offers our perspective into the state-of-the-art 

techniques for optimizing synthesis of organic molecules highlighting both challenges 

and prospects. The structure of this perspective follows the steps presented in Figure 

1 where in Section 2 we review the high-throughput platforms currently used to 

perform chemical reaction optimization. Section 3 discusses the techniques and 

developments on analytical tools and data processing algorithms. Section 4, discusses 

the latest trends in the selection of optimization algorithms for chemical synthesis. 

Finally, Section 5 we highlight the future directions and opportunities in the field. For 

an in-depth review on the topics of chemical reaction optimization, the readers can 

gain diverse insights from prominent reviews by Taylor et al. [5], Griffin et al. [6]  and 

Sagmeister et al. [7]. The first two offer valuable perspectives on chemical reaction 

optimization, particularly focusing towards process scale-up, while the latter discusses 

Figure 1: A high-level workflow for a typical multi-objective optimization (MOO) 

framework for the rapid optimization of small molecule synthesis. 
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the potential of flow platforms for conducting self-optimization reactions. Additionally, 

we refer the readers to the following literature in other areas relevant to the application 

of ML to chemical synthesis that is not covered by this perspective, such as small 

molecule discovery [8], drug discovery [9,10], retrosynthesis [11,12], and catalyst 

selection/design [13,14]. 

2. High-throughput experimentation platforms 

High-throughput experimentation (HTE) platforms were designed to accelerate the 

discovery and development of organic molecules by the rapid screening and analysis 

of large numbers of experimental conditions simultaneously. For the purpose of this 

article, we define HTE as a technique that leverages a combination of automation, 

parallelization of experiments, advanced analytics, and data processing methods to 

streamline repetitive experimental tasks, reduce manual intervention and increase the 

rate of experimental execution in comparison to traditional manual experimentation. In 

conventional chemical synthesis, several sequential steps are typically undertaken, 

involving the setup of the reaction, mixing of reactants, reaction workup, product 

analysis, and product purification. To perform all of these basic chemistry tasks 

adequately, customizable HTE platforms are available from various laboratory 

instrument manufacturers or can be assembled from a combination of commercial and 

in-house developed equipment. Normally a HTE for organic chemistry will include a 

liquid transfer module, a reactor stage, and analytical tools for product 

characterization. When the full experimental process is automated and coupled with a 

centralized control system performing ML optimization, the HTE can function as a self-

driving platform where the next iteration of experiments is automatically selected by 

algorithm without human intervention.  This section will highlight the key features of 

various HTE platforms, benefits, limitations, and applications to organic molecule 

synthesis.  

2.1. HTE in batch modules 

Batch reactions are defined as chemical reaction vessels where there is no flow of the 

reagents/products in or out of the reaction vessel until a target reaction conversion is 

obtained. HTE batch platforms leverage on parallelization of experiments to perform 

several reaction conditions simultaneously in order to increase the experimental 

throughput. Commonly, batch platforms that include a liquid handling system for 

setting up reactions based on a plunger pump (e.g. syringe, pipette), a reactor capable 

of heating and mixing, and inline/online analytical tools. Many HTE batch experiments 

have been performed in self-contained automated platforms developed by various 

instrument manufacturers (ChemSpeed, Zinsser Analytics, Metler-Toledo, Tecan,  

etc.). In these HTE platforms, microtiter well plates (MTP) and reaction blocks 

containing 96/48/24-well plates are widely used as reaction and characterization 

vessels [5]. UltraHTE configurations typically incorporate 1536-well plates, enabling 

the exploration of lager parametric spaces of reaction parameters. While UltraHTE 

was initially tailored for biological assays, the versatility of these modules has 

extended to optimizing chemistry-related processes  [5]. The Chemspeed SWING 

robotic system equipped with two fluoropolymers and PFA mat-sealed 96-well metal 

blocks was used for the exploration of stereoselective Suzuki-Miyaura coupling, 
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offering precise control over both categorical and continuous variables (Figure 2a) 

[15]. The integrated robotic system containing a four-needle dispense head facilitated 

the delivery of reagents in low volumes and slurries, ensuring accuracy and throughout 

of the process. The entire experimental workflow was further optimized through 

parallelization, dividing reactions into loops of eight, which enabled them to complete 

192 reactions within 24 loops, achieving significant throughput in four days. Other 

reports for various reactions include the Buchwald-Hartwig amination [16–19], Suzuki 

coupling [16,17,20], N-alkylation [21], hydroxylation [22], and photochemical reactions 

[23–29]. The adaptability and widespread availability of 96-well plates have facilitated 

their extensive adoption in optimizing chemical synthesis methodologies. The details 

of these developments have been reviewed recently [5].  

In recent years research laboratories have deviated from the traditional commercial 

tools to custom-build HTE systems for the chemist's requirements and demands.  

Burger et al. [30].  have creatively developed a mobile robot equipped with sample-

handling arms, tailored for the precise execution of photocatalytic water molecule 

Figure 2: (a) Photograph showing a ChemSpeed HTE platform using 96 well 
reaction blocks (adapted from [15]). (b) Mobile robot equipment performing tasks 
normally executed by human experimenter for the photocatalytic conversion of 
water to hydrogen (adapted from [30]). (c) Small-footprint portable chemical 
synthesis platform (adapted from [31]). (d) Schematic of the Synbot platform 
developed by Samsung researchers showing each module used for chemical 
synthesis (adapted from [33]). 
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cleavage to produce hydrogen. The mobile robot (Figure 2b) acted as a substitute of 

a human experimenter by executing tasks and linking eight separate experimental 

stations, including solid and liquid dispensing, sonication, several characterization 

equipment and stations for consumables and sample storage. Remarkably, through a 

tedious ten-dimensional parameter search spanning 8 days, the robot achieved an 

impressive hydrogen evolution rate of approximately 21.05 µmol h−1. Despite the initial 

investment and two-year development timeline, the versatility of this robotic system 

promises remarkable applications in materials, polymers, and chemical synthesis. 

Most automated synthesis platforms are based on expensive scientific equipment, 

require a large footprint and require extensive reconfiguration to adapt to new synthetic 

protocols. To address this issues Manzano et al. [31] have developed a small-footprint 

portable chemical synthesis platform able to perform liquid and solid phase organic 

reactions (Figure 2c). The platform utilizes 3D-printed reactors that can be generated 

on-demand depending the targeted reaction, and features liquid handling, stirring, 

heating, and cooling modules for enhanced versatility. In addition, the platform is 

capable of performing inert and low-pressure atmospheres, separation steps, and 

pressure sensing for reaction monitoring. Its efficacy and robustness was affirmed 

through the successful synthesis of five small organic molecules, four oligopeptides, 

and four oligonucleotides, yielding high purities and impressive yields. Although, in the 

current configuration the platform lacks characterization modules and has lower 

throughputs in comparison to other automated platforms, it does offer a low-cost 

alternative that can be adapted to perform chemical reaction optimization. 

In addition to academia, industries are increasingly recognizing the value of investing 

in custom-built HTE setups to automate their synthesis workflows for enhancing the 

productivity. A fully integrated, cloud accessible, automated synthesis laboratory 

(ASL) was designed and built by Eli Lilly [32]. This state-of-the-art facility comprises 

heating, cryogenic, microwave, and high-pressure reaction, evaporation, and work-up 

modules, empowering researchers to conduct an extensive array of chemical 

reactions. The ASL comprises of three bench spaces dedicated to either high 

temperature reaction, cryogenic/microwave reactions, or reaction workup. In each 

bench a translational combination of robotic arms perform the specific experiments 

using the modular platforms, while consumables and samples are transferred between 

benches through a conveyor belt linking them together. According to their article, the 

ASL has facilitated over 16,350 reactions at gram scale across various case studies, 

showcasing their widespread capability. Researchers at Samsung have pioneered the 

development of Synbot an innovative autonomous synthesis robot by leveraging 

artificial intelligence (AI) and robotic technology to establish optimal synthetic recipes 

[33]. Similar to ASL, Synbot consists in five modules connected through a conveyor 

belt backbone with a robot arm in charge of transferring the samples between them. 

The modules include a pantry for chemical storage and selection, a dispensing module 

for solids and liquids, reaction module capable of heating and stirring, sample 

preparation module, and a liquid chromatography-mass spectrometer characterization 

module (Figure 2d). The efficiency of the system has been demonstrated through 

successful validations on three reactions namely, Suzuki-Miayura coupling, Buchwald-

Hartwig amination, Ullmann coupling. These experiments showcased conversion 

rates that outperformed existing references and provided at least 6 times efficiency in 
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the experimentation besides synthesis planning, optimization, and downstream 

workup tasks. The throughput of Synbot is estimated to be an average of 12 reactions 

within 24 hours depends on the reaction time. IBM RoboRXN  has developed a 

remotely accessible autonomous chemical laboratory that enables 100 times 

acceleration in chemical synthesis by leveraging cloud computing, AI and automation. 

The details of this pioneering project can be found on their website. 

2.3. HTE using flow platforms 

Flow reactions are described as the flow of reagents and products in and out of the 

reaction vessel continuously. The flow platform consists of a fluid delivery system, 

mixing tools, reactors, quenching units, pressure regulation units, and collection 

vessels. The fluid delivery is normally executed using either HPLC, syringe or 

peristatic pumps. A passive mixing stage where the reagents are introduced to the 

system through a Y or T connection is the most common approach observed for most 

flow reactions, more specialized mixing tools can be incorporated depending on the 

reaction requisites. The most common reactors used are either microfluidic chip or 

coil-based reactors for solution chemistry. Packed bed reactors are used when solid 

heterogenous catalysts are handled.  Specialized reactors for electro [34–36] and 

photochemical [37–39] experiments have also been developed. Depending on the flow 

of the reaction mixture, flow reactions can be continuous or segmented (also known 

as slug). Segmented flow reactions present an efficient means to gather diverse data 

points by creating segmented or droplet flow within microfluidic reactors. Each droplet 

is carefully separated by either an antisolvent or an inert gas, thus providing every 

droplet with the functionality of an individual reactor. This segmentation ensures 

precise control over reactions and prevents interference between different reaction 

environments. Moreover, the ratios of reagents within these droplets are easily 

modulated using syringe pumps, providing users with a convenient means to collect 

data efficiently and coherently. This approach streamlines experimentation processes, 

enhances reproducibility, and facilitates the exploration of complex reaction spaces 

with unprecedented accuracy.  

Droplet microfluidics has emerged as a powerful tool across diverse scientific 

disciplines, with dedicated literature offering concepts behind the droplet formation 

[40,41]. An example of a segmented flow droplet system was employed to screen a 

range of organic solvents for achieving optimal mono-alkylation of trans-1,2-diamino 

cyclohexane [42]. The HTE methodology in combination with feedback DoE facilitated 

the rapid identification of prime solvents, notably DMSO, DMF, and pyridine, leading 

to enhanced yields of the mono-alkylated product. An experimental setup was 

developed for single-droplet studies of visible-light photo redox catalysis in this case 

using an oscillatory flow strategy [43,44]. In an oscillatory reactor an alternating 

pressure gradient is applied within the reactor causing a back-and-forth oscillation of 

the reaction slugs, which leads to higher control in mixing and extended residence 

time of the reaction mixture. About 150 reaction conditions were explored using a total 

volume of 4.5 mL reaction mixture and the screening results are readily translated to 

continuous flow synthesis. The application of segmented flow or micro-slug reactor 

was demonstrated in the decarboxylative arylation cross-coupling reaction promoted 

by catalysts and light [39]. The design allows the screening to be more material and 
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time-efficient in the optimization of both continuous variables (e.g., temperature and 

residence time) and discrete variables (e.g., catalyst. base). Pieber et al. [45] reported 

the application of a segmental flow reactor for heterogenous solid-liquid reactions. In 

their report, they described the reaction slugs as serial micro-batch reactors (SMBRs) 

separated through gas segments that incorporated liquid reagents and solid 

photocatalysts in a continuous flow. The slugs were generated by establishing a stable 

gas–liquid segmented-flow pattern using a Y-shaped mixer, followed by the 

suspension of the catalyst via a T-mixer. This technology was utilized to develop 

selective and efficient decarboxylative fluorination reactions. Recently, a slug flow 

platform was developed (Figure 3a) by injecting segments of gas as a separating 

medium for enhancing the optimization of the Buchwald–Hartwig  amination 

intermediate, which is crucial for synthesizing the drug olanzapine [46]. The reactor 

setup was integrated with spectroscopic and chromatographic in-line analytical tools, 

enabling the real-time monitoring of products and reaction intermediates. A detailed 

discussion on the optimization strategy is described in section 4 (Table 2, entry 19). 

Robochem a HTE platform was designed to streamline the screening of photochemical 

reactions, facilitating the rapid generation of diverse reaction mixtures each comprising 

650 uL within a slug flow reactor [47]. This innovative system features precise 

monitoring of the reaction slug through a dedicated array of phase sensors and an 

algorithm designed for detecting its passage. As a result, the workflow delivers a 

notable boost in productivity, surpassing traditional batch reactions by over 500-fold 

and outperforming flow reactions with a five-fold improvement. A fully integrated 

automated multistep chemical synthesizer (AutoSyn) was reported to autonomously 

Figure 3: (a) Description of a slug flow platform developed using segments of gas 

as a separation medium for HT data collection Buchwald–Hartwig amination. 6-way 

mixer was used to mix the solvents and reagents. (b) Schematic representation a 

computer-controlled segmented flow pattern developed using degassed water as 

an antisolvent for the HT polymerization of styrene in p-Xylene. A staggered 

infusion of organic and aqueous phases resulted in the exploration of wider 

parameter space.  
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synthesis milligram-to-gram-scale amounts of any organic molecules or drug-like 

molecules [48]. The system comprised a flow chemistry synthesis platform, a reagent 

delivery system, a packed bed reactor, and process analytical tools. An integrated 

software control system that automates end-to-end process operations and 

monitoring. The system has been used to demonstrate the synthesis of at least 10 

drug molecules autonomously and there is no closed-loop optimization framework is 

embedded. 

In addition to organic synthesis, the slug-flow methodology (SFM) has found 

application in polymer synthesis and is worth citing to understand SFM's wider utility. 

A flow platform capable of polymerizing 397 unique copolymer compositions was 

developed by Reis et al. [49] using a droplet flow reactor. The methodology and high-

fidelity data enable them to discover >10 copolymer compositions of promising 19F 

MRI agents that outperformed state-of-the-art materials. A rapid generation of 

copolymer libraries was achieved by forming droplet-flow in an automated HTE flow 

setup [50]. This approach not only assists in overcoming the challenges of viscosity in 

conventional photopolymerisation reaction, but also generates structure-property 

relationships for co-polymer libraries. We have generated a segmented flow pattern 

(Figure 3b) by alternating the infusion of organic components and degassed water to 

create 9 different compositions [51]. The organic components consisting of styrene, 

AIBN (α,α′-Azobisisobutyronitrile), and p-Xylene were infused using a computer-

controlled segmented-flow platform. These approaches allow the 

compartmentalization of reaction mixtures without cross-contamination and enhance 

experimental throughput significantly.     

The major bottleneck in HTE synthesis lies in the challenge of isolating and purifying 

reaction products once experiments are performed. Despite this bottleneck, the 

landscape is evolving, with various practical tools emerging to streamline purification 

processes. From prepacked silica gel tubes to the precision semi-preparative liquid 

chromatography, and the versatile capabilities of various scavenger resins, 

laboratories are witnessing a surge in options for efficient high-throughput purification, 

particularly in chemical synthesis on a modest scale. A change in thinking beyond 

conventional purification methods presents an opportunity to revolutionize HTE flow 

platforms. A completely novel design, differing from established isolation and 

separation techniques, holds the promise of not only enhancing the efficiency of HTE 

flow synthesis but also paving the way for more sustainable growth in this research 

area. 

 2.4. Autonomous self-optimizing flow reactor  

Autonomous self-optimizing flow reactors (ASFRs) represent a promising 

advancement in high-throughput chemical synthesis, combining principles of 

automation, artificial intelligence, in-line analytics, and robotics to streamline and 

accelerate the process of creating molecules. ASTR increases the throughput of 

experimentations in flow reactions by engaging inline/online analytics, ML-based 

optimizations and subsequent prediction of the next experimental conditions. The 

schematic representation of ASTR is given in figure 4a. 

https://doi.org/10.26434/chemrxiv-2024-vbgc6 ORCID: https://orcid.org/0000-0002-6688-1205 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-vbgc6
https://orcid.org/0000-0002-6688-1205
https://creativecommons.org/licenses/by/4.0/


A self-optimizing microreactor system has been devised specifically for closed-loop 

optimization of the Heck reaction, employing a "black-box" optimization strategy 

directed by Nelder–Mead Simplex method algorithm [52]. In-line HPLC analysis was 

performed to determine the product yield in real time and feedback to the control 

system to direct the input conditions to achieve optimum product yield in 19 automated 

experiments. The optimum conditions identified in microfluidics for the formation of 

monoarylated product (1, Figure 4b) are successfully translated to a meso-fluidics 

system at a 50-fold scale to afford the product 1 in 26.9 g yield. LeyLab, a modular 

software system developed by Fitzpatrick et al. [53], allows researchers to oversee 

chemical reactions online. The hydration of 3-cyanopyridine to its amide was 

monitored by online mass spectrometer offering real-time conversion. Through 30 

experiments within 10 hours, five key reaction parameters were finely tuned for optimal 

conditions. Photochemical reactions require uniform light penetration to the reaction 

mixture and flow setups with uniform path lengths would be ideal for such reactions. 

A self-optimizing continuous-flow reactor was designed by Poscharny et al. [49] for [2 

+ 2] cycloaddition reaction promoted by light. The optimization (modified simplex) 

algorithm arrives the optimal conditions in 25 iterative experiments to afford compound 

3 (Figure 3c) in good yield. A modular autonomous flow reactor controlled via MATLAB 

was designed for the carpanone (7, Figure 4d) synthesis using a modified 

Nelder−Mead algorithm [50]. The four-step process involves allylation, Claisen 

rearrangement, isomerization and oxidative dimerization. Each reaction steps were 

optimized independently by using either online HPLC or in-line benchtop NMR 

spectroscopy to afford an overall yield of 67 % in 66 iterative experiments over four 

Figure 4: (a) Schematic representation of autonomous self-optimizing flow 

reactor (ASFR) for obtaining optimal solution with minimal human intervention. 

Selected case studies (b-d) with closed-loop optimization are provided. 

Abbreviations ‘Obj’ and ‘NOI’ represent ‘objective functions’ and ‘number of 

interactions’ respectively.     
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linear reaction steps. Nadiwale et al. [56] reported the autonomous optimization of 

three multiphase catalytic reactions involving the handling of solid substrates, 

photoreactor, feeding of slurries, catalysts, and inorganic bases in an automated flow 

platform comprising a CSTR cascade. The platform allows them to showcase the 

autonomous optimization of ideal reaction conditions for Suzuki–Miyaura and 

photoredox-catalysed coupling reactions.  

A plug-and-play, continuous-flow chemical synthesis system (Figure 5a) was 

intelligently designed by Bédard et al. [57] to mitigate the challenges in organic 

synthesis by the integration of hardware, software, and analytics. Comprising an array 

of modular components, including units for heating, cooling, LED light exposure, and 

packed bed reactors, it provides a flexible platform for various reaction categories. The 

system consists of a liquid-liquid separator and an inline/online analytical tool to 

facilitate closed-loop autonomous optimization. The capability of the system was 

demonstrated in the optimization of C-C and C-N cross-coupling, olefination, reductive 

amination, photoredox catalysis, nucleophilic aromatic substitution, and a two-step 

synthesis of cyclobutanone. The molecules synthesized under optimal conditions are 

presented in Figure 5b, employing the stable noisy optimization by branch and fit 

(SNOBFIT) algorithm. SNOBFIT offers a convenient methodology for global 

optimization, eliminating the necessity of a theoretical model. A reconfigurable 

automated flow platform integrating online HPLC monitoring was used for the cobalt-

catalyzed aerobic oxidative dimerization of desmethoxycarpacine to carpanone in the 

presence of oxygen as an oxidant [58]. A gas−liquid segmented, or tube-in-tube 

strategy adopted for achieving higher yield in a shorter residence time. Substantial 

further developments have been made in applying ASFR in multi-objective 

optimizations which will be discussed under the section 4 in detail. 

Figure 5: (a) A modular flow platform developed for wider variety of chemical 

synthesis (adapted from  [57]). (b) Various categories of chemical reactions 

optimized and molecules synthesized in a continuous flow system are given.      
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3. Real-time analytics and HT data processing 

Real-time analytics plays a critical role in the optimization of chemical reactions via 

high-throughput synthesis and ML algorithms. Process analytical technology (PAT) 

tools empower researchers to obtain chemical insights from large number of 

experiments, facilitating the precise measurement of optimization targets. The 

integration of real-time analysis within high-throughput experiments presents a 

multitude of advantages over traditional, one-time final product evaluations outlined 

below.  

(i) Real-time analysis facilitates rapid decision-making, enabling researchers to 

continuously monitor and analyze data as it is generated and allowing for 

immediate adjustments to process parameters during experiments. 

(ii) Early detection of trends or anomalies are made possible through real-time 

analysis, providing valuable insights that can guide subsequent experiments and 

inform iterative improvements and optimizations in experimental protocols. 

(iii) By optimizing experimental workflows and minimizing waste through real-time 

analysis, researchers can allocate resources more efficiently, ensuring that 

resources are utilized effectively to maximize experimental outcomes. 

(iv) Enhanced experimental control on the process to deliver constant product 

quality to meet desired specifications and standards. 

(v) By providing instantaneous feedback, real-time analysis accelerates the 

optimization process, reducing the experimental time and expediting the 

discovery of optimal reaction conditions with minimum material use. 

Analytical tools are integral components of high-throughput platforms and are found 
in various configurations such as inline, online, atline, and offline, contingent upon 
their placement within the experimental workflow. In Table 1 we describe the subtle 
disparities for clarity and reference. 

Analysis 
methods 

Description 

Inline Analysed in real-time directly during the reaction or production 
process by integrating appropriate devices directly.  

Online Sampling and analysis take place while the reaction or process 
is running. The analysis will be done on a device located nearby. 
Online analyses can be carried out continuously or at set 
intervals.   

Atline Like online analysis, the samples are analyzed usually within a 
manufacturing facility. Atline analysis still provides relatively rapid 
results compared to offline methods, offering a balance between 
real-time monitoring and convenience. 

Offline Analysis conducted outside of the process environment and 
separate from ongoing operations. Provide a more detailed and 
comprehensive analyse compared to real-time monitoring.  

Table 1: Different analysis methods depending on their placement on the 

experimental workflow. 
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Self-optimizing HTE throughput platforms require inline and/or online characterization, 
data analysis and processing for rapid optimization of organic reactions. 
Chromatographic (i.e. HPLC, GC) and spectroscopic (e.g. NMR, FTIR, UV-Vis, 
Raman) characterization methods are commonly used in real-time reaction 
monitoring. To quantify the products of a chemical reaction a calibration curve is 
required before the optimization campaign. The following sequential steps are 
typically employed to refine raw data into actionable inputs for building ML models for 
optimization. (i) Extraction and categorization of appropriate spectra; (ii) Fitting of 
spectral peaks utilizing predefined functional models, alongside deconvolution of 
overlapping signals; (iii) Consolidation of extracted peak information and generation 
of relevant data plots and (iv) extracting the relevant information and formatting into 
input data for ML models. A recent review from Felpin et al. [59] highlighted the 
selection of in-line/online analytical tools that can be integrated into flow reactors for 
the monitoring of chemical reactions. In the current review, we focus on the HT data 
processing that complements the HTE platforms for rapid optimization of organic 
reactions. Although multivariate data analysis has been adopted in analytical 
chemistry frequently for rapid data processing, the availability of relevant open-source 
code is relatively low [60,61]. Consequently, the development of open-source code for 
data processing become interest to the scientific community extensively. 

Jansen et al. [62] have developed a tool for the analysis of high-pressure liquid 
chromatography (HPLC) measurements termed as ‘HappyTools’, able to calibrate 
retention times, perform peak quantitation, and use various quality criteria to curate 
the compiled data. For the quantitation and calibration of the chromatographic peaks 
the user can either input a peak list containing the time retention time and retention 
time window of the target chemicals, or it can use an automated peak detection 
algorithm removing the need of user input. The peak detection algorithm was 
developed using a loop to attain the user-specified cut-off value of the highest intensity 
peak. A new univariate spline is fitted for each iteration, from which the local maxima 
and minima are determined. Overall, HappyTools showed similar or better 
performance in comparison to existing commercial software. In particular, HappyTools 
showed an enhanced throughput demonstrating up to a 10-fold reduction in the total 
processing time for biopharmaceutical samples. The authors have released the 
source code and an executable program in an online repository to be employed freely 
for research purposes.  

In addition to HappyTools, there are other available open source python packages to 
analyse  chromatographic and spectroscopic data. A cross-platform python package 
named Aston can be used to process both UV-Vis and mass spectrometry 
chromatographic data. The open-source library is written using Python, Numpy, and 
Scipy is openly hosted in an online repository [63]. Similarly, for processing 
chromatographic data from GC-FID, HPLC-UV, or HPLC-FD packages also available 
open source. Embedding these codes into HTE and ML workflow dramatically 
improves the efficiency and speed of the optimization processes significantly. Liu et 
al., [64] developed a custom-built Python script to study the kinetics of 
carbonyldiimidazole (CDI) mediated amide formation by analysing data from an online 
HPLC and inline FT-IR spectroscopic measurements. Their algorithm was able to 
automatically detect peaks from chromatographic spectra and to automatically assign 
the peaks as reagents or products depending if the peak intensity decreased or 
increased respectively over time. In addition to monitoring the evolution of the 
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reaction, the IR spectral data was processed in real-time to ensure the complete 
consumption of acid reactant and feedback to the pump for immediate quenching of 
CDI to prevent any side reactions. The entire process allows to control the acid 
activation and amide formation precisely to afford the desired final product in 
quantitative yield.  

Recently Sagmeister et al. [65] assembled four complementary PAT including inline 
NMR, UV/Vis, IR, and online UHPLC, to meticulously monitor the intricate three-step 
linear synthesis of the mesalazine drug (Figure 6)  with a 1.6 g h-1 throughput. In the 
first step, the nitration reaction was monitored by inline NMR. The overlapping peaks 
were resolved for accurate quantification by building a chemometric model. The model 
also allowed for flexibility to small changes in peak positions and shapes in repetitive 
analysis. An in-house designed flow cell equipped with a reflectance probe was 
employed for real-time monitoring of hydrolysis by inline UV-Vis spectroscopy. The 
raw data were processed using a sophisticated neural network (NN) algorithm, 
yielding rapid quantification with an impressive processing time of 1.4 ms per 
spectrum. This streamlined approach ensured efficient and timely data analysis, 
facilitating seamless real-time monitoring of the hydrolysis of 16. The final step 
hydrogenation progress was monitoroted by inline IR probe. The spectral data was 
processed using a partial least squares (PLS) regression model and quantified. An 
online ultra-high performance liquid chromatography (UHPLC) was used to analyze 
the final composition of the reaction mixture after three reaction steps. The integration 
of all the PAT tools into the three-step reaction was carefully executed with an open 
platform communication unified architecture (OPCUA) platform for inter-platform 
equipment communication. The adoption of the OPCUA platform, ensured seamless 
communication among different equipment platforms for enhanced efficiency and 
accuracy in data analysis. 

A recent study introduced a novel approach for processing and analyzing HPLC−DAD 
raw data directly using Python [66]. This method leverages the Multivariate Online 
Contextual Chromatographic Analysis (MOCCA) package, designed for integration for 
both automated and manual workflows. MOCCA offers a range of benefits, including 
automated management of internal standards for precise relative quantification, 
reliable peak assignments, accelerated sample processing, and efficient 
deconvolution of overlapping peaks. Its versatility was showcased through the 
successful completion of four comprehensive case studies, demonstrating its broad 
applicability across diverse analytical scenarios. Recently, we implemented inline 
Raman spectroscopy to monitor the real-time conversion of styrene to polystyrene, 
utilizing a custom Python package developed in-house [51]. This approach enabled 
us to track the conversion process across different residence times. Specifically, we 
quantified the conversion by analysing the area under the curve of Raman-active 
vibrational modes associated with the styrene vinyl C=C stretch (~ 1630 cm−1), which 

Figure 8: Engagement of four complementary PATs in a three-step synthesis 

optimization process. 
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we calibrated against signals from p-xylene (~ 830 cm−1). To resolve overlapping 
peaks, we employed curve-fitting techniques utilizing Lorentzian functional forms, 
facilitated by the lmfit Python package. This methodology (Figure 7) allowed us to 
accurately calculate conversion rates and to make precise predictions using ML 
models.   

 

Traditionally, the optimization of a chemical reaction, the development kinetic models 
and optimization of analytical characterization parameters are undertaken 
independently. With this approach many overlapping tasks are performed in parallel, 
thus leading to long lead-times and inefficient manpower allocation.  To overcome 
these redundancies, Sagmeister et al. [67] developed a dual modelling approach using  
a single platform that seamlessly integrates the calibration of PAT, reaction 
optimization, kinetic modelling, and parametrizes a process model for scale-up in 
approximately 8 hours. Their platform consisted of a flow reactor connected to a in-
line FTIR. In addition, the platform has two valves that allows a stream of reagents or 
target product to bypass the reactor coil directly into the in-line FTIR to perform. Using 
this configuration the platform can perform a calibration of the reagent and product 
concentration through a standard addition method. Once the PAT is calibrated the 
platform performs dynamic experiments where the concentration of the reagents are 
ramped to explore the parametric space. Finally, using scientific programming 
language called Julia they use the collected data to fit the kinetic model parameters 
and perform in-silico optimization of the reaction parameters. The efficacy of the dual 

Figure 7: Overlay of several Raman spectra of a single condition featuring the 
styrene vinyl region (a). p-xylene (b). (c) waterfall plot depicting the decrease in 
the vinyl peak area under the curve (AUC) over time. (d) a representative 
conversion plot shows an increasing conversion with residence time (adapted 
from  [51]).    
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modeling approach was validated through the attainment of Pareto fronts for both 
amidation and alkylation reactions.   

4. Machine learning driven optimization of chemical reactions 

Historically, optimization of chemical reactions has been performed using 

methodologies derived from the design of experiments (DOE) with the objective of 

maximizing the yield of the reaction product. However, these techniques are not well-

suited to find the global optimal conditions and scale exponentially with the number of 

variables. Computational approaches that rely on optimization algorithms offer more 

efficient methods to obtain optimal conditions without requiring an exponential number 

of experiments per optimization variable. Early examples of optimization of chemical 

reaction conditions through computational approaches focused on the application in 

“black-box” optimization algorithms such as steepest descent, SNOBFIT and Nelder-

Mead Simplex demonstrated positive results and the ability to perform self-optimizing 

automated workflows with little human intervention [52,52,53,55,57,68–70]. In recent 

years, the incorporation of ML optimization methods has demonstrated the ability to 

obtain optimal reaction conditions in a reduced number of experiments in comparison 

to human intuition, traditional DOE and other “black-box” optimization algorithms 

[2,71,72]. Opposed to previous examples of optimization algorithms, the ML approach 

is characterized by the construction of predictive models that map relationships 

between the reaction conditions and the target optimization objectives. In this section 

we review the latest developments of ML optimization strategies for the optimization 

of chemical reactions.  

Figure 8a outlines the basic steps for the optimization of chemical reactions using ML 

methods. The workflow requires an initial set of experimental data that contains 

different variables for reaction conditions (i.e. temperature, time, solvent, catalyst, etc.)  

and the corresponding outcome values for the target optimization objectives (e.g. 

yield, purity, cost, etc.). The initial data set is commonly obtained by sampling a 

combination of reaction variables from the parametric space, performing the synthesis 

experiments under the selected reaction conditions, and measuring the values for the 

target optimization objectives. The sampling of initial reaction variables often is 

performed through near-random statistical methods such as Latin hypercube sampling 

(LHS), Sobol sampling, full factorial sampling, and centre point sampling methods. 

Alternatively, the initial data set can be obtained from values previously reported in the 

literature.  After, one or various predictive models are fitted to the initial data set to 

predict the expected values of the optimization objectives, the number of models that 

are fitted depends on the number of optimization objectives, and normally one model 

is constructed for each optimization objective. The next step involves the application 

of an optimization algorithm to find the most likely parameters that would lead to 

optimal outcomes for the target optimization objectives. Finally, a set of the most 

promising suggestions is selected and tested experimentally. The data set is then 

updated with the outcomes of the latest experimental parameters and the process is 

repeated until the optimal conditions have been found. Depending on the number of 

objectives, optimization campaigns are classified as single-objective (Figure 8b) or 

multi-objective optimizations (Figure 8c). In single-objective optimizations, the 

algorithm will explore the parametric space to find the optimal conditions by finding the 
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variables that either maximize or minimize the target objective function. In multi-

objective optimization, the algorithms will search for optimal conditions that either 

maximize or minimize each objective. On the other hand, when competing objectives 

are optimized the algorithm aims to discover the set of solutions where the 

improvement in one of the objectives results in the deterioration of the other objective. 

This set of solutions is called the Pareto front of the system (also known as non-

dominated solutions), all other solutions that are not part of the Pareto front are not 

optimal for any of the objectives and are referred to as dominated solutions. Since all 

solutions in the Pareto front are optimal the users hold the responsibility to choose the 

set of conditions for their specific application. 

Figure 8: (a) Schematic describing the process of chemical reaction optimization 
through machine learning methods. (b)  3D Representation of the objective function in 
relationship to two variables showing the path of 5 optimization iterations that look to 
minimize the value of the objective function. (c) Representation of the outcomes of a 
multi-objective optimization campaign. Each data point represents one experimental 
reaction condition. The Pareto front of the system where the improvement of one of 
objective leads to the deterioration of the other is highlighted in red.  
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The first reports of the application of ML to the optimization of chemical reactions can 

be traced over 20 years ago. A handful of studies used ML algorithms such as neural 

networks and support vector machines to fit models to chemical reaction data that then 

were optimized by a genetic algorithms [73–75]. However, the use of ML for chemical 

reaction optimization did not popularize until the introduction of Bayesian Optimization 

(BO) techniques by Lapkin and Bourne’s research group [76]. BO is a global 

optimization method that fits a probabilistic function to model the optimization objective 

and utilizes it to search for parameters that will likely lead to optimal objective values. 

Commonly, BO will use Gaussian process (GP) to create surrogate models that maps 

the relationships between the variables and objectives (Figure 8a). Then the surrogate 

model is sampled and the output values are passed to an acquisition function that 

balances the surrogate model predictions and uncertainties to find variable 

combinations that are likely to lead to optimal solutions (Figure 8a). The application of 

GP and BO to optimization of chemical reactions has the advantages of being able to 

model complex non-linear relationships between multiple variables and to incorporate 

uncertainty in their predictions, making them suitable to optimize noisy and expensive 

evaluation functions.   

4.1. Multi-objective optimization of chemical synthesisThere are different versions 

of BO algorithms depending on the acquisition function used to evaluate the surrogate 

model and the strategies used to suggest the most likely optimal values, for chemical 

reaction optimization the TSEMO (Thompson sampling efficient multi-objective 

optimization) algorithm has been the most widely used. Table 2 summarizes the use 

of various ML algorithms for the optimization of chemical synthesis with multiple 

objectives function. The use of TSEMO for optimization of a chemical reaction was 

reported by Schweidtmann et al. [76]. In this study the multi-objective Bayesian 

optimization (MOBO) was used to optimize a nucleophilic aromatic substitution (SNAr) 

reaction (Table 2, entry 1) and a N-benzylation reaction (Table 2, entry 2) using an 

automated flow reactor. The objectives of the optimization were to maximize the 

space-time yield (STY) of 22 and 24, while minimize either the E-factor for the SNAr 

reaction or the impurity concentration for the N-benzylation reaction. For both 

reactions there were four variables to optimize that included metrics for reaction time, 

reagent concentrations and temperature. After an initialization of 20 experimental 

conditions sampled by LHS, the choice of reaction conditions was left to the TSEMO 

algorithm to optimize the SNAr for a total of 48 iterations and the N-benzylation reaction 

for a total of 58 iterations. Both optimizations resulted in the discovery of a dense 

Pareto front with approximately 30-50% of the total suggested conditions resulting in 

non-dominated solutions.  

Since, multiple reports have demonstrated the ability of TSEMO to optimize multi-

objective optimizations for the synthesis of organic molecules (see examples in Table 

2, entries 3-5, 6-8). A particular noteworthy development is the application of TSEMO 

for the optimization of synthetic routes composed of two and more successive reaction 

steps or telescoped reactions [77–79]. Sagmeister et al. [77] reported the optimization 

of a two-step telescoped synthesis of the active pharmaceutical ingredient edaravone 

(Table 2, entry 9).  In this study, a self-optimizing flow reactor was used to run the 

optimization of seven continuous variables including three variables for the first step 
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and four variables for the second step reaction. The optimization had the objective of 

maximizing the yield of the imine intermediate (51) obtained after the first reaction, the 

STY of 52 and minimizing the overall used equivalents of the reagents. After 85 

iterations, a maximum yield of 95% for the synthesis of 51, and a maximum STY of 

5.42 kg/h for the synthesis of edaravone (52) were achieved. Setting an objective that 

limited the quantities of reagents led to the discovery of unexpected reaction 

conditions where the sub-stoichiometric amount of triethyl amine was sufficient to 

promote the second reaction step decreasing the waste produced during synthesis. 

Although no global solution that provided optimal reaction conditions for all three 

objectives was found, a distinct set of reaction conditions was identified that presented 

high yields and low overall equivalents. These conditions can be consolidated to meet 

user-defined manufacturing requirements effectively. 

Table 2: Multi-objective optimization of organic synthesis case studies using machine 

learning (ML) methods and single-objective optimization of telescoped reactions.   

En
try 

Platform Algorithm Variables Objectives Refer
ence 

1 
 
 
 
 

 

 
 
 
 
 

[76] 
 

Flow  BO 
(TSEMO) 

Residence time 
Equiv. of 20 
Conc. of 19 
Temperature 

↑STYa
 21 

↓E-Factor 

2 

 

 
 
 
 
 

[76] 
 

Flow BO 
(TSEMO) 

Flow rate 
Ratio of 24:25 
Solvent  
Temperature 

↑STY 26 
↓Yield 27  

3 

 

 
 
 

[80] 

Flow (CSTR) TSEMO Residence time 
Equiv. of 29 
Temperature 

↑STY 30 
↓Yield 31 

4 
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Flow (CSTR)b TSEMO Flow of 32  
Equiv. of 33 
Equiv. of NaOH  
Temperature 

 

↑STY 34 
↓Yield 35 
↑RMEc 32 

[80] 

5 

 

 
 
 

[81] 
 Flow TSEMO Equiv. 33 

Equiv. of NaOH 
Temperature 
Residence time 

↑Yield 34 
↓Cost  
↓E-factor 

6 

 

 

 

[15] 

 Batch  Phoenics  
Gryffin 

Ligand  
Ligand:Pd  
Pd cat. Loading 
Eq reagent 2 
Temperature 
 

↑Yield of  
(E)-39 
↓Yield of  
(Z)-39 
↓Pd catalyst  
loading 
↓Equiv. of x  

6 

 

 
 
 
 
 
 
 
 

[82] 
 

Batch TSEMO Temperature  
Conc. of H2SO4  
Aq:organic ratio 
Time 
Equiv. of 40 
Equiv. of 41 
Equiv. of 42 
Equiv. of 43 

↑Conversion 
40-43 
↑Yield 44-47 

7 

 

 
 
 

 
 
 

[82] 
 

Flow TSEMO Temperature  
Air flow 
Liquid flow 
Time 
Equiv. of 44 

↑Conversion 
44-47 
↑Yield 48 
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Equiv. of 45 
Equiv. of 46 
Equiv. of 47 

8 

 

 
 
 
 
 

[77] 
 
 

Flow TSEMO Temperature 
Residence time 
Concentration of 19  
Equiv. of 20 
Et3N 

 

↑Conversion 
1 
↑STY 21 
↓E-factor 

9 

 

 
 
 
 
 
 
 

[77] 
 
 

Flow TSEMO Equiv. of 49 
Conc. of step 1 
Residence time of 
step 2 
Temperature of step 1 
Temperature of step 2 
Equiv. of Et3N 

↑Yield of 51 
↑STY of 52 
↓Eq. 49 + 
Et3N 

10 

 

 
 
 
 
 

[78] 
Flow Dragonfly  Temperature 

Time of residence 
Equiv. of 53 
Equiv. of DIPEA 
Leaving group X  

↓Cost 
↑Productivity 
55 
↑Yield 55 

11 

 

 
 
 
 

[78] Flow Dragonfly Activation time 
Equiv. ratio of 55:57 
Temperature step 2 
Volume reactor 
Activated group R 

↑Yield 58 
↑Productivity 
58  

12 
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Flow TSEMO Equiv. of 59 
Temperature 
Conc. of 60 
Equiv. of AcOH 
Light intensity 
Residence time 

↑STY 61 
↑Conversion 
of 60 
↑Selectivity 

 
[83] 

13 

 

 
 
 
 
 

[79] Flow BOAEI Residence time 
Equiv. of 64 
Temperature 
Equiv. of TsOH 

↑Yield 66 

14 

 

 
 
 
 
 

[84] 

Flow MVMOO Solvents 
Residence time 
Conc. of 19 
Equiv. of 20 
Temperature 

↑Yield of 21 
↑Yield of 22 

15 

 

 
 
 
 
 

[84] 

Flow MVMOO Ligands 
Residence time 
Equiv. of 68  
Temperature 

↑RME 
↑STY 69 

16 

 
 

 
 
 
 
 

[47] Photo flow 
reactor 
(Robochem) 

Bayesian 
Optimizatio
n 

Conc. of 70 
Catalyst loading 
Conc of CF3SO2Na 
(NH4)2S2O8 loading 
Residence time 
Light intensity  

↑Yield 
↑Throughput 
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17 

 

 
 
 
 

[47] 

Photo flow 
reactor 
(Robochem) 

Bayesian 
Optimization 

Conc. of 73 
Conc. of 74 
Catalyst loading 
Residence time 
Light intensity 

↑Yield 
↑Throughput 

18 

 

 
 
 

[47] 

Photo flow 
reactor 
(Robochem) 

Bayesian 
Optimizatio
n 

Conc. of 76 
R-H loading 
TBADT loading 
Residence time 
Light intensity 
 

↑Yield 
↑Throughput 

19 

 

 
 
 
 
 

[46] 
Flow Slug 
reactor 

TSEMO Residence time 
Concentration 
Equiv. of 80  
Temperature 
Equiv. of DBU 
Catalyst loading  

↑Yield 81 
↑ STY 81 
↓Cost 

aSpace-time-yield; bContinuous Stirred Tank Reactor; cReaction mass efficiency, ↑ 

Maximization, ↓ Minimization.   

4.2. Accelerating optimization campaigns   

Shortening optimization times is desirable, especially when manufacturing active 

pharmaceutical ingredients (API) where only small amounts of materials available in 

each development step. Currently, optimization methods require an initialization step 

where reaction conditions are sampled and executed to train the surrogate models 

used during the optimization (Figure 8a). Sagmesiter et al. [77] performed a multi-

objective optimization of a SNAr reaction in an automated flow reactor platform and 

compared initialization sampling methods to understand how different methods affect 

the final number of experiments required to find optimal conditions (Table 2, entry 9). 

They compared LHS (20 experiments), full factorial DoE (17 experiments) and centre 

point only (1 experiment) as the starting data points. They found that LHS and full 

factorial DoE required a smaller number of optimization iterations after the initial set of 

experiments were conducted due to the better predictive capability of GPRs trained 

with larger amounts of data. However, when the total number of experiments including 
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the initialization set was considered, the number of experiments required to obtain 

optimal reaction values were larger or equal than the case where only one starting 

point was used as the only initial sample of reaction conditions. Thus, the authors 

concluded that is beneficial to start the algorithm driven optimization as soon as 

possible instead of performing an initial thorough exploration of the parametric space. 

However, they did not fully explore if there was a trade-off between a reduced number 

of initialization sampling and a total number of experiments to achieve optimal reaction 

conditions.  

Recently, Taylor et al. [85] introduced the idea of multi-task learning Bayesian 

optimization (MTBO) for chemical reaction optimization. Analogous to transfer learning 

in ML models, the idea behind multi-task learning is to pre-train the surrogate GP 

models with data that has been previously collected from similar reactions to eliminate 

the need of an initial sampling step and reduce the overall number of experiments 

required to obtain optimal reaction conditions. In MTBO, the standard GPR surrogate 

models are replaced with multitask GPs that use kernels able to create correlations 

between multiple GPs. The GP that models the experimental conditions that are being 

optimized is called the main task while any other GP trained on previous data are 

called auxiliary tasks (Figure 9a). The authors benchmarked MTBO in-silico for a 

single objective optimization for Suzuki-Miyaura reaction and discovered that 

pretraining the multi-task GPs using a single data set as an auxiliary task resulted in 

fewer iterations to achieve the optimal conditions in comparison to standard BO in 

most cases. Moreover, the authors observed that when four auxiliary tasks were used 

instead of one, the number of iterations to obtain optimal reaction conditions was 

reduced from 15 to fewer than 5 experiments (Figure 9b). Finally, the authors tested 

the performance of MTBO by performing the optimization in an automated flow reactor 

of a series of palladium catalysed C-H activation reactions of chloroacetanilides to 

produce their corresponding oxindoles (Figure 9c). For all reactions, three continuous 

and one categorical variable were optimized to maximize reaction yield. The authors 

first performed a standard single-objective BO of reaction (i) in Figure 9c. The 

optimization was initialized with a set of 16 distinct reaction conditions sampled by 

LHS, reaching optimal reaction conditions in 7 further BO iterations. Subsequently, a 

reaction (ii, Figure 9c) yielding a similar oxindole product was optimized using MTBO 

where the data gathered from the previous optimization was used to train the auxiliary 

GP, obtaining the optimal conditions in only 11 iterations in comparison to 18 required 

for the first reaction. A third reaction (iii, Figure 9c) yielding a similar oxindole product 

was optimized using the previous data from the first two optimization campaigns to 

train the auxiliary task GP. The authors found the optimal conditions by the algorithm 

in 5 iterations. Futher, the authors tested the ability of MTBO to learn from previous 

experiments by performing the optimization of two other C-H activation reactions 

where the structure of the C-H activation substrate (88) had a different structure in 

comparison to the first three optimizations. Thus, for the fourth campaign they tested 

the optimization of reaction that produced an a 6-membered nitrogen ring quinolinone 

instead of the 5-membered ring present in oxindoles. The MTBO was able to find 

optimal reaction conditions in 10 iterations, demonstrating the capability of the 

algorithm to handle the optimization of reactions that show small structural deviations 
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Figure 9: (a) Comparison to standard GP (single-task) and multi-task GP, it can be 
observed that by training an auxiliary task using data collected from a similar reaction 
the uncertainties associated with the GP predictions are greatly reduced (adapted 
from [85]). (b) Comparison of reaction optimizations performed in silico for single-task 
and multi-task BO. It can be observed that multi-task BO requires a reduced number 
of iterations to find optimal parameters that maximize reaction yield.  The 
performance is further increased by incorporating a larger number of auxiliary tasks 
(adapted from [85]). (c) Reactions used to test multi-task BO in experimental 
conditions. Reaction (i) was performed using standard single-task BO, each 
subsequent reaction incorporated the previously collected data to train auxiliary 
tasks. (d) Example of SeMOpt maximizing a sine function. The upper row shows the 
ground truth function with the sampled points and best suggested candidate by the 
BO algorithm. The bottom row shows the values from the acquisition function from 
the surrogate of the target objective, the NP process and their combination (adapted 
from [86]). 
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from the auxiliary task. Finally, the limits of the MTBO were tested by using 

achloroacetanilide that presented an electron-rich aromatic ring (90), in this case the 

MTBO was unable to discover good performing reaction conditions.  

Recently researchers from Atinary Technologies reported the development of 

SeMOpt, a BO framework that similarly to MTBO aims to transfer knowledge obtained 

from previous optimization campaigns to accelerate chemical reaction optimization 

[86]. In comparison to MTBO, SeMOpt has the advantage of being model agnostic 

thus can be applied with any combination of surrogate model and acquisition function 

used during the BO campaign. In addition to the surrogate model used for BO (see 

Figure 8a), SeMOpt introduces a surrogate neural process (NP) to model and make 

predictions based on previously gathered data. Then an acquisition function is used 

to select likely candidates by evaluating both the surrogate model and NP predictions. 

SeMOpt introduces the knowledge learnt by biasing the acquisition function of the 

surrogate model for the target optimization with the acquisition function evaluated on 

the NP model (Figure 9d). In addition, the biased introduced to the acquisition function 

by the NP is continuously updated and decrease as the number of optimization 

iterations increase. In this way, the optimization surrogate will eventually disregard the 

bias introduce by the NP whenever it becomes uninformative.  The authors 

benchmarked the performance of the SeMOpt framework by performing an in-silico 

single-objective optimization of a simulated cross-coupling reaction and a Buchwald 

Hartwig cross-coupling of aryl halides. For the benchmarking the authors used several 

different BO algorithms and compared their performance when paired with SeMOpt. 

The authors observed that for all cases the application of SeMOpt outperformed the 

single-task implementation of the same BO algorithm. In addition, they compared the 

performance of SeMOpt against other algorithms that include some knowledge 

transfer into the optimization workflow including MTBO. The authors observed that 

SeMOpt outperformed most of the other algorithms, with MTBO closely matching 

SemMOpt performance.   

4.3. Mixed-variable optimizations 

A challenge in BO is to include categorical variables (i.e.  non-continuous) into the 

optimization procedures due to inherent limitations of standard GP regressors (GPR) 

to include discrete variables into their predictions. Categorical variables such as choice 

of solvent, catalyst, ligands, additives, etc. are crucial for many chemical reactions. 

For this purpose, new algorithms have been developed to include categorical variables 

into MOBO. Kershaw et al. [84] utilized an in-house developed mixed-variable multi-

objective optimization (MVMOO) algorithm, employing GP regression surrogate 

models tailored for predictions with discrete variable inputs. Their study employed a 

self-driving flow reactor to optimize the synthesis of ortho (21) and para (22) isomers 

of SNAr reaction, leveraging four continuous variables alongside a single discrete 

variable representing solvent (Table 2, entry 14). After 99 sequential reactions (25 

LHS ad 74 optimzation iterations), the optimization found 20 non-dominated solutions 

that mapped the Pareto front from a highly dominant ortho product to a 50-50% split 

between the isomers. In addition, the researchers explored the optimization of a 

Sonogashira cross-coupling to optimize the STY and reaction mass efficiency (RME) 

for the synthesis of 69 (Table 2, entry 15). In this case the optimization involved three 
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continuous variables and the selection of a ligand for the catalyst as a discrete 

variable. After 69 sequential experiments (25 LHS, 44 optimization) the platform was 

able to identify 12 non-dominated solutions that demonstrated the trade-off between 

RME and STY. In general, most Pareto solutions were obtained when triphenyl 

phosphine was used as the catalyst ligand. Interestingly, triphenyl phosphine was the 

least sterically hindering ligand, which is counterintuitive to expert intuition which 

identifies sterically demanding ligands as more favourable choices for cross-coupling 

reactions.  

Another noteworthy approach for the optimization of both continuous and categorical 

variables for a Suzuki-Mayura coupling reaction was reported by Christensen et al. 

[15] using in-house developed BO algorithms called Phoenics and Gryffin (Table 2 

entry 6). The Gryffin algorithm uses Bayesian Neural Networks to construct the 

surrogate model, circumventing the limitations of GPR to fit categorical variables. The 

authors selected a total of four continuous reaction variables and the selection of a 

catalyst ligand as the unique categorical variable for the optimization. The algorithm 

targeted to find optimal reaction variables for four objectives including the 

maximization of the targeted stereoisomers (E-39, Table 2) and minimization of 

undesirable ones (Z-39, Table 2), catalyst loading, and reagent equivalents. Twelve 

ligands were initially selected based on domain expert knowledge and after 120 trials 

the best-performing conditions were similar to those previously reported in the 

literature. To further improve the performance of the reaction, the authors used DFT 

simulations to compute the chemical properties of 365 commercially available 

phosphine ligands, and by using k-means clustering they grouped the ligands in 24 

distinct regions. Through the strategic selection of a representative ligand from each 

distinct region, the researchers identified a novel set of ligands, differing from 

conventional recommendations based on domain expertise. These ligands were 

discovered through ML clustering techniques, sampling distinct groups of molecules. 

Following optimization of reaction conditions integrating these 23 new ligands, the 

authors observed enhanced performance, surpassing that of previously reported 

ligands (Figure 10). This study showcased how data science, ML algorithms and 

chemical reaction optimization can be used to optimize and discover reaction 

conditions that would have been missed by sampling of ligands using human intuition. 

Another great example of a combination of ML/AI chemoinformatic tools and reaction 

optimization was reported by Nambiar et al. [78], where a computer-aided synthesis 

planning (CASP) tool was used to find a 3-step reaction pathway for the synthesis of 

the API Sonidegib (58). After the generation of multiple reaction pathways by the 

CASP tool, the author manually selected a highly ranked route based on synthetic 

feasibility. This three-step reaction comprised a SNAr , hydrogenation reduction of a 

nitro group and an amide coupling as presented (Table 2, entry 10 and 11). Using an 

automated flow reactor, the researchers attempted to perform the optimization of the 

fully telescoped reaction. However, the optimization campaign had to be restructured 

into two independent optimizations due to the subproducts of the SNAr reaction 

poisoned the Pd catalyst used in the hydrogenation reaction. Thus, the MOBO of the 
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SNAr reaction was performed to maximize yield of 55, productivity and minimize cost 

of reagents per mole of product by optimizing 4 continuous and a categorical variable. 

The second optimization campaign was performed on the telescoped reaction that 

included the hydrogenation step and the amide coupling. In this case the objectives 

for the optimization were maximizing yield and productivity by optimizing two 

categorical and three continuous variables. Dragonfly, an open-sourced Bayesain 

optimization package was used to optimize both categorical and continuous reaction 

variables. An increase in yield and productivity was observed as the optimization 

progressed. The authors found that the selection of F as a leaving group led to the 

highest yield (98.3%) and productivity (5.97 g/h) for the synthesis of 58. However, if Cl 

was selected as the leaving group only a marginal reduction in yield and productivity 

was observed (93.8%, 5.70 g/h) but a 33% reduction in the cost. In the second 

reaction, both high yields and productivity were achieved concurrently. Because these 

objectives were positively correlated, no trade-offs were observed in the optimization 

suggestions. 

Figure 10: Comparison of reaction yield between (a) optimization campaign 
where catalyst ligand selection as based on expert’s intuition and (b) 
optimization campaign where ligand selection was derived from sampling 
the distinct ligand clusters obtained from k-means clustering of ligands in 
the chemical space calculated (adapted from [15]).   
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4.4. Benchmarking of optimization algorithms 

With an increasing number of optimization algorithms, an effort to benchmark their 

performance is required. Felton et al. [71] have highlighted the fact that the ability of 

an algorithm to perform well in a specific task may not translate universally to other 

problems, thus a specific optimization algorithm for chemical reaction optimization may 

have different performances depending on the nature of the target variables, 

objectives and chemical reaction. Also, the computational time required to execute an 

algorithm varies and it should be taken in consideration to select the most appropriate 

variation for each case study.  To benchmark different optimization algorithms Felton 

et al. released Summit, a Python module containing several optimization algorithms 

and two benchmark in-silico models to compare the performance of algorithms. 

Initially, the benchmarking models included in Summit were a kinetic model for the 

SNAr reaction of difluronitrobenzene with pyrrolidine, and neural network forward 

model for the prediction of yield of diphenylamine in a Pd-catalysed C-N cross coupling 

reaction trained on a previously published data set containing 96 unique set of reaction 

conditions. The optimization for the SNAr reaction included four continuous variables 

and two optimization objectives, while the C-N cross coupling included three 

continuous variables, two categorical variables and two optimization objectives. The 

optimization algorithms used during the optimization included non-ML algorithms 

(Nelder Mead, SNOBFIT), BO algorithms (Gryffin, SOBO and TSEMO) and DRO a 

pretrained reinforcement learning agent algorithm. For the optimization of SNAr 

reaction, BO methods were superior to any other of the algorithms, reaching a higher 

HV in a smaller amount of iterations. When the BO algorithms were compared, 

TSEMO outperformed by a significant margin against Gryffin and SOBO. For the C-N 

cross-coupling, all models had a similar hypervolume (HV) performance including a 

random search of reaction conditions, due to the small parametric space for the 

selected categorical variable. Müller et al. [72] also conducted benchmarking in-silico 

study for 6 different chemical reactions using previously reported kinetic models. In 

this case three distinct BO algorithms (TSEMO, ParEGO, EIM-EGO) and a genetic 

algorithm (NSGA-II) were compared. They demonstrated that BO methods 

outperformed non-BO methods such as NSGA-II, which is consistent with the Felton 

et al. studies earlier. 

 

5. Summary ad Outlook 

In this article, we outlined the latest advances in machine learning-driven multi-

objective optimization for chemical synthesis, in addition to breakthroughs in high 

throughput experimentation and analytical techniques. The recent developments of 

ML algorithms, high throughput experimentation tools, data processing techniques, 

and self-optimizing reactors has been a transformative force for chemical optimization 

processes. However, there are still plenty of research opportunities to continue the 

transformation of the field and to accelerate the execution of chemical reaction 

optimization. Recent work has had substantial progress in optimizing multiple 

continuous variables, yet the utilization of categorical variables in chemical synthesis 

optimization has predominantly been confined to single-step reactions with one or two 
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optimization objectives. The development of ML algorithms that can efficiently optimize 

a larger number of categorical variables will be crucial to unlocking the full potential of 

optimization methods. This is particularly true when objective functions that go beyond 

direct measurements of the reaction product outputs (e.g. yield, throughput, selectivity, 

etc.) are targeted. For example, optimizations that target to minimize the 

environmental impact of chemical synthesis is becoming a priority in the 

pharmaceutical industry. The environmental impact of a reaction not only depends on 

the efficiency of the process (i.e. yield and throughput) but will be highly affected by 

the nature of the solvent, catalyst, choice of reagents, downstream workup, etc. used 

during synthesis. To obtain optimal reaction conditions that minimize the 

environmental impact, the exploration of a large number of different reagents may be 

required, which is not possible to perform through traditional optimization 

methodologies. Nonetheless, ML algorithms could offer an efficient approach to 

navigate the parametric space and to reduce the experimentation time to find the 

conditions that minimize environmental impact of a particular manufacturing process. 

However, the state-of-the-art optimization algorithms still fall off from the target.  

Manufacturing of pharmaceutical and specialty chemicals commonly involves multiple 

reaction steps to transform the starting reagents into the final product. So far, 

optimization algorithms have been mostly applied to single-step reactions or applied 

step by step to each reaction of a multi-step procedure. Few examples in the literature 

have demonstrated the ability of ML methods to optimize telescoped reactions in 

automated flow reactors, the positive results should encourage further research in this 

field. However, there is bound to occur situations where the telescoped reactions are 

not feasible due to competing chemical interactions of the reagents in the reaction 

mixture. Thus, more research should investigate optimization strategies in multi-step 

reaction procedures in which the final objective function has input variables from 

multiple steps of the synthetic route. 

The application of ML algorithms to aid the discovery of new chemistry knowledge is 

flourishing, from generative design to property prediction and reaction planning. 

Further work should incorporate the diverse applications of ML in chemistry into 

chemical reaction optimization campaigns to open new avenues of research and 

discoveries. In particular, ML tools have shown to have a large potential in the planning 

of reaction optimization campaigns to assist in the selection of categorical chemical 

variables (e.g. catalysts, ligands, additives, etc.). Reviewed work by Christensen et al. 

[15] have already demonstrated the advantages of applying ML clustering methods to 

discover new catalyst ligands that would have been missed if the selection of test 

ligands only relied on human chemical insights. Taylor et al. [85] also highlighted the 

use of DFT or ML alternatives to find similarities between reaction models to apply 

efficient multi-task learning to chemical reaction optimization.  Another potential 

application of ML tools is the use of CASP to discover alternative reaction routes with 

the potential to improve the efficiency of current manufacturing methods. Finally, 

leveraging on the large quantities of data generated from self-optimizing chemical 

platforms and their experimental versatility, we envision the incorporation of reaction 

optimization methods with generative design to create full-driving laboratories that 

https://doi.org/10.26434/chemrxiv-2024-vbgc6 ORCID: https://orcid.org/0000-0002-6688-1205 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-vbgc6
https://orcid.org/0000-0002-6688-1205
https://creativecommons.org/licenses/by/4.0/


both tackle the discovery of new molecules and the search for optimal synthesis 

conditions to satisfy the production constraints for a chemical commodity. 

In addition to ML algorithms, future research on the optimization of organic chemistry 

reactions should leverage advanced AI models. In particular, we highlight large 

language models (LLMs) as a promising technology to enable the extraction of 

chemical knowledge from previously written literature. LLMs can be used to generate 

synthesis protocols for target materials through data mining of peer-reviewed literature 

[87,88]. Bran et al. [89] recently demonstrated an advanced LLM-powered chemistry 

engine called ChemCrow that is capable of planning and executing the synthesis of 

organic molecules. The LLM integrated 18 cheminformatic tools and performed the 

reasoning steps based on the information supplied by these tools to accomplish 

specific chemistry tasks. Along these lines, we envision that the integration of CASP 

tools and LLMs could accelerate the optimization of organic reactions by providing 

viable reaction routes with starting conditions that are close to the reaction optimum 

based on previous studies. Finally, LLMs could assist researchers with limited coding 

experience in writing the code required to automate their experimental workflows and 

execute their reaction optimizations. 

Standardizing benchmarking methods for ML optimization algorithms will be crucial as 

the number of optimization methodologies increases. Foundational work has been laid 

by Lapkin research group with the release of the Summit open-source software 

package [71]. Given the vast spectrum of chemical reactions, there is a necessity to 

develop a diverse array of reaction models to comprehensively assess the suitability 

of optimization methods for various scenarios. The field should leverage the ability of 

high throughput experimentation to produce large amounts of data to create reliable 

forward models that can be incorporated into an online repository. Thus, researchers 

could access this online repository to benchmark new optimization algorithms by 

performing in-silico optimization campaigns of the chemical reaction models.  

For the continued advancement of this research, democratizing access to proprietary 

autonomous platforms, algorithms, and fostering collaboration to share expertise 

within academia is paramount. While significant advances have been made 

particularly in addressing immediate challenges, we are convinced that the full 

potential of machine learning and artificial intelligence is yet to be fully realized. This 

highlights the importance of raising cross-functional expertise both within universities 

and at pre-university levels, thereby nurturing a broader knowledge base. Such an 

approach empowers young researchers to tackle research challenges holistically right 

from the outset, thereby unlocking new possibilities for innovation and advancement. 
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