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ABSTRACT 22 

The increasing accumulation of nanoplastics across ecosystems poses a significant threat to 23 

both terrestrial and aquatic life. Surface-enhance Raman scattering (SERS) is an emerging 24 

technique used for nanoplastic detection. However, the identification and classification of 25 

nanoplastics using SERS have challenges regarding sensitivity and accuracy, as nanoplastics are 26 

sparsely dispersed in the environment. Metal-phenolic networks (MPNs) have the potential to 27 

rapidly concentrate and separate various types and sizes of nanoplastics. SERS combined with 28 

machine learning may improve prediction accuracy. Herein, for the first time, we report the 29 

integration or MPNs-mediated separation with machine learning-aided SERS methods for the 30 

accurate classification and high-precision quantification of nanoplastics which is tailored to 31 

include the complete region of characteristic peaks across diverse nanoplastics in contrast to the 32 

traditional manual analysis of SERS spectra on a singular characteristic peak. Our customized 33 

machine learning system (e.g., outlier detection, classification, qualification) allows for the 34 

identification of detectable nanoplastics (accuracy 81.84%), accurate classification (accuracy > 35 

97%) and the sensitive quantification of various types of nanoplastics (PS, PMMA, PE, PLA) 36 

down to ultra-low concentrations (0.1 ppm) as well as the accurate classification (accuracy > 92%) 37 

of nanoplastics mixtures to sub-ppm level. The effectiveness and novelty of this approach are 38 

substantiated by its ability to discern between different nanoplastics mixtures and detect 39 

nanoplastics samples in natural water systems.   40 

  41 
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1. Introduction 42 

The increasing contamination of plastic in the environment is becoming a global concern, 43 

with annual emissions from  plastic waste reaching approximate 53 million metric tons by 20301. 44 

Large plastic debris degrades into microplastic particles (1 µm–5 mm) which then further 45 

fragments into smaller and potentially more hazardous nanoplastics (1–1000 nm)2,3. These 46 

nanoplastics, remain suspended in water, and contaminate various ecosystems including  marine, 47 

soil and  freshwater ecosystems, underscoring their pervasive nature4–6. Given their potential 48 

adverse effects on nature, organisms, and notably, humans, nanoplastics have emerged as a 49 

significant environmental and health concern. Numerous studies have identified the human health 50 

risks associated with nanoplastics, that include disruption of vascular endothelial cadherin 51 

junctions, induction of acute inflammation, and perturbation of gut microbiome composition and 52 

functionality7–9.  53 

Separation and enrichment processes are critical for nanoplastic assessment in aquatic 54 

samples. Currently methods for nanoplastic enrichment and separation operate in isolation and 55 

encounter various challenges. Enrichment techniques, including ultracentrifugation10, 56 

evaporation11, and vacuum drying12, lack efficacy or the possibility of sample destruction. 57 

Similarly, widely used separation strategies such as asymmetrical flow field-flow 58 

fractionation/cross-flow filtration13, density separation14, and sieving15 prove to be laborious and 59 

intricate. Metal phenolic networks (MPNs), a unique category of metal-organic materials 60 

synthesized from metal ions and phenolic molecules, exhibit a remarkable spectrum of surfaces 61 

due to the inherent properties of polyphenols. These networks can rapidly (~5 min) assemble into 62 

a diverse array of particles (e.g., organic, inorganic, and biological entities)16–18 and demonstrate 63 

high stability to various aqueous environments (e.g., high-salt, highly acidic, and alkaline 64 

conditions)19,20. As a result, MPNs have garnered significant interest for applications such as drug 65 

delivery systems21, tissue repair17, biochemical sensing, and catalysis22. Furthermore, MPNs have 66 

shown potential in facilitating the collection of polymer particles through aggregation, a process 67 

influenced by the concentration ratio of metal ions to phenolic ligands18,20,23 which  can serve as a 68 

fast and straightforward method for the enrichment and separation of environmental contaminants, 69 

playing a crucial role in enhancing the sensitivity of these techniques. For instance, our previous 70 

research employed luminescent MPNs as coating layers for the labeling, separation and detection 71 

of various types and sizes of micro- and nanoplastics using a custom-designed portable 72 

fluorescence microscope. Although our approach enables sensitive detection of plastic particles, 73 

fluorescence imaging systems have limited capacity to identify different plastic types. 74 
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Recent innovations for the compositional examination of nanoplastics have employed 75 

methods such as inductively coupled plasma mass spectrometry (ICP-MS)24, attenuated total 76 

reflectance Fourier-transform infrared spectroscopy (ATR-FTIR)25, and infrared photothermal 77 

heterodyne imaging (IR-PHI)26. However, these methods are time-consuming and require 78 

extensive instrumentation at substantial cost of operation Surface-enhanced Raman spectroscopy 79 

(SERS), an advanced and ultra-sensitive vibrational spectroscopic technique combining Raman 80 

scattering and nanotechnology, is frequently utilized for various substances identification owing 81 

to its exceptional detection limits and expeditious characterization capabilities27–29. SERS 82 

measurements, combined with the use of a portable Raman instrument,  allows for rapid on-site 83 

detection30,31. Manual analysis of a characteristic SERS peak of the targeted analyte is a common 84 

approach for SERS identification of the analyte. This approach, however, can potentially introduce 85 

errors in classification, especially for targets analysis in a complex matrix. Machine learning 86 

combined with the  analysis of Raman or SERS data has been used effectively in a variety of 87 

application contexts, including, but not limited to, cancer detection, bacterial classification, and 88 

identification of contaminants32–34. Machine learning provides a robust means of accurately 89 

identifying target analytes in a range of complex systems (e.g., in vivo and natural environments) 90 

through the creation of customized strategies for spectral analysis. For instance,  the integration of 91 

Raman spectroscopy with partial least squares (PLS) predictive regression models presents a 92 

viable strategy for monitoring lactate and pH values in body fluids35. Random forest models can 93 

be combined with Raman techniques to achieve accurate identification of nanoplastics, even in 94 

complex environmental systems such as natural rainwater (accuracy > 97%)36.  However, this 95 

method only allowed the detection of nanoplastics at very high concentrations (approximately 96 

5000 ppm) by using a traditional filtration method for separating nanoplastics. Currently, there is 97 

still a huge challenge for the accurate identification and quantification of nanoplastics 98 

simultaneously. As such, the integration of MPNs-mediated separation and customized machine 99 

learning-aided SERS addresses the latter.  100 

In the present study, we utilized tannic acid (TA) and Zr4+ as model reagents to form MPNs 101 

(Scheme 1a) and optimized MPN-mediated enrichment and separation of diverse nanoplastic types, 102 

including Polystyrene (PS), Polymethyl Methacrylate (PMMA), Polyethylene (PE), Polylactic 103 

acid (PLA), to enhance separation efficiency and minimize interference other matrices, prior to 104 

SERS detection. Subsequently, a customized machine learning method was developed for the 105 

analysis of SERS spectra obtained from nanoplastics. By collecting the whole SERS peak region 106 

of nanoplastics, our methods enabled accurate classification and high-precision quantification of 107 

diverse nanoplastics (Scheme 1b). Utilizing MPNs-mediated separation process and the 108 

customized machine learning-based SERS approach, we achieved a classification accuracy of >97% 109 
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for nanoplastics and notably low detection limits in ultrapure water (0.1 ppm), tap water (1 ppm) 110 

and lake water (10 ppm) samples. Our study presents a novel strategy that not only allows for rapid 111 

and simple enrichment and separation of various types of nanoplastics, but also provides a means 112 

for the accurate classification and sensitive quantification of nanoplastics in a complex system. 113 

 114 

Scheme 1. Schematic representation of integrating MPNs-mediated separation and machine 115 

learning-aided SERS for nanoplastics analysis. a) Self-assembly of MPNs coatings composed 116 

of TA and Zr4+ onto nanoplastics particles and SERS detection of nanoplastics using gold 117 

nanoparticle (AuNPs) substrates. b) Outline of the machine learning process: spectral datasets 118 

including plastic and undetectable samples are prepared, preprocessed, and analyzed. Data 119 

preprocessing includes truncation, augmentation, feature selection, normalization, and 120 

dimensionality reduction. The outlier detection is performed using the Isolation Forest algorithm, 121 
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and classification is executed on plastic samples (inliers) using four machine learning models 122 

(SVM, KNN, K-Means, and RF) to determine nanoplastic types. Quantitative analyses are 123 

conducted using polynomial, logistic, and linear regression models.  124 

2. Results and discussion 125 

2.1. SERS characterization of MPNs@nanoplastics 126 

TA and Zr4+ were used as model reagents to form MPNs due to their high stability under 127 

different pH and biological environments23. 500 nm PS particles were selected to characterize 128 

MPNs-mediated enrichment and separation of nanoplastics. In contrast to PS nanoplastics without 129 

a MPN coating, the MPNs-assembled PS particles interconnected via MPNs (Figure 1a−b) with a 130 

clear coating observed by Scanning Electron Microscopy (SEM) imaging (Figure 1c). The MPNs-131 

mediated aggregation and enrichment could facilitate precipitation of  nanoplastics following 132 

regular centrifugation (Figure 1d)37,38. The Dynamic light scattering (DLS) analysis demonstrated 133 

a size-dependent aggregation characteristic among nanoplastics particles, with a pronounced 134 

increase in aggregation as the particle size decreased.  (Figure S2).  Nanoplastics with sizes of 866 135 

nm and 478 nm predominantly aggregated into particles measuring between 4-5 μm. Conversely, 136 

nanoplastics with a smaller size of 42 nm exhibited a tendency to aggregate into substantially larger 137 

particles, exceeding 6 μm in size. The assembly of MPNs was demonstrated through a distinct 138 

shift (from 1194 cm−1 in TA to 1206 cm−1) in the vibrational peak of the HO-C bond from TA 139 

hydroxyl groups , as shown by Fourier-transform infrared spectroscopy (FTIR) analyses39 (Figure 140 

S3).  141 

We further used SERS to characterize MPNs-assembled nanoplastics (MPNs@NPs), utilizing 142 

PS nanoplastics as an example, to analyze SERS spectra of individual constituents (Figure S4). 143 

TA rendered robust SERS signals compared to weak signals from Zr4+. Characteristic MPNs 144 

spectral regions were identified between 722–889, 1227–1256, and 1451–1651 cm−1, which 145 

remained after the formation of MPNs-assembled PS particles, indicating that MPNs were 146 

assembled into PS particles. The dominant MPNs peak at 1487 cm−1 was attributed to TA40. PS 147 

nanoplastics exhibited a distinct peak at 998 cm−1 and this signature was retained after MPNs 148 

coating. It was evident that SERS is a viable tool for nanoplastics detection following MPNs-149 

mediated enrichment and separation. It is  imperative to optimize the molar concentrations of TA 150 

and Zr4+ as they affected the MPNs coating properties and separation performance20,41. We aimed 151 

to minimize MPNs peaks and accentuate the 998 cm−1 intrinsic signal from PS nanoplastics as the 152 

MPNs coating may overlap with other types of signals from nanoplastics38. Figure 1e demonstrates 153 
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the relationship between the TA/Zr4+ concentration ratio and the resultant SERS intensity at 998 154 

cm-1 from PS. When fixing Zr4+ concentration, an initial SERS intensity increased, followed by a 155 

decline as TA/Zr4+ concentration ratio increased. The low concentration of TA may hinder MPNs 156 

formation, as the branched structure of TA determines the physicochemical property of MPNs42, 157 

thereby attenuating separation efficiency for nanoplastics. Conversely, excessive TA could result 158 

in an overly dense coating layer18, which might could interfere with SERS signals from 159 

nanoplastics and weaken SERS detection of nanoplastics since the ideal interparticle distance for 160 

highest SERS enhancement should be  within the distance of < 10 nm43. Previous workers showed 161 

that precise modulation of the TA/Zr4+ concentration ratio will lead to a MPNs coating layer 162 

thinner than 10 nm23 and this indicated that the MPNs coating could create the ideal distance 163 

between nanoplastics and SERS substrate (AuNPs) to enable the most effective SERS 164 

enhancement of nanoplastics. As expected, elevating TA concentrations increased the 1487 cm−1 165 

peak from MPNs (as depicted in Figure 1f). To maintain a minimal level of interference while 166 

simultaneously ensuring high SERS intensities of PS nanoplastics, MPNs composed of 400 μM 167 

(TA) and 10 μM (Zr4+) were selected as the optimal concentration for the formation of 168 

MPNs@NPs. We further demonstrated that by the use of optimized MPNs-mediated separation 169 

and enrichment SERS approach for the detection of PS particles (10 ppm), the characteristic SERS 170 

signals of PS at 1002 cm−1 was greatly enhanced compared to the direct SERS detection of PS 171 

particles without MPNs-mediated separation (Figure 1g). 172 

This optimized MPNs separation protocol was subsequently used for other types of 173 

nanoplastics including 500 nm PS, 500 nm PMMA, 740–4990 nm PE, and 250 nm PLA. The 174 

characteristic peaks identified in the SERS spectra for each type of nanoplastic are shown in  Figure 175 

1h. PS exhibited a peak at 1002 cm−1, attributed to the ring-breathing modes; PMMA displayed 176 

peaks at 811 cm−1 (C=O stretching) and 1452 cm-1 (C–H bending); PE showed peaks at 1060 cm−1 177 

(symmetric C−C stretching), 1135 cm−1 (asymmetric C−C stretching), 1297 cm−1 (CH2 twisting), 178 

and 1441 cm−1 (C−H bending); and PLA was characterized by peaks at 870 cm−1 (C−COO 179 

vibration) and 1441 cm−1 (C−H bending). These observed SERS peaks are in line with data 180 

reported by others32,44,45. SERS experiments for nanoplastics at various concentrations following 181 

MPNs-mediated separation were conducted and their respective highest characteristic peak is 182 

labeled as shown in Figure 1i−l. The limit of detection (LOD) of SERS assay was 0.1 ppm (PS), 1 183 

ppm (PMMA), 5 ppm (PE), and 1 ppm (PLA), respectively (Figure S5a−d). The notably lower 184 

LOD for PS can be attributed to an intrinsic higher Raman activity, particularly when compared 185 

to other materials including PE, PMMA, and PLA. Typically, PS molecules enriched with 186 

electron-donating functional groups exhibit prominent Raman cross-sections, which are attributed 187 

to extended π−π systems, and  enhance molecular polarizability45. We also compared the 188 
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sensitivity of the direct detection of nanoplastics using SERS with MPNs-mediated separation and 189 

SERS detection. The sensitivity of MPNs-mediated separation and SERS detection achieved a 190 

500-fold improvement compared to direct SERS detection of nanoplastics, with LOD at 50 ppm 191 

(PS, PMMA, PE) and 100 ppm (PLA) respectively (Figure S6a−d).  192 

The accurate identification of nanoplastics using SERS techniques, especially in a complex 193 

system, remains a huge challenge. Different types of nanoplastics may have similar or overlapping 194 

characteristic risks. The fingerprinting spectrum for specific nanoplastics are often affected by 195 

other substances in certain spectral regions, thereby diluting the unique "fingerprinting" attributes. 196 

Even more challenging is the complexity of identifying nanoplastic signals across various 197 

concentrations. For each type of plastic analyzed, the most prominent characteristic peak was 198 

selected. The distribution of SERS intensity of these peaks was systematically examined for four 199 

types of nanoplastics: polystyrene (PS), polymethylmethacrylate (PMMA), polyethylene (PE), and 200 

polylactic acid (PLA), each with concentrations exceeding the limit of detection (LOD) (Figure 201 

S7). Our findings reveal that, while PS and PE displayed characteristic peaks at 998 cm⁻¹ and 1297 202 

cm⁻¹, respectively, their spectra also exhibited intensities at 811 cm⁻¹ and 870 cm⁻¹, which are 203 

indicative of PMMA and PLA, respectively. Analogously, the spectra of PMMA included signals 204 

at non-characteristic peaks (870 cm⁻¹, 998 cm⁻¹, and 1297 cm⁻¹), and the spectra of PLA was 205 

complicated by the presence of peaks at 811 cm⁻¹ and 1297 cm⁻¹. These spectral interferences 206 

might be attributed to contributions from MPNs, AuNPs, or intrinsic weak peaks inherent to the 207 

plastics themselves (Figure S4). Due to these interferences and the variations in characteristic 208 

peaks, manual differentiation of nanoplastic types remains particularly challenging. Consequently, 209 

using a tailored machine learning approach coupled with SERS emerges as a promising avenue for 210 

the accurate classification of nanoplastics. Such strategies have demonstrated success in 211 

pinpointing target analytes within intricate systems analyzing by spectrometric techniques46. 212 
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 213 

Figure 1. SERS characterization and detection of MPNs@NPs by. a-b Transmission Electron 214 

Microscopy (TEM) images of 500 nm PS nanoplastics before (a) and after (b) MPNs-mediated 215 

separation. c SEM image of 500 nm PS nanoplastics after MPNs-mediated separation. d Schemic 216 

illustration of MPNs-mediated method for SERS signal enhancement of nanoplastics. e-f Peak 217 

intensities derived from SERS spectra at wavenumber of 998 (e) and 1487 cm-1 (f) for MPNs@PS, 218 

presented over diverse TA and Zr4+ concentrations (2, 10, 20, 200, 400, 600 μM for TA, 0.02, 0.1, 219 

0.2, 1, 2, 10, 20 μM for TA). g SERS spectra of 500 nm PS (10 ppm) with and without MPNs-220 

mediated separation h SERS spectra distinguishing between four nanoplastics variants: 500 nm 221 

polystyrene (PS), 500 nm poly(methyl methacrylate) (PMMA), 250 nm polyvinyl chloride (PVC), 222 

and polyethylene (PE).  i-l SERS spectral data for MPNs@NPs assorted by plastic type (PS, 223 

PMMA, PE, PLA) across a spectrum of concentrations. Concentrations include 0, 0.05, 0.1, 0.5, 224 

1, 5, 10, 50, 100, 200 ppm for PS, PMMA, and PE, and additionally 300, 400, 500, 600 ppm for 225 
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PLA. For panels a-f, the PS nanoplastics concentration is pegged at 10 ppm. In panels a-d, TA and 226 

Zr4+ concentrations are standardized at 10 and 400 μM, respectively. MPNs@PS: MPNs coated 227 

PS nanoplastics. MPNs@NPs: MPNs coated nanoplastics 228 

2.2. Data pre-processing and outlier detection 229 

SERS is known for its ability to detect a diverse range of substances at ultra-low 230 

concentrations47,48. Identifying unknown samples between detectable plastic (from our 231 

experimental settings) and undetectable plastic specimens is necessary for subsequent accurate 232 

classification. The types of plastics currently in use are numerous, and it was impossible to 233 

purchase all the template plastics due to limited commercial availability, therefore, four 234 

representative commercially available plastic types with concentrations exceeding LOD after 235 

MPNs-mediated separation were selected as plastic samples, resulting in total number of SERS 236 

spectra for each sample: PS, 24, PMMA, 18, PE, 15, PLA, 30. 40 undetectable plastic sample 237 

spectra were also created by introducing  broad inverted parabolas, sporadically centered between 238 

300 and 2080 cm−1. These spectra were divided into two distinct groups: the first represented 239 

Raman-inactive substances or low concentration entities, and the second portrays Raman active 240 

substances or those with high concentrations (Supporting Note S1 and Figure S8). 241 

Prior to introducing SERS spectra to machine learning classifiers, essential preprocessing was 242 

used to simulate typical environmental conditions. Key preprocessing measures encompassed data 243 

truncation, augmentation, feature selection, normalization, and dimensionality reduction. SERS 244 

spectra were truncated between 500–2080 cm-1, a range optimized to highlight key vibrational 245 

features of plastic samples while excluding potential interference from AuNPs in the 300–500 cm-246 
1 band that could possibly occur from the interparticle plasmonic coupling between AuNPs (Figure 247 

2a–b). Data augmentation served dual purposes: expanding the training dataset and incorporating 248 

potential interferences (Figure 2c). Random noise was added to non-signal regions by adjusting 249 

existing peak intensities at a signal-noise ratio (SNR) randomly exceeding 15, where the signal 250 

represents the most pronounced peak intensity in the spectrum (Figure 2d). This procedure was 251 

repeated tenfold to include randomized SNR variations within the training dataset, resulting in 252 

1397 spectra in total. To accurately identify peak positions for specific nanoplastics, we 253 

accommodated a peak shift tolerance of ± 6 cm−1 based on the characteristic peaks from various 254 

nanoplastics (Figure 2d). Characteristic peaks were selected from each plastic type instead of 255 

considering the entire spectrum for machine learning in order to reduce interference from MPNs 256 

and AuNPs (Figure 1h). As such, distinctive peaks were marked as features for machine learning: 257 

998 cm−1 for PS, 811 cm−1 for PMMA, 1297 cm−1 for PE, and 870 cm−1 for PLA (Figure 1i–l). A 258 

detailed discussion regarding data augmentation and peak finding was provided in Supporting 259 
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Note S2 and Figure S9. The efficacy of feature selection was evaluated by cross-validation 260 

accuracy which underscored the need for representation of the selected features to the samples49. 261 

An increase in the number of features selected showed positive correlation with the enhanced 262 

accuracy, indicating the importance of selected four features in machine learning statistics (Figure 263 

1e). Subsequent to normalization for these features, principal component analysis (PCA) was 264 

utilized for dimensionality reduction. PCA score plots highlighted plastic-specific cluster 265 

separations and undetectable sample distributions, showing the potential to differentiate different 266 

types of plastic samples as well as plastic samples with undetectable plastic samples, although 267 

there were some overlaps (Figure 1f).  268 

To differentiate detectable and undetectable plastic samples, the isolation forest model was 269 

employed as an outlier detection method, which is particularly suitable for extensive, high-270 

dimensional datasets44. Due to the capabilities of random forests, this technique discriminates 271 

between inliers (plastic samples) and outliers (undetectable plastic samples) without the need for 272 

a separate outlier model44. The isolation forest algorithm yields a measure of normality determined 273 

by the path lengths. This score is illustrated through the gradient of background colors on the path 274 

length decision boundary plots. Shorter paths are F-associated with reduced normality scores, 275 

pinpointing undetectable plastic samples (outliers), whereas longer paths signify detectable plastic 276 

samples (inliers) with elevated scores (Figure 1g). The score set to distinguish plastic samples from 277 

undetectable plastics stood at 0.53, clearly manifested in the binary decision boundary (Figure 278 

S10). Cumulatively, the model proficiently discerned plastics from undetectable samples, 279 

achieving an accuracy of 81.84%, a recall of 81.84%, a precision of 82.58%, and an F1 score of 280 

82.09% (Figure S11). It is noteworthy that the model exhibited enhanced predictive capability for 281 

inliers (accuracy: 84.08%) as opposed to outliers (accuracy: 76.92%) (Figure 1h). This could 282 

possibly be attributed to intrinsic structural resemblances from certain artificial undetectable 283 

samples to experimental plastics. Challenges were encountered in the identification of low 284 

concentrations of non-degradable nanoplastics (PS, PMMA, PE) while the greater error rates were 285 

observed in medium concentrations of degradable nanoplastics (PLA) (Figure S12).  286 
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Figure 2.  SERS Spectra Preprocessing and Outlier Detection for plastic and undetectable 288 

plastic samples. a-c Depictions of a representative SERS spectrum (a), and its subsequent 289 

transformations following data truncation (b) and augmentation (c). d Illustration of the data 290 

augmentation procedure, encompassing the introduction of random noise, scaling adjustments, and 291 

meticulous peak identification to address peak shifting. e The Feature Selection Profile (FSP) 292 

delineates cross-validation accuracy corresponding to the incremental addition of features. Notably, 293 

each feature's significance was methodically appraised leveraging a Support Vector Classifier 294 

(SVC) with a linear kernel, complemented by a 5-fold cross-validation strategy. f Principal 295 

Component Analysis (PCA) plot contrasting detectable plastic samples against undetectable ones. 296 

g Path-length decision boundary showing outlier detection results through the Isolation Forest 297 

algorithm. h Confusion matrix articulating the performance of the Isolation Forest model on 298 

discerning between outliers and inliers. 299 

2.3. Classification of nanoplastic types  300 

Accurate identification of nanoplastics at low concentrations is difficult especially in complex 301 

matrices such as natural environmental systems.50 Machine learning techniques were utilized to 302 

categorize different nanoplastic types across various concentrations (PS 0.1–200 ppm, PMMA 1–303 

200 ppm, PE 5–200 ppm, and PLA 1–600 ppm) following MPNs-mediated separation. The dataset 304 

was formed from features derived from four characteristic peaks of 957 SERS spectra of 305 

nanoplastics. Interrelationships between these features were assessed using Cramér's V 306 

coefficients, grounded in the chi-squared statistic51. Our findings revealed that most selected peaks 307 

were completely independent (Cramér's V = 0), except for peaks 811 and 870, which displayed 308 

strong correlation coefficients with peaks 998 and 1297, registering values of 0.39 and 0.22, 309 

respectively (Figure 3a). We employed t-Distributed Stochastic Neighbor Embedding (t-SNE) for 310 

dimensionality reduction, which outperformed PCA in producing better clustered data52 (Figure 311 

3d and Figure S13). Kernel Density Estimate (KDE) plots further revealed that PS, PMMA, PE 312 

and PLA across different concentrations exhibit multiple peaks in each cluster (Figure S14). 313 

After the pre-data processing, we further evaluated four prevalent models for multi-class 314 

classification: RF, K-Means, KNN, and SVM, as illustrated in Figure 3g. In the context of 315 

supervised learning classifiers, SVM, KNN and RF are common models for multi-classification. 316 
53,54 Among them, RF models are trained without the necessity for dimensionality reduction, 317 

attributed to their inherent capability to proficiently manage high-dimensional data55. We also 318 

compared the supervised learning with unsupervised learning algorithm (K-Means) to optimize 319 

the machine learning model56. To ensure a rigorous and unbiased model selection process, we 320 

employed a 5-fold cross-validation strategy across the entire dataset. This cross-validation was 321 
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implemented to enable reasonable comparison among the models under evaluation and to optimize 322 

the use of the available, albeit limited, number of positive samples in the dataset.  323 

Due to the imbalance in the number of datasets generated, we evaluated model performances 324 

using four metrics to find the optimal model: accuracy, precision, recall, and F1 score. Figure 3j 325 

presents our analysis that showed minimal difference among these values, indicating that the 326 

imbalanced number of datasets had a limited impact on model performance. The supervised RF 327 

(96.97%), KNN (96.97%), and SVM (95.92%) models notably outperformed the unsupervised K-328 

Means model (88.92%) according to accuracy, thereby demonstrating enhanced reliability and 329 

repeatability for nanoplastic classification. The decision boundary plots showed that the 330 

unsupervised K-Means model encountered difficulty in differentiating between PS and PE, as 331 

evidenced by the relatively low accuracy of 75.00% and 89.09% observed in the confusion matrix 332 

(Figure 3b–c). For supervised models, confusion in differentiating PE from PLA was the primary 333 

factor leading to the low accuracy of SVM compared to RF and KNN (Figures 3f, 3i, and S15a). 334 

A comparison between SVM and KNN decision boundary plots clearly illustrated this 335 

phenomenon (Figures 3e and S15b). Therefore, we demonstrated that RF and KNN are the ideal 336 

models for multi-classification of nanoplastics samples. 337 

To elucidate the contributions of selected features to predictive outcomes57, we computed the 338 

average SHapley Additive exPlanations (SHAP) value magnitudes for features in the RF model. 339 

As the RF model utilized features without dimensionality reduction, it allowed for a transparent 340 

demonstration of the contribution of each feature to nanoplastic prediction (Figure 3h). Features 341 

were stratified in terms of importance, from the most critical (top) to the least (bottom). All four 342 

selected characteristic peaks notably influenced the classification of the four nanoplastic types. 343 

This suggested the intrinsic complexity in distinguishing nanoplastic types following MPNs-344 

mediated separation solely through observing specific characteristic peak from one type. 345 

Consequently, machine learning approaches were found to be vital for the accurate classification 346 

of nanoplastics across varying concentrations. The dominant contributions were observed as 347 

follows: peak 998 cm-1 for PS, peak 870 cm-1 for PLA, peak 811 cm-1 for PMMA, and peak cm-1 348 

1297 for PE. These associations were congruent with our SERS experimental findings (Figure 1h). 349 

SHAP  summary plots further showed the specific influence of each feature on nanoplastic 350 

classification58. For all nanoplastics, the most important feature (present in the first row of the 351 

SHAP summary) exhibited elevated values predominantly at locations of large SHAP values, 352 

signifying its positive role in prediction (Figure 3k and S16). Conversely, high values of non-353 

characteristic peaks were predominantly associated with low SHAP values, indicative of their 354 

mitigating impact on the prediction. Certain high values corresponding to non-characteristic peaks, 355 
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such as peaks 870 cm-1 and 811 cm-1, were found to enhance the likelihood of PS prediction (Figure 356 

3k). This could be attributed to these non-characteristic peaks existing within the characteristic 357 

peak region of MPNs (Figure 1d). As PS plastic concentration increased, a concurrent increase in 358 

these characteristic peaks from MPNs and PS was observed—a pattern also observed across other 359 

plastic categories (Figure 1i). 360 

We further explored the identification capability of the machine learning approach on 361 

nanoplastic samples with different species mixtures. We used the t-SNE dimensionality reduction 362 

and KNN model for further testing since it can offer the visualization of results and have the highest 363 

predication accuracy. PS-PMMA, PS-PE and PS-PLA mixtures across various concentrations with 364 

mass ratio of 1:1 were first detected by SERS following MPNs-mediated separation (Figure S17a–365 

c). These plastic groups exceeding LOD were selected as mixture samples and their visualization 366 

after t-SNE dimensionality reduction were shown in Figure S17d–f. Multiple random clusters for 367 

both single nanoplastics and nanoplastic mixtures as well as some overlapping clusters indicated 368 

the difficulty in identifying nanoplastic mixtures compared to the single nanoplastics. The decision 369 

boundary determined by KNN were shown in Figure S17g–i, respectively. The overall accuracy 370 

achieved 92.87%, 98.11% and 94.63% for PS-PMMA, PS-PE, PS-PLA mixtures, respectively, 371 

proving the potential capability for discriminating nanoplastic mixtures through machine learning 372 

approaches (Figure 3l–n).   373 
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Figure 3. Classification of Nanoplastics through Machine Learning Models. a Cramér's V 375 

Correlation Coefficient heatmap detailing relationships amongst categorical features (Peaks at 811, 376 

870, 998, and 1297 cm-1). b-c Decision boundary plot from K-means clustering (b), accompanied 377 

by a corresponding confusion matrix (c) elucidating the accuracy of nanoplastic classification. d 378 

t-SNE plot after dimensionality reduction, capturing groupings within nanoplastics. e-f Decision 379 

boundaries established by KNN (e), alongside a confusion matrix (f) demarcating the accuracy of 380 

KNN model in nanoplastic classification. h Bar graph portraying the average magnitude of SHAP 381 

values. i Confusion matrix of the accuracy achieved in classifying nanoplastics utilizing the RF. j 382 

Model prediction assessment for an array of metrics, including accuracy, recall, precision, and the 383 

F1 score. k SHAP summary plot, spotlighting the consequentiality of individual features on the 384 

prediction of PS nanoplastics. Analyses pertinent to other nanoplastic categories are presented in 385 

Figure S16. l-n Confusion matrices of classification accuracy for various nanoplastic mixtures: 386 

PS-PMMA (l), PS-PE (m), and PS-PLA (n). 387 

2.4. Quantification analysis 388 

SERS facilitates quantification via the examination of characteristic peak intensities. The 389 

intensity of specific peaks in a SERS spectrum scales with the analyte concentration, thus enabling 390 

accurate and sensitive measurements59. To discern the quantitative relationship between 391 

nanoplastic concentrations and SERS intensity at characteristic peaks, we applied three prominent 392 

regression models: logistic, polynomial, and linear, targeting high-precision quantification. The 393 

concentration gradients of nanoplastics exceeding LOD were used, which were elucidated by 394 

SERS experiments in Section 2.1. 395 

Taking 500 nm PS nanoplastics as a representative, the polynomial function (R2 = 0.9745) 396 

outperformed the logistic (R2 = 0.9674) and linear models (R2 = 0.9128), as evident from Figure 397 

4a–c. Notably, as the PS concentration rose, the curve flattened. This observation aligns with 398 

previous studies on quantifying PS nanoplastics using AuNPs as SERS substrates12. High 399 

concentrations of PS MPNs@NPs might cause the AuNPs to be shielded or buried, which reduces 400 

their effectiveness in enhancing the Raman signal  given the optimal SERS enhancement occurs 401 

within a distance of < 10 nm proximity to the metal surface60. The polynomial regression model 402 

was shown to have the optimal relationship. To streamline data analysis and predictions, we 403 

linearized the fitting curves for all nanoplastic samples by adjusting the X-axis (concentrations). 404 

Tests on PS nanoplastics of varied sizes (50 nm, 500 nm, 1 µm) reinforced the method's versatility 405 

across nanoplastic dimensions (Figure 4d–f). It is  important to note that the quantitative fitting 406 

curve is size-dependent, emphasizing the necessity of pre-determining size using techniques such 407 

as DLS. Subsequent quantitative assessments were conducted on PE, PLA, and PMMA. The 408 
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results, depicted in Figure S18, revealed the superiority of the polynomial model across nanoplastic 409 

types, consistent with the PS nanoplastic findings. We also converted the fitting curve to its linear 410 

form, as showcased in Figures 4g–i, underscoring the applicability of our MPNs-mediated 411 

separation in tandem with SERS for quantifying various types and sizes of nanoplastics.  412 

 413 

Figure 4. Quantitative Analysis of Nanoplastics using Regression Models. a-c Exploration of 414 

the relationship between 500 nm PS nanoplastic concentration and its characteristic peak intensity 415 

at 998 cm-1 via distinct regression models: logistic (a), polynomial (b), and linear (c). 416 

Complementary findings for other nanoplastic types are delineated in Supplementary Figure S18. 417 

d-f Linearized curves following X-axis adjustments via the polynomial model across different PS 418 

nanoplastic sizes: 50 nm (d), 500 nm (e), and 1 µm (f). p < 0.000001 by ANOVA analysis for all 419 

groups. g-i Linearized curves post X-axis adjustments for various nanoplastics: PS (g), PE (h), 420 

PLA (i), and PMMA (j).  421 

2.5. Detection of nanoplastics in complex systems 422 
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The accurate detection of nanoplastics in real-world systems remains an imposing challenge. 423 

The difficulties for accurate detection arise from the interference of environmental impurities for 424 

nanoplastics, obscuring their isolation and subsequent analysis. As a result, a large proportion of 425 

existing research focuses on the detection of template nanoplastics in ultrapure water instead of 426 

quantifying them in real world systems61–63. To demonstrate the applicability of our method for 427 

nanoplastic detection in natural environmental water conditions, we introduced four types of 428 

nanoplastics (PS, PMMA, PE, PLA) into tap and lake water. These nanoplastics were then detected 429 

and quantified using SERS following MPNs-mediated separation, providing external validation 430 

for our established machine learning protocols. 431 

In evaluating potential interference for nanoplastic classification and quantification, all tap 432 

and lake water samples were performed with MPNs-mediated separation and SERS detection. 433 

Figure 5a illustrates the SERS spectra control of different water after introducing MPNs-mediated 434 

separation. SERS spectra of tap water showed the similar SERS pattern compared to ultrapure 435 

water. This could be attributed to the fact that  primary constituents in tap water—metal electrolytes 436 

such as Na+, K+, Ca2+, and Mg2+,64 cannot be separated through the MPNs protocol and are 437 

insensitive to Raman scattering due to a lack of pronounced molecular vibrational patterns. In 438 

contrast, the lake water spectrum revealed three broad peak regions: 600−900, 1200−1575, 439 

1780−1960 cm−1, which might result from a combination of signals from MPNs and intrinsic lake 440 

water substances. The composition of wetland water is more complex due to both its high 441 

electrolyte content and biological entities65. Biological entities may interact with MPNs66, leading 442 

to a SERS spectrum reflecting interference from MPNs and lake water. After spiking 0−200 ppm 443 

of nanoplastics in both tap and lake water, we used MPNs-mediated separation and machine 444 

learning-aided SERS for the detection of various types of nanoplastics. Our approach also showed 445 

great potential for identifying multiple nanoplastics as validated by the observable peak 446 

characteristic from these nanoplastics (Figure 5b-c). However, the increased LOD for nanoplastics 447 

were observed in these real-world waters compared to ultrapure water: 1 ppm for PS, 10 ppm for 448 

PMMA, 10 ppm for PE, and 1 ppm for PLA in tap water, and 10 ppm for PS, PMMA, PE, and 449 

PLA in lake water (see Figure S19). One potential reason could be metal ions present in these 450 

water systems could compete with Zr4+ for adsorption sites on TA, due to the capacity of TA to 451 

form MPNs with a range of metal ions18. For further analysis, nanoplastic groups surpassing the 452 

LOD were chosen and classified using a trained KNN model. The classification accuracy for 453 

nanoplastics reached 90.63% in tap water and 95.02% in lake water, underscoring the robustness 454 

of machine learning model in analyzing potential nanoplastic samples across varied environmental 455 

contexts. However, as highlighted in the confusion matrix (Figure 5d–e), PLA classification posed 456 

challenges in both waters, with accuracies of 84.51% in tap water and 74.24% in lake water, 457 
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respectively. PLA, a known biodegradable material, may be biodegraded by microorganisms such 458 

as fungi or bacteria67 thus complicating the identification of PLA nanoplastics at low 459 

concentrations, particularly in lake water.  460 

Our subsequent analysis involved quantifying nanoplastics in tap and lake water systems at 461 

varying concentrations. Utilizing a trained polynomial regression model, we determined the 462 

nanoplastic concentrations and computed relative recovery ratios across concentrations exceeding 463 

LOD (as shown in Figure 5f–i). In tap water, PS, PMMA, and PE exhibited robust recovery ratios 464 

(80-120%). However, PLA nanoplastics at lower concentrations presented diminished ratios, 465 

specifically 36.97±2.42% at 1 ppm and 35.38±0.23% at 5 ppm. Lake water displayed analogous 466 

trends, with PLA recording 47.84±5.50% at 10 ppm and 40.15±5.07% at 50 ppm, likely 467 

attributable to the effect of microbial activity. In lake water, both PS and PMMA nanoplastics 468 

exhibited recovery ratios comparable to those observed in tap water. It is noteworthy that PE 469 

nanoplastic groups in lake water yielded consistently low recovery ratios. This could be attributed 470 

to weak CH2 twisting vibration from PE affected by complex constituents in lake water 471 

constituents, which diminished peak intensity at 1297 cm-1. Such observations indicate potential 472 

difficulties in accurately quantifying certain nanoplastics with inherently low Raman activity, 473 

especially in intricate environmental systems. This necessitates the re-establishment of quantitative 474 

analysis for PE in lake water instead of direct analysis using the quantitative method established 475 

in ultrapure water. Similarly, the polynomial regression model performed best among other models 476 

in analyzing PE in lake water, suggesting its potential applicability for quantifying nanoplastics 477 

across diverse environmental systems (Figure S20) that further indicates the potential for 478 

developing unique fitting curves for each nanoplastic to optimize detection across various 479 

environments. The utilization of MPNs-mediated separation, combined with machine learning-480 

aided-SERS techniques, has proven successful for both classification and quantification of 481 

nanoplastics in complex systems. Such a combination promises rapid on-site detection, accurate 482 

classification, and high-precision quantification of nanoplastics in environmental systems. 483 
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 484 

Figure 5. Classification and quantification of nanoplastics in environmental samples. a SERS 485 

spectra from ultrapure, tap, and lake water after MPNs mediated separation. b-c SERS spectra of 486 

various nanoplastics at 100 ppm spiked in tap (b) and lake (c) water after MPNs-mediated 487 

separation d-e Confusion matrices showcasing the classification accuracy of different nanoplastic 488 

types (PS, PMMA, PE, PLA) in tap water (b) and lake water (c) using the established KNN model. 489 

f-j Recovery rates of nanoplastics at concentrations exceeding detection limits in tap and lake 490 

water: PS (d), PMMA (e), PE (f), and PLA (g). 491 

2.6. Comprehensive analysis of our method 492 

To highlight the merits of our assay, we conducted a comparative assessment of this work for 493 
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nanoplastic analysis against recently established Raman/SERS techniques, considering factors 494 

such as SERS substrate, pretreatment, LOD for PS nanoplastics, and operation time (Table S1). 495 

Earlier investigations focused predominantly on enhancing the LOD via utilizing innovative SERS 496 

substrates. However, they confronted challenges: the protracted synthesis process for SERS 497 

substrates68 and the exorbitant cost of their commercial counterparts69. Moreover, many of these 498 

studies employed drying-related methodologies as a pre-treatment for nanoplastic samples, which 499 

sought to refine the LOD68,70. This also prolonged the overall operation time to exceed 3 hours.  500 

Removing the pre-treatment procedure decreased the processing time to approximately one hour, 501 

however, it adversely affected the LOD, increasing it to ppm for PS nanoplastics71. In contrast, our 502 

methodology leveraged AuNPs as the SERS substrate. Employing minimal volumes of AuNPs 503 

solution and sample (each at 1 µL) promises substantial cost savings, especially when applied to 504 

large-scale applications. The streamlined MPNs-mediated separation techniques reduce the total 505 

operational duration to approximately 30 minutes but achieve low LOD of 0.1 ppm for 500 nm PS, 506 

which performs better than most current research. This efficiency, combined with the use of a 507 

portable Raman instrument and a mini centrifuge, enables effective on-site detection. 508 

Furthermore, machine learning augments the classification and quantification accuracy of 509 

nanoplastics following MPNs separation and SERS detection. Traditional methodologies typically 510 

relied on manual analysis of Raman spectra, focusing primarily on a singular characteristic peak45. 511 

Such an approach potentially introduces judgement errors. Our machine learning approach, by 512 

considering the complete region of characteristic peaks across diverse nanoplastics, has been 513 

validated to accurately differentiate among PS, PMMA, PE, and PLA. We can achieve this 514 

differentiation even among nanoplastic mixtures and nanoplastics in environmental systems such 515 

as tap and lake water. This methodology is scalable, able to incorporate additional nanoplastics as 516 

they emerge in the market. More importantly, the universal labeling capacity of MPNs allows the 517 

technique to extend its detection capabilities beyond nanoplastics. It shows great potential to detect 518 

a myriad of entities, encompassing biological, inorganic, and organic particles, improving the 519 

current challenges of LOD and classification in multifaceted environmental or biological samples23. 520 

It is essential to recognize our method's potential for shaping sustainable practices, facilitating 521 

pollution mitigation, and ultimately fostering a more harmonious coexistence with our 522 

environment. 523 

524 
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3. Conclusion 525 

Nanoplastic contamination within environmental ecosystems has emerged as a significant 526 

concern. Conventional methodologies for nanoplastic detection have grappled with the challenge 527 

of classifying nanoplastics at suboptimal concentrations and extended processing times from 528 

complex pretreatment requisites. MPNs show their potential as a potent tool, offering rapid and 529 

proficient pretreatment avenues for nanoplastic enrichment and separation. Integrating MPN-530 

mediated separation with SERS has enabled us to realize detection limits of 0.1 ppm for PS, 1 ppm 531 

for PMMA, 5 ppm for PE, and 1 ppm for PLA. Customized machine learning methodologies were 532 

utilized to facilitate accurate classification and quantification of nanoplastics following 533 

preprocessing of SERS spectra. The Isolation Forest model, with an accuracy of 81.84%, adeptly 534 

identifying outliers, distinguishing between detectable and undetectable plastic samples. For 535 

classification, the KNN model, with an accuracy of 96.97%, stood out, while polynomial 536 

regression was identified as the most efficacious model for quantification analysis. External 537 

validation for nano-plastics spiked in tap and lake water systems demonstrated robust performance. 538 

The application of machine learning models to nanoplastic identification post-MPN-mediated 539 

separation heralds an innovative approach, enhancing the precision and efficiency of 540 

environmental plastic pollution surveillance. While this investigation was limited by the number 541 

of commercially available nanoplastics with specific types of sizes, its potential applications are 542 

expansive, encompassing a myriad of nanoplastic variants and diverse particulates, including 543 

organic, inorganic, and biological entities, within complex systems. 544 

4. Materials and Methods 545 

4.1. Chemical and materials 546 

Polystyrene (PS) particles of varying sizes (1 μm, 500 nm, and 50 nm) and polymethyl 547 

methacrylate particles (PMMA, 500 nm) were purchased from Phosphorex (Hopkinton, MA, 548 

USA). Polyethylene (PE) particles (740–4990 nm) were purchased from Cospheric (Santa Barbara, 549 

CA, USA), while Polylactide (PLA) particles (250 nm) were obtained from CD Bioparticles 550 

(Shirley, NY, USA). Tannic acid (ACS reagent ≥99%), zirconyl chloride octahydrate 551 

(ZrOCl2·8H2O, 98%), and Tween 80 were acquired from VWR (Edmonton, Canada). Gold 552 

nanoparticles (AuNPs, 50 nm ± 4 nm) were sourced from nanoComposix (San Diego, CA, USA). 553 

Tap water samples from the Food Nutrition and Health building at The University of British 554 

Columbia (UBC) while lake water samples were collected from Nitobe Memorial Garden at UBC 555 

were collected. 556 

https://doi.org/10.26434/chemrxiv-2024-kn4zj ORCID: https://orcid.org/0000-0003-4197-9262 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-kn4zj
https://orcid.org/0000-0003-4197-9262
https://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

4.2. Preparation of MPNs@NPs 557 

PS, PMMA, and PLA solutions were directly used after dilution. However, PE solid particles 558 

were suspended in a Tween 80 solution as per the following: 100 mL of ultrapure water was boiled 559 

for 5 minutes, to which 0.1 g of Tween 80 was added, producing a 0.1% Tween 80 solution. 560 

Subsequently, 0.1 g of PE solid plastic particles were introduced and subjected to a 30 minute of 561 

ultrasonication pulse in an ice bath using a UP 200ST Hielscher ultrasonicator (Teltow, 562 

Brandenburg, Germany). The PE solution was prepared following centrifugation at 10,000 rpm for 563 

10 minutes.  564 

All plastic solutions (PS, PMMA, PE, PLA) were diluted to concentrations of: 0–200 ppm for 565 

PS, PMMA, and PE, with additional concentrations of 300–600 ppm for PLA. For MPNs@NPs 566 

preparation, 20 μL each of TA (0.5 mM) and ZrOCl2·8H2O (20 mM) were added into 960 μL of 567 

the aqueous nanoplastics suspension resulting in final concentrations of 10 μM for TA and 400 μM 568 

for Zr4+, respectively. After vortexing for 60 seconds, the blend underwent centrifugation at 7500 569 

rpm for 10 minutes using a mini centrifuge (VWR, Edmonton, Canada). The supernatant was 570 

discarded, and 1 μL of ultrapure water was introduced to the residue. Gentle agitation using a 571 

pipette tip yielded the MPNs@NPs suspension. An identical protocol was applied to detect 572 

nanoplastics spiked with tap and lake water to simulate nanoplastic detection in natural water 573 

systems. 574 

4.3. Acquisition of SERS spectra 575 

AuNPs served as the SERS substrate for spectral acquisition of samples. The original AuNPs 576 

solution was diluted 1:1 volume ratio. A 1 µL aliquot of the AuNPs solution was drop-cast onto 577 

the matte side of aluminum foil, followed by amalgamating an equivalent volume of each sample 578 

with the AuNPs solution. After air-drying at ambient conditions for 10 minutes, the edge of the 579 

coffee ring was tested by WP 785 ER Raman Spectrometer (Morrisville, NC, USA) in order to 580 

obtain a consistent signal. The systematic assay procedure was detailed in Supporting Note S3. 581 

SERS spectra were recorded by using a 785-nm diode laser and the ENLIGHTEN™ Spectroscopy 582 

Software. The incident laser power was 450 mW, the integration time was 60 s, and the spectral 583 

domain spanned 300 to 2008 cm−1. Data processing incorporated boxcar smoothing (1 pixel) and 584 

Polynomial fitting (Polyfit) for baseline correction.  585 

4.4. Characterization of MPNs@NPs.  586 

DLS and zeta potential assessments were conducted using a Litesizer 500 (Anton Paar, Graz, 587 

Austria). For TEM imaging, unstained samples were examined under a Hitachi H7600 TEM 588 
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(Tokyo, Japan) at 80 kV. SEM imaging was performed on a Zeiss Crossbeam XB350 (Dublin, CA, 589 

USA). Prior to SEM observation, samples were sputter-coated with a 4 nm Pt layer and images 590 

were taken at an accelerating voltage of 5.0 kV. UV-vis absorption was measured by the Shimadzu 591 

UV-1800 UV–Vis Spectrophotometer (Kyoto, Japan) at a wavelength range from 300 to 900 nm. 592 

4.5. SERS spectra preprocessing.  593 

The SERS spectra, initially spanning a range of 300−2008 cm−1, were truncated to 500−2008 594 

cm−1. Through an augmentation procedure, the dataset was amplified tenfold. From these spectra, 595 

the intensities of four diagnostic peaks at 811, 870, 998, and 1297 cm−1 were extracted, constituting 596 

a 4D vector representation. Each nanoplastic type served as the label, with the respective intensities 597 

of the characteristic peaks functioning as the training set. 598 

A feature selection strategy, anchored on Mutual Information (MI), refined the dataset's feature 599 

set to ensure their maximal relevance72. The significance of each feature was systematically 600 

obtained using a Support Vector Classifier (SVC) with a linear kernel, in conjunction with 5-fold 601 

cross-validation. This evaluation yielded a key visualization tool, the Feature Selection Profile 602 

(FSP). This tool enabled the discernment of the most informationally dense features, which were 603 

incorporated to ensure machine learning endeavors. Peak intensities, which displayed variations 604 

across different nanoplastic spectra, were normalized to a standard scale spanning 0 to 1. This 605 

normalization rendered the intensities inter-comparable and bolstered the convergence efficiency 606 

during machine learning training sessions. 607 

For dimensionality reduction, both Principal Component Analysis (PCA) and t-distributed 608 

Stochastic Neighbor Embedding (t-SNE) methodologies were adopted to project the high-609 

dimensional data into a 2D plane. Data was visualized in the PCA domain for five distinct 610 

nanoplastic categories, namely PE, PLA, PMMA, PS, and undetectable plastic samples. These 611 

illustrations were delineated based on the two principal components, highlighting the primary data 612 

variance axes. Before embarking on classification training, the t-SNE technique was employed for 613 

dimensionality compression of the plastic dataset (PE, PLA, PMMA, PS). Owing to its innate non-614 

linearity, t-SNE adeptly retains local data structures, rendering it optimal for classification tasks73. 615 

Using parameters set at a perplexity of 70 and a learning rate of 10, we constructed two-616 

dimensional visualization that captures the primary deviations in the dataset. Kernel Density 617 

Estimate (KDE) plots supplemented these scatter diagrams, offering insights into data distribution 618 

and density in this compacted dimension. 619 

4.6. Machine learning approaches 620 

https://doi.org/10.26434/chemrxiv-2024-kn4zj ORCID: https://orcid.org/0000-0003-4197-9262 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-kn4zj
https://orcid.org/0000-0003-4197-9262
https://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

Outlier Detection: We deployed the Isolation Forest algorithm for recognizing plastic datasets 621 

following PCA dimensionality reduction. Post-label transformation into binary classes, plastic 622 

samples were mapped as inliers and undetectable plastic as outliers. We trained the model using a 623 

set of hyperparameters, exploring the number of estimators in the range [10, 50, 100, 200, 300] 624 

and a contamination fraction of [0.35], which corresponds to the number of outliers in entire 625 

dataset. To hone in on optimal hyperparameters, a grid search combined with 5-fold cross-626 

validation based on accuracy was performed. The best-fit model was trained on the full dataset and 627 

saved for future usage. Our analysis used two distinct decision boundary visualization plots: path 628 

length and binary boundary plots. Lastly, we derived a normalized decision threshold from 629 

decision function scores of the model to aid in distinguishing inliers from outliers. 630 

Nanoplastic Classification: For categorizing various nanoplastics, we employed the KNN, 631 

SVM, RF, and KMeans algorithms. The RF algorithm catered to classification without 632 

dimensionality reduction, while t-SNE dimensionality reduction was adopted for the rest. The 633 

parameters of models were tuned by combining 5-fold cross-validation with grid search, ensuring 634 

varied dataset splits. For RF, parameters under scrutiny were number of trees [100], tree maximum 635 

depth [1, 10, 20], samples for node split [2, 5, 10], and samples at leaf node [1, 2, 4]. For the KNN 636 

classifier, we evaluated the number of neighbors spanning [10-50] and the weight function 637 

['uniform', 'distance']. SVM evaluations focused on the regularization parameter, C, with values 638 

[0.1, 1, 10] and a linear kernel to maximize efficiency. After deducing the best parameters, the 639 

classifiers were trained on the complete dataset, storing the models for further analysis. For 640 

KMeans, data was organized into four clusters, with repeated initialization of 10 times to reinforce 641 

clustering reliability. To safeguard reproducibility and consistency, all models were subjected to a 642 

fixed random seed. Visualization of decision boundaries over the dimensionality reduced 643 

components for SVM, KNN, and KMeans highlighted distinct regions corresponding to each 644 

nanoplastic type, emphasizing the adeptness of models in differentiating PE, PLA, PMMA, and 645 

PS plastic samples. 646 

Nanoplastic Quantification: To reveal the relationship between SERS characteristic peak 647 

intensity and nanoplastic concentrations, we deployed three regression models: eq. 1 (Logistic 648 

Model), eq. 2 (Polynomial Model), and eq. 3 (Linear Model). For each concentration, we derived 649 

both the mean and standard deviation of intensity. Model fit was appraised using the coefficient of 650 

determination (R²). To streamline data analysis and prediction, the optimal regression model was 651 

linearized by adjusting the X-axis, representing concentrations. 652 

 
( )

( )
1 c x b

a
f x

e− −
=

+    (1) 653 
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2( )f x ax bx c= + +  (2) 654 

 ( )f x ax b= +  (3) 655 

4.7. Machine learning evaluation analysis 656 

The relationships between distinct categorical features were elucidated employing Cramér's V, 657 

a measure derived from the chi-squared statistic51. An exhaustive computation of Cramér's V was 658 

executed for every pair of categorical variables, culminating in constructing a symmetric matrix. 659 

This matrix illuminated the interrelationships among all dataset features. A confusion matrix was 660 

rendered to offer a graphical depiction of the performance of machine learning models in 661 

differentiating the nanoplastic groups. Evaluation of the performance of predictions incorporated 662 

a suite of metrics, encompassing accuracy, recall, precision, and the F1 score, delineated in eq. 4–663 

7. 664 

 

tp tn
accuracy

tp tn fp fn

+
=

+ + +  (4) 665 

 

tp
recall

tp fn
=

+  (5) 666 

 

tp
precision

tp fp
=

+  (6) 667 

 

2
1

2

tp
F

tp fp fn
=

+ +  (7) 668 

where tp, fp, tn and fn are the number of true positive, false positive, true negative, and false 669 

negative predictions, respectively. 670 

To shed light on the significance and impact of features on the RF model predictions, SHapley 671 

Additive exPlanations (SHAP) values were determined. A comprehensive SHAP summary plot 672 

elucidated the average magnitude and direction of feature contributions specific to each 673 

nanoplastic. Given our multi-class classification paradigm, distinct SHAP summary plots were 674 

curated for every class, offering nuanced insights into the feature impacts pertinent to each 675 

nanoplastic type. For the external validation, all nanoplastics spiked into both tap and lake water 676 

samples were classified and quantified utilizing the established machine learning models to 677 

determine classification accuracy and the recovery rate. The external validation was detailed in 678 

Supporting Note S4. 679 
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Supporting Information 681 

The Supporting Information is available free of charge on the ACS Publications website. 682 

Characterization, raw spectra, outlier detection and classification models evaluation, PCA and t-683 

SNE dimensionality reduction visualization, detection limit determination, creation of 684 

undetectable samples, data augmentation, assay procedure, external validation and comprehensive 685 

evaluation of this method (PDF). 686 

Source code for can be found at https://github.com/Haoxin01/ML_Nanoplastics_MPNs_SERS 687 
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