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Abstract 

This review surveys the recent advances and challenges in predicting and optimizing 

reaction conditions using machine learning techniques. The paper emphasizes the 

importance of acquiring and processing large and diverse datasets of chemical 

reactions, and the use of both global and local models to guide the design of synthetic 

processes. Global models exploit the information from comprehensive databases to 

suggest general reaction conditions for new reactions, while local models fine-tune the 

specific parameters for a given reaction family to improve yield and selectivity. The 

paper also identifies the current limitations and opportunities in this field, such as the 

data quality and availability, and the integration of high-throughput experimentation. 

The paper demonstrates how the combination of chemical engineering, data science, 
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and ML algorithms can enhance the efficiency and effectiveness of reaction condition 

design, and enable novel discoveries in synthetic chemistry. 
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Reaction data mining; Data preprocessing; Reaction representation; Reaction 

condition prediction; Reaction optimization 

1. Introduction 

Machine learning (ML) techniques have been widely applied to various chemical-

related tasks, such as computer-aided synthesis planning (CASP) [1-4], which can 

recommend possible synthetic routes for a target molecule and potentially improve the 

efficiency of developing new synthetic pathways. Many studies have shown that ML-

based retrosynthesis models can reproduce patent-derived pathways for known 

compounds, and even suggest more diverse and efficient alternatives [5-8]. As a result, 

CASP tools have attracted commercial interest and stimulated the development of 

integrated robotic platforms for automated flow synthesis [9-11]. 

However, as Coley et al. [12] pointed out, there are still challenges to achieve 

a fully automated and self-driving synthesis process. One of the key challenges is to 

automatically select appropriate reaction conditions for each synthesis step without 

human intervention. Conventionally, the common strategy to determine suitable 

reaction conditions is to adopt the previously reported conditions for the same or similar 

reaction types and conduct several experimental trials to evaluate the resulting 

reaction yields. However, this empirical approach is unlikely to find the optimal 

conditions, since the reaction outcome depends on a large and complex combination 

of factors, such as catalysts, solvents, substrate concentrations, and temperature. In 
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academia, especially, the "one factor at a time" (OFAT) approach, which involves 

changing one factor while keeping the others constant, is frequently used to examine 

the effect of individual reaction parameters [13]. However, the OFAT method is 

simplistic and may fail to identify the optimal reaction conditions, since it ignores the 

possible interactions among the experimental factors. 

With the rapid development of high-throughput experimentation techniques 

and ML, it has become more feasible to collect large volumes of data and accelerate 

the prediction of optimal reaction condition combinations. It has been widely 

demonstrated that ML algorithms can be used for various chemistry-related tasks, such 

as yield prediction [14, 15], site selectivity prediction [16, 17], reaction condition 

recommendation [18], and reaction condition optimization [13]. These techniques have 

also been integrated with robotic platforms to speed up the discovery and synthesis of 

new materials and drug candidates, showcasing the potential and promising benefits 

of self-driving chemistry labs [19]. 

Raghavan et al. [20] compared two types of reaction condition models based 

on their scope of applicability and dataset size: global and local models. The global 

models cover a wide range of reaction types and typically predict the experimental 

conditions based on a predefined list derived from literature data. However, this 

method requires sufficient and diverse reaction data for training, so that the models 

can have broader applicability and usefulness for CASP in autonomous robotic 

platforms [12, 21]. On the other hand, the local models focus on a single reaction type. 

Generally, more fine-grained levels of experimental conditions, such as substrate 

concentrations, bases, and additives, are considered in local models. The 

development of these models usually involves using high-throughput experimentation 

(HTE) [22-24] for efficient data collection, coupled with Bayesian optimization (BO) [25] 

for searching the best reaction conditions to achieve the desired reaction outcomes. 
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In this review, we delve into the various methodologies used for predicting and 

optimizing reaction conditions, and illustrate their diverse applications across different 

chemical domains. Given the importance of data collection for building data-driven 

models, we review different aspects of the dataset features and data preprocessing 

methods. Moreover, we introduce common algorithms and representative studies for 

developing both global and local models. We highlight representative studies that 

demonstrate the effectiveness and applicability of these algorithms in real-world 

chemical scenarios. Finally, we summarize the progress in this field and underline the 

remaining challenges in the area of reaction condition design. 

2. Reaction data collection and preprocessing 

One of the major challenges in building ML models for global reaction condition 

prediction is the data scarcity and diversity, as they need to cover a vast reaction space 

[26, 27]. Collecting experimental data for chemical reactions is not trivial, as it involves 

laborious and costly synthesis procedures. Some studies attempt to estimate activation 

energy and reaction enthalpy for specific reaction types using theoretical methods 

based on quantum mechanical calculations [28]. However, this approach is limited by 

the accuracy and applicability of the computational methods, especially for reactions 

in complex environments, such as those with ionic intermediates in solvents [29] or 

porous catalysts [30, 31]. Therefore, most ML models rely on experimental data from 

literature sources.  

 

2.1 Overview of data sources for chemical reaction modeling  

Table 1 summarizes some of the commonly used chemical reaction databases and 

their characteristics. These databases differ in the types and sources of reactions they 
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contain [32]. Most of them are proprietary and require subscription-based access, 

which limits the availability and comparability of data for developing global reaction 

condition prediction models. For example, Gao et al. [18] trained a reaction condition 

recommender on about 10 million reactions from Reaxys [33], but subsequent studies 

could not access or use the same data for model evaluation or improvement [34]. To 

address this issue, Coley et al. proposed the Open Reaction Database (ORD) [35], an 

open-source initiative to collect and standardize chemical synthesis data from various 

literature sources. The ORD allows chemists to upload reaction data associated with 

their publications, and aims to serve as a benchmark for ML development. However, 

the ORD is still in its infancy and contains mostly literature-extracted USPTO data [36], 

with only a small fraction of manually curated data. Therefore, there is a need for more 

community involvement and data contribution to make the ORD a comprehensive and 

reliable resource for global reaction modeling. 

 Local reaction datasets, on the other hand, usually focus on a specific reaction 

family and record reactions with relatively less structural variation in reactants and 

products. Various combinations of reaction conditions are tested to investigate the 

output yields in these reaction-specific datasets, which are typically obtained from HTE 

[37]. Some representative datasets are summarized in Table 2 and can be retrieved 

from the original papers or ORD. Local reaction datasets have several advantages 

over global datasets, despite containing less than 10k reactions. For instance, HTE 

data include failed experiments with zero yields, which are often omitted in large-scale 

commercial databases that only extract the most successful condition per reference, 

as discussed by Chen et al. [38]. This selection bias can lead to overestimation of 

reaction yields by ML models and limit their generalization capabilities [39]. Therefore, 

many studies have called for more comprehensive documentation of all experimental 

results and submission of data in machine-readable formats [40-42]. Another potential 
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issue with data from various sources is the discrepancy in yield definition, as pointed 

out by Mercado et al. [43]. Literature-extracted yields can be derived from different 

methods, such as crude yield, isolated yield, quantitative NMR, and liquid 

chromatography area percentage, and they can also vary in precision due to human 

bias or equipment quality. HTE data for specific reactions, however, are usually 

measured using more standardized procedures and are less affected by this issue. In 

summary, while global models have the appealing feature of wider applicability, local 

models offer a more practical fit for optimizing real chemical reaction conditions [20]. 

The choice of datasets depends on the application scenario, whether it is to establish 

a comprehensive CASP system or to focus on specific reaction types. 

 Besides the existing datasets, alternative approaches for constructing reaction 

data through automatic literature mining have also been proposed. These approaches 

leverage the rapid advancement of natural language processing (NLP) techniques to 

extract experimental data from unstructured text. For example, Vaucher et al. [44] 

combined rule-based models and deep-learning techniques to convert experimental 

procedures into standardized synthetic steps. They further used this data extraction 

technique to construct a dataset of ~693k reactions with detailed procedures and 

developed a sequence-to-sequence model to predict synthetic steps that are 

actionable and compatible with robotic platforms [45]. Guo et al. [46] conducted a 

continual pretraining scheme on the BERT model [47] to obtain a domain-adaptive 

encoder, ChemBERT, which was pretrained on an unlabeled corpus of ~200k chemical 

journal articles. They then finetuned ChemBERT on a small annotated dataset for 

reaction role labeling, resulting in ChemRxnBERT, which can identify the reaction 

transformation and distinguish reactants, catalysts, solvents, and reagents from 

chemistry passages. However, many chemical literature records depict reactions using 

diagrams, which can have various formats such as single-line, multiple-line, tree, and 
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graph representations. Extracting data from reaction diagrams requires the use of 

image recognition to parse molecular structures and convert them into textual 

representations. Qian et al. [48, 49] demonstrated that this task of optical chemical 

structure recognition (OCSR) [50] can be handled with a model that combines an 

image encoder and a molecular graph decoder. Despite the promising machine 

learning solutions for reaction diagram parsing [51, 52], there are still some limitations. 

For instance, sometimes the reaction conditions are listed in tables, and certain 

functional groups in images are represented by abbreviations (e.g., R-groups). To 

achieve more complete data extraction, future efforts will need to employ multi-modal 

modeling approaches [53-55] that can collect information from different sources and 

provide robust results. Recently, Fan et al. developed the OpenChemIE toolkit [56], 

which integrates extraction methods from text, images, and tables, automating the 

capture of experimental records of chemical reactions from chemical synthesis papers. 

This development demonstrates significant advancements in streamlining the data 

extraction process for chemical research. 

 

Table 1: Summary of large-scale chemical reaction databases. 

Database Reference No. of reactions Availability 

Reaxys  [33] ~65 millions Proprietary 

ORD [35] ~1.7 million reactions from 

USPTO [36] and ~91k reactions 

from chemical community 

Open source 

Scifindern  [57] ~150 millions Proprietary 

Pistachio  [58] ~13 millions Proprietary 

Spresi [59] ~4.6 millions Proprietary 
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Table 2: Summary of chemical reaction yield datasets obtained from HTE.  

Dataset Reference No. of reactions 

Buchwald-Hartwig (1) [60] 4,608 

Buchwald-Hartwig (2) [61] 288 

Buchwald-Hartwig (3) [62] 750 

Pd-catalyzed cross-coupling [61] 1,536 

Suzuki–Miyaura coupling (1) [63] 5,760 

Suzuki–Miyaura coupling (2) [64] 384 

Suzuki–Miyaura coupling (3) [65] 534 

Electroreductive coupling of 

alkenyl and benzyl halides 

[66] 27 

Mizoroki–Heck reaction [67] 384 

Coupling of α-carboxyl sp3-

carbons with aryl halides 

[68] 24 

Biginelli condensation [69] 48 

Deoxyfluorination [70] 80 

Coupling reactions [71] 264 

Synthesis of sulfonamide [72] 39 

Ni-catalyzed Suzuki–Miyaura [73] 450 

Mitsunobu reaction [74] 40 

Ni-catalyzed borylation [75] 1,296 

Amide coupling (1) [76] 1,280 

Amide coupling (2) [77] 960 

Pd-catalysed C–H arylation [77] 1,536 

Ni-catalyzed C–O coupling [78] 2,003 
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Ir(I)-catalyzed O–H bond 

insertion 

[79] 653 

Pd-catalyzed C−N coupling [80] 767 

 

2.2 Implicit data issues and data preprocessing tools 

The quality of training data is a crucial factor for the robustness of machine learning 

models in chemistry. However, chemical reaction data may contain errors or 

incompleteness, which can adversely affect the model performance and reliability. The 

common errors in reaction data can be roughly categorized into two types: (1) 

erroneous reactions, such as those with mislabeled, missing, or extra atoms in 

reactants or products, and (2) incomplete reactions, such as those with missing 

reactants, which are often due to insufficient documentation of the involved species. 

Erroneous reactions usually require the removal of the corresponding entries from the 

dataset, as it is hard to determine whether the recorded reactants or products are 

correct and consistent. Incomplete reactions could be mitigated by using heuristic 

methods to complete the missing species. In this section, we explain the details of data 

collection and preprocessing, and we present a schematic representation of the 

workflow in Figure 1. 

One approach to remove erroneous reactions is based on the concept of 

“catastrophic forgetting”, which refers to the model’s tendency to forget previously 

learned events during the training process. Toniato et al. [81] proposed to use this idea 

as a criterion to filter out the reactions that are more difficult for the model to learn, 

assuming that they are more likely to contain errors. However, this protocol depends 

on the choice of the model and does not require any chemistry-informed knowledge 

for preprocessing. 
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For dealing with incomplete reactions, the first step is to identify the missing 

component, which can be facilitated by atom-mapping packages [82-85] that assign a 

unique label to each atom in the reactants and products. With the atom-mapping 

information, one can apply the rule-based method, CGRTools [86], to add small 

molecules (e.g., H2O and HCl) in reactions, but this method is limited by the availability 

and coverage of predefined reaction rules. Alternatively, language models have been 

developed to predict the missing part of molecules given a partial reaction equation, 

as reported in the work of Zipoli et al. [87] and Zhang et al. [88]. These ML-based 

approaches can balance reactions without exhaustive rule definition, but they may not 

be able to recover complex molecules. A promising data preprocessing strategy that 

addresses this issue is proposed by Phan et al. [89], who formulated the omission of 

molecules as a maximum common subgraph (MCS) problem and aligned reactants 

and products to identify non-overlapping segments, thereby generating the missing 

compounds. Another novel method is AutoTemplate [90], which extracts generic 

reaction templates from the reactions being preprocessed and recursively applies them 

on the products of the dataset to validate and correct reaction data. This approach can 

not only fill in missing reactants, but also fix atom-mapping errors and remove incorrect 

data entries, thus improving the quality of chemical reaction datasets.  

Although many data preprocessing tools have been proposed, we believe more 

research in this direction can be beneficial to the performance and reliability of machine 

learning models. Ideally, a unified standard data processing workflow should be 

established in the future to benefit various reaction prediction and synthesis tasks.  
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Figure 1: A schematic diagram of the data mining and preprocessing steps for 

chemical reaction datasets, including data collection, data filtering, data completion, 

and atom mapping. 

3. Reaction representations for reaction modeling 

The choice of featurization strategy for chemical reactions is crucial for building 

predictive models for reaction conditions. Compared to the extensive research on 

molecular representation learning, the development of reaction encoding methods is 

relatively less explored [91]. Most of the existing methods were originally designed for 

predicting reaction properties (such as activation energy, reaction enthalpy, etc.) or 

classifying reactions, but they can be potentially adapted for reaction condition 

prediction by modifying the output layer of the model. The common methods can be 
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categorized into three types: (1) descriptor-based, (2) graph-based, and (3) text-based 

featurization, as shown in Figure 2. Descriptor-based methods are often used for 

datasets with limited samples, since they incorporate chemistry- or physics-informed 

features that can enhance the model's ability to fit the data. Graph-based and text-

based methods rely on deep-learning architectures that can learn latent patterns from 

the reactants and products, but they require sufficient data to train both the feature 

extractor and the neural network. These methods also reduce the need for manual 

feature selection by chemists. 

 

 

Figure 2: A comparison of three types of reaction embedding methods: (A) descriptor-

based, which use predefined features from reactants and products, (B) graph-based, 

which use neural networks to learn features from molecular graphs, and (C) text-based, 
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which use natural language processing to learn features from reaction SMILES. These 

methods vary in their computational efficiency, data requirements, and feature 

interpretability. 

 

3.1 Descriptor-based representation 

Descriptor-based methods are often used for datasets with limited samples, since they 

incorporate features that are informed by chemistry or physics and that can enhance 

the model's ability to fit the data [92]. Molecular-level descriptors of reactants and 

products are concatenated to obtain reaction-level descriptors, which can be computed 

by various methods [93]. These include substructure keys-based [94-98], circular [99-

101], physicochemical [102-105] and quantum chemistry (QM) features [106-110]. The 

choice of descriptors depends on the size and scope of the dataset. For large-scale 

global models, descriptors with longer feature lengths and higher computational 

efficiency, such as the first four methods, are preferred. However, for small-scale local 

models, QM features can offer more compact and accurate information, but they 

require sampling and optimizing the 3D conformers of molecules using density 

functional theory (DFT) calculations, which are computationally expensive and time-

consuming [74]. To overcome this challenge, some studies have proposed to pre-

generate QM properties datasets and train machine learning models to serve as fast 

feature generators for new molecules [16]. However, this approach requires careful 

validation of the training data coverage and the extrapolation ability of the surrogate 

models. 

Reaction-level descriptors based on DFT calculations of the transition state (TS) 

structures of chemical reactions can provide valuable insights for predicting rate 

constants [111-115], regioselectivity and site-selectivity [16, 17, 116-118]. However, 
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this approach is also computationally demanding and requires a good initial guess of 

the TS structure. Moreover, it may face difficulties in simulating some classes of 

reactions and large-size molecules [119], and the solvent effects may complicate the 

results [120]. Therefore, reaction-level DFT-based descriptors are not widely used for 

reaction featurization. A more popular alternative is the differential reaction fingerprint 

(DRFP) developed by Probst et al. [121], which converts a reaction SMILES sequence 

into a binary fingerprint by comparing the symmetric difference of two sets of circular 

molecular substructures. The DRFP fingerprint can be seen as the reaction version of 

the ECFP molecular fingerprint [101]. Due to its fast computation and compatibility with 

conventional ML models, it has been widely used or benchmarked in various reaction-

related tasks [122-126], and has become one of the mainstream reaction-level 

featurization techniques. 

 

3.2 Graph-based representation 

Graph neural networks (GNNs) have been widely applied to various chemical tasks, 

such as predicting molecular properties [127-131], reaction product prediction [132-

134], and inverse materials design [135-137]. Chemical molecules can be naturally 

represented as undirected graphs, where nodes and edges encode atomic and bond 

information, respectively. GNNs update and aggregate the hidden features of nodes 

and edges through recursive message passing and a readout function, resulting in a 

molecular representation. There are many variants of GNN models [138-141], most of 

which are based on the message passing neural network (MPNN) framework proposed 

by Gilmer et al. [142]. 

Encoding reactions as graph representations is more challenging than 

encoding molecular structures, as reactions involve multiple disconnected molecular 
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graphs and complex interactions. Graph-based reaction representations can be 

divided into two categories: AAM-exempted and AAM-required methods. Atom-to-atom 

mapping (AAM) is a process that establishes the correspondence between atoms 

before and after a reaction, reflecting the reaction mechanism. 

AAM-exempted methods [143-148] apply graph convolutions to each reactant 

and product molecule separately, and then use a pooling function or attention layers 

to obtain a reaction fingerprint. These methods are scalable and compatible with 

conventional GNN models, requiring minimal modifications. AAM-required methods 

[149-151] assign labels to each atom and adapt the algorithms accordingly. Grambow 

et al. [149] and Yarish et al. [151] both subtract the hidden node vectors of the reactants 

from those of the products, and use the resulting differential atomic fingerprints to 

generate reaction representations. Heid et al. [150] developed a more general AAM-

required reaction encoding method that operates graph convolutions on the condensed 

graph of reaction (CGR) [152, 153]. The CGR is the superposition of reactant and 

product graphs, where nodes and edges can incorporate features from both sides of 

the reaction, as shown in Figure 2B. This method can also handle imbalanced 

reactions by imputing or zeroing the missing nodes. 

The AAM procedure can provide valuable chemical insights into graph-based 

reaction encoding, as it reveals how the reaction center atoms influence the bond 

breaking and formation. However, obtaining accurate AAM for reactions can be difficult 

and depends on the complexity of the reaction types, as shown by Lin et al. [154]. 

Moreover, it is unclear whether AAM significantly improves the accuracy of reaction 

modeling. The AAM-required methods are usually tested on specific reaction types, 

where the reaction transformations and AAM are clear and correct. However, most 

large-scale reaction datasets do not have AAM information, and thus require the use 

of high-accuracy and automated AAM tools [82-85]. These tools may still introduce 
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errors and affect the prediction of new reactions. Therefore, although GNN models are 

popular and successful for tasks at the molecule level, their effectiveness in reaction-

level applications can still be enhanced. 

 

3.3 Text-based representation 

Recent years have witnessed the emergence of large language models (LLMs) [155-

157], such as ChatGPT, that learn the statistical and semantic patterns of language 

through extensive self-supervised training. These models have broad applicability and 

robust learning capabilities, and thus have attracted the interest of the chemistry 

domain to tackle relevant problems. One common way to represent chemical 

molecular structures in chemical databases is the Simplified Molecular-Input Line-

Entry System (SMILES) notation [158], which is a text-based expression with specific 

grammar rules and can be tokenized as input for language models. 

Many studies have adopted the BERT model architecture and the masked 

language modelling (MLM) method to pretrain on millions of molecular SMILES and 

finetune on small-sample molecular property datasets [159-162]. For reaction-level 

prediction tasks, the textual input for pretraining can be changed to reaction SMILES, 

as shown in Figure 2C. Schwaller et al. [163] first demonstrated this idea and showed 

that pretraining in this way significantly improved reaction classification accuracy and 

could automatically generate AAM for reactants and products by analyzing the 

attention weights of each token in the reaction sequence. 

The key to effective language modelling and its powerful reasoning abilities is 

the size of the pretraining data [164]. However, unlike molecular SMILES, which can 

be generated from existing databases (e.g., GDB-13 [165]) or by methods that produce 

reasonable structures [166], reaction SMILES data are often limited by the availability 
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of experimental databases. Therefore, various data augmentation methods [167-169] 

have been proposed to increase the data size. These methods mainly involve changing 

the order of SMILES without affecting their molecular structures or modifying specific 

functional groups in coupling reactions with chemistry-informed reaction templates. 

Despite the need for large amounts of data to train base models, the main advantage 

of text-based reaction representation is that it can be easily applied to different 

downstream tasks by finetuning on small-sample data [170, 171], without the need for 

tedious chemistry-informed feature generation and selection beforehand. 

4. Reaction condition design 

In this section, we discuss the practical applications of different methods for featurizing 

reactions in predicting and optimizing reaction conditions. The design of reaction 

conditions depends on the availability of data and the specific application scenario. For 

example, if the aim is to predict the reaction conditions for each step in a synthesis 

pathway as part of an ML-aided CASP system, global models that can handle diverse 

reactions need to be built using large-scale reaction datasets. These models can then 

provide a range of general reaction conditions for chemists to select from. Alternatively, 

if the aim is to optimize the yield and selectivity of a specific reaction, more fine-grained 

variations of reaction conditions need to be explored. For this purpose, local models 

that are tailored for specific reaction families need to be trained to provide more 

focused guidance. 

 

4.1 Global models for direct reaction condition predictions 

A common approach for chemists to synthesize novel reactions is to reference similar 

chemical reactions using reaction similarity search [172, 173] and adopt the reaction 
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conditions used in the literature. Machine learning can leverage the large-scale 

reaction databases to build global models that can predict reaction conditions for 

diverse and novel chemical reactions, providing initial guidance for chemists. 

Most of the existing research on global reaction condition models involves 

predicting the reagents used in the dataset as labels, along with the reaction 

temperatures, using multi-class or multi-label classification methods [174]. This is a 

convenient way to represent the prediction targets, as some additives, such as 

molecular sieves and zeolites, cannot be represented by SMILES notation. However, 

the labels in the datasets may have some inconsistencies, such as different names for 

the same chemical, which may affect the learning and performance of the models. 

Therefore, a preprocessing step to standardize the labels and reduce redundancy is 

also essential. 

Gao et al. [18] developed a large-scale model for predicting reaction conditions, 

using a deep learning approach trained on the Reaxys database. Their model could 

sequentially predict the catalysts, solvents, and reagents for a given reaction. This 

approach demonstrated the model's ability to handle complex and diverse datasets. 

However, the model assumed that each reaction had a single optimal set of conditions, 

ignoring the fact that some reactions might have multiple viable alternatives. This 

limitation reduced the diversity of options available for experimentalists. Subsequent 

studies have attempted to overcome this challenge by proposing different solutions. 

Kwon et al. [143] used a variational autoencoder (VAE) architecture to sample different 

reaction conditions, while Chen et al. [38] designed a two-stage recommendation 

system that predicted and ranked various reaction conditions based on the reaction 

yields. These methods enabled the prediction of a range of reaction conditions, 

allowing experimentalists to choose their preferred ones. However, building such a 

model is difficult, as most reaction databases, such as Reaxys, only record the highest-
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yield reaction condition from a single publication. Therefore, the data might lack 

diversity in reaction conditions for a given reaction, unless the same reaction appears 

in multiple publications with different conditions. 

A variety of ML approaches have been applied to the prediction of reaction 

conditions, including descriptor-, graph-, and text-based methods, as summarized in 

Table 3. However, these studies use different reaction datasets to evaluate their 

models, making it difficult to compare their accuracy objectively. A more standardized 

and open-source way of storing and accessing chemical reaction data, such as the 

ORD [35, 175] or the curated USPTO dataset [34], would facilitate the benchmarking 

of models in predicting reaction conditions. Moreover, ML models may not always learn 

to predict meaningful reaction conditions; they may simply memorize the most 

frequently reported solvents and reagents in the literature. Beker et al. [176] showed 

that some machine learning models could not outperform simple statistical analyses 

based on the popularity of reported conditions in the literature, using the 

Suzuki−Miyaura coupling as an example. Therefore, to assess the predictive 

capabilities of models more rigorously, popularity-based baselines should be used as 

a reference. 

The choice of reaction conditions is crucial for CASP applications, as it affects 

the cost, yield, and environmental impact of the synthetic route [4, 177]. Moreover, 

predicting reaction conditions can help optimize the synthetic route [178] by providing 

the necessary information for each synthetic step. Coley et al. [12] integrated ASKCOS 

[179], an automated CASP software, with the self-driving lab [180] and demonstrated 

the synthesis of 15 small molecules. Guo et al. [181] used a synthesis strategy that 

combines Monte Carlo Tree Search (MCTS) with reinforcement learning to model the 

retrosynthesis game, aiming to identify high-value synthetic pathways. Recently, 

Koscher et al. [21] have shown the simultaneous design and synthesis of dye 
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molecules through design-make-test-analyze (DMTA) cycles [182]. Given the limited 

experimental throughput, it is important to prioritize the molecular properties that are 

predicted to be superior, along with their synthesis costs, during the chemical 

experiments. The reaction condition prediction model plays a vital role in this context; 

it filters out inaccessible and incompatible conditions, such as high-temperature 

reactions, high-reactive gases, insoluble solid reagents, and environmentally 

unfriendly reagents. 

The examples above illustrate the usefulness of global reaction condition 

prediction models, which use historical literature on similar chemical contexts to 

suggest suitable reaction conditions for synthetic steps. However, the predictive output 

often lacks fine-grained details such as reaction time, pressure, and pH values. These 

details depend on the problem formulation specific to each individual synthetic step. 

To further improve yields, it is necessary to perform local reaction optimization, which 

is discussed below. 

 

Table 3: Representative works on predicting globally reaction conditions. The 

references are sorted chronologically. 

Reference Data Model type Description 

[18] ~10 million 

general reactions 

from Reaxys 

ECFP + DNN The model has the most 

access to proprietary 

training data.  

[183] 4 types of totally 

~191k reactions 

from Reaxys 

Descriptors + GBM 

and GCNs 

The output labels were 

systematically categorized 

with chemical insights.  
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[45] ~693k reactions 

from Pistachio 

Nearest-neighbor, 

Transformer and 

BART  

The work demonstrates the 

first utilization of NLP 

models to generate the 

step-by-step experimental 

procedures. 

[184] ~6k Buchwald-

Hartwig 

coupling 

reactions from in-

house lab 

notebooks 

ECFP + DNN It showed that multi-label 

predictions are more 

advantageous than single-

label predictions. 

[143] 4 types of totally 

~191k reactions 

from Reaxys 

GNN + VAE The models provide 

multiple reaction conditions 

by repeatedly sampling 

from the VAE space. 

[185] 480k USPTO-

MIT dataset 

[132] 

Reaction SMILES + 

Transformer 

This work directly predicts 

SMILES representation of 

the combination of reaction 

conditions. 

[34] Curated USPTO-

Condition 

dataset with 

~680k reactions 

and Reaxys-

TotalSyn-

Reaction SMILES + 

Transformer 

This work demonstrates 

the benefits of MLM 

pretraining for the 

downstream reaction 

condition prediction task. 
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Condition 

dataset with 

~180k reactions 

[38] 10 types of 

totally ~74k 

reactions from 

Reaxys 

ECFP + DNN It models the reaction 

condition prediction 

problem as 

recommendation system 

and artificially generate 

fake reaction conditions for 

data augmentation.  

[186] Curated USPTO-

Condition 

dataset with 

~680k reactions 

SMILES-to-text 

retriever and text-

augmented predictor 

The two-stage model first 

uses multimodal retrieval 

to obtain related chemistry 

literature and then 

combines it with reaction 

input to predict reaction 

conditions. 

 

4.2 Local reaction optimization 

ML-guided local reaction optimization, or self-optimization, is an automated and 

generalizable approach that can accelerate the discovery of optimal reaction 

conditions, as illustrated in Figure 3. The first step is problem formulation, which 

involves defining the reaction parameters to be optimized and the target objectives, 

such as yield and selectivity. The reaction parameters include categorical variables, 

such as catalysts, solvents, and acid-base salts, and continuous variables, such as 
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temperature, pressure, substrate concentration, and residence time. Regression 

prediction models are then built for these reaction parameters and target objectives by 

collecting experimental data and conducting statistical analysis. 

Many reaction optimization platforms have been developed [187-190], which 

integrate software optimization algorithms with hardware automation for experiments, 

enabling large-scale experimentation and data collection. Among these, Bayesian 

optimization (BO) [191] is the most classic and widely used algorithm, which leverages 

kernel density estimators to efficiently explore parameter space. This method updates 

prior probability distributions with new experimental results and optimizes the reaction 

conditions by focusing on regions of the parameter space predicted to improve 

objectives. The power of Bayesian optimization lies in its ability to balance exploration 

and exploitation, making it highly effective for complex, multi-dimensional optimization 

tasks in chemical processes. BO has also demonstrated robust performance in many 

benchmark tasks [192-194], and numerous chemical reaction optimization packages 

have been developed to support this algorithm [195-199]. 

A typical example is the work by Shields et al. [74], who used different 

featurization strategies, such as DFT [106], cheminformatic [105], and binary one-hot-

encoded, in conjunction with the BO algorithm to optimize reaction conditions. Their 

experimental results showed that DFT features could train probabilistic surrogate 

models more effectively and that the optimization efficiency was superior to manual 

adjustments made by professional chemists. They also applied this approach to the 

Mitsunobu reaction and deoxyfluorination reaction, rapidly identifying medium to high-

yield results from approximately 100,000 experimental conditions using fewer than 100 

experiments. 

Moving from individual synthetic steps to CASP, Nambiar et al. [200] 

investigated the impact of integrating a global reaction condition prediction model with 
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local reaction optimization on enhancing the overall chemical synthesis pathway. They 

demonstrated the predictive pathway for Sonidegib synthesis, but it still required 

chemical insights to verify the compatibility of the solvents predicted by the global 

model with the reactants. Moreover, in a multistep synthesis route, the 

interdependencies between different reaction sequences, such as additional 

separation and purification steps, could reduce the overall yield [201]. This indicates 

that the suboptimal combination of each reaction does not necessarily represent the 

global optimum for multistep synthesis [202-204]. In contrast, telescoped flow 

sequences [205-207] or one-pot batch synthesis [208] emphasize the use of 

chemically compatible reagents and solvents in each reaction step to minimize 

intermediate purification steps. Volk et al. [209] developed AlphaFlow, which utilizes 

reinforcement learning as an optimization algorithm for the shell growth of core-shell 

semiconductor nanoparticles. This involves various unit operations such as phase 

separation, washing, and continuous in-situ spectral monitoring. Although the process 

conditions for this reaction system do not have as extensive a literature base for 

training data, this study was still able to identify better solutions than conventional 

designs through reinforcement learning in multistep processes. 

Besides maximizing the reaction yield for a given reaction with given 

substrates, another goal of reaction optimization is to discover general reaction 

conditions that are applicable to various substrates within the same reaction type [210-

214]. For instance, the generality of chiral catalysts for asymmetric or enantioselective 

catalysis has been a longstanding interest in synthetic chemistry [215]. Angello et al. 

[65] applied uncertainty-minimizing ML and automated robotic experimentation to 

accelerate the exploration of general reaction conditions for heteroaryl Suzuki-Miyaura 

cross-coupling. They achieved an average yield that was twice as high as that of 

previous human-guided experiments. Recently, Wang et al. [77] formulated the 
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optimization of general reaction conditions as a multi-armed bandit problem, where 

each set of reaction conditions is a slot machine, and each experiment is a round of 

playing on one of these machines. The challenge is to find the slot machine with the 

highest win rate using a limited number of rounds. For chemical experiments, this 

entails a strategic balance between exploring new reaction conditions (or 'slot 

machines') and exploiting known conditions that deliver high yields. Therefore, they 

proposed a more efficient sampling strategy based on reinforcement learning to 

dynamically adjust the selection process, thereby optimizing the exploration-

exploitation trade-off. 

The preceding examples demonstrate how the combination of HTE chemistry 

tools and optimization algorithms has significantly advanced the field of reaction 

optimization. However, this protocol also has some limitations, especially regarding the 

suitability of the chemical system under investigation. First, in terms of hardware 

implementation, setting up an HTE platform with robotic technologies entails high 

financial costs and specialized knowledge for installation, which may not be accessible 

for smaller-scale or less-funded research entities [216]. Moreover, to enable 

experimentation with various reaction conditions, a large chemical storage capacity is 

necessary. Otherwise, the scope of research would be confined to only a few types of 

chemical reactions [21]. Additionally, to ensure experimental safety, chemists must 

rigorously verify the compatibility of each solvent and reagent combination used in 

reactions and eliminate any potential hazards [217]. Second, in terms of algorithmic 

approaches, the widely used BO requires initial data to build a probabilistic surrogate 

model. Although the data might be sourced from related literature, caution is advised 

as experimental apparatus from different sources could introduce systematic errors in 

reported yields [42]. Furthermore, BO cannot generalize well from past reactions to 

unseen reaction transformations, which inherently requires gathering new relevant 
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data for new chemical reactions [218]. Regarding general reaction conditions, the 

typically limited experimental budgets in laboratories restrict the ability to explore a 

diverse range of reaction conditions [77]. Thus, initial filtering by chemists, which 

removes known impractical conditions, is essential. Despite these existing challenges, 

reaction optimization continues to play a vital role in both academia and industry in the 

age of big data [23]. 

 

 

Figure 3: A schematic diagram of how ML algorithms can be combined with HTE 

platforms to optimize reaction conditions for CASP.  

5. Outlook and perspectives 

In conclusion, this review paper has demonstrated the importance of reaction 

conditions in CASP and the potential of ML to assist in their design. We have discussed 

the current state of the art in data collection, data preprocessing, model development, 

global prediction, and local optimization for reaction condition design using ML. We 

have also identified some of the challenges and limitations that need to be addressed 

in future research, such as the quality and availability of reaction datasets and the cost 

and accessibility of automated reaction optimization tools. We hope that this review 
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paper will inspire researchers to adopt ML approaches for reaction condition design 

and to collaborate across disciplines of organic synthesis, process engineering, and 

ML algorithms. This will enable the development of more efficient, sustainable, and 

innovative synthetic pathways for CASP. 
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