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ABSTRACT: The selective functionalization of unactivated C(sp3)–H bonds remains an ongoing challenge 
in synthetic organic chemistry. In this context, biocatalysis provides an attractive strategy to perform such 
chemistry under mild reaction conditions. We now report the discovery of K5H, the first enzyme that 
catalyzes the one-step conversion of free L-lysine into enantiopure (2S, 5R)-5-hydroxylysine (5-Hyl), 
producing a β-amino alcohol motif on the lysine side-chain. As chiral β-amino alcohols are versatile 
synthetic motifs found in natural products, pharmaceuticals, ligands, and other complex molecules, we 
demonstrate that this noncanonical amino acid can be incorporated into several pharmaceutically-relevant 
peptides in place of lysine through a tandem one-pot biocatalytic cascade using in vitro 
transcription/translation. Indeed, we show that the introduction of a single hydroxyl group adjacent to the 
ε-amine on lysine serves as a selective handle for downstream bioorthogonal chemistry such as 
heterocyclization, ligation to various payloads, and formation of branched peptides. Taken together, the 
discovery and characterization of K5H provides a modular genetically-encoded platform to tune the 
structure and properties of diverse bioactive peptides via biocatalytic transformations of unactivated 
C(sp3)–H bonds.   
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MAIN TEXT 
The most common structural component of organic molecules is the C(sp3)–H bond, yet the relatively 

inert nature of these bonds and the abundance of similarly reactive sites renders regiocontrolled and 
selective C–H functionalization challenging.1 Enzymes have evolved to exhibit unparalleled selectivity and 
activity under mild conditions, making them powerful C–H functionalization catalysts that can 
accommodate substrates with high functional group density.2 Amino acids provide a particularly interesting 
substrate class due to the broad applications of synthetic and biosynthetic noncanonical amino acids 
(ncAAs) that can serve as chiral building blocks, pharmacophores, ligands, catalysts, spectroscopic probes, 
and tools for chemical biology (Figure 1A).3 

While a number of different transformations are possible on amino acids, especially at more activated 
or sp2-hybridized sites, we are specifically interested in enzymes that can introduce synthetic handles onto 
unreactive C(sp3) hydrocarbon side-chains.4 Towards this effort, we recently reported the discovery of the 
BesD family of radical halogenases, which selectively chlorinate L-lysine, L-ornithine, and various aliphatic 
L-amino acids using a nonheme FeII/a-ketoglutarate (Fe/aKG) active site and molecular oxygen.5 
Interestingly, enzymes of the Fe/aKG superfamily appear to be an evolutionarily privileged class for the 
modification of amino acid C(sp3)–H bonds, carrying out a range of reactions including hydroxylation, 
halogenation, desaturation, epimerization, and epoxidation.6 However, the sequence conservation between 
individual families is quite low, which can make new sequences and reactions difficult to identify. 

We thus set out to explore the BesD family with the goal of discovering new biocatalytic 
transformations to produce useful ncAAs. Using a BLAST search of the UniProt protein sequence database, 
we identified S3ZC11 as a promising sequence with 30% sequence identity to BesD and 32% sequence 
identity to Hydrox, a previously characterized BesD homolog with L-lysine C4 hydroxylation activity 
(Figure S1).7 Sequence alignment to other BesD family members and an AlphaFold 2 model show that 
S3ZC11 contains the distinguishing facial triad motif for non-halogenase activity while retaining residues 
involved in amino acid recognition, in particular R80 and H139, suggesting that it would accept an amino 
acid substrate but would carry out a different reaction (Figure 1B, Figure S1).  

To determine the activity of this enzyme, S3ZC11 was cloned for heterologous expression in 
Escherichia coli and purified by affinity chromatography (Table S1, Figure S2). The purified enzyme was 
added to a reaction mixture containing the 20 proteinogenic amino acids, and the reaction was analyzed by 
LC-MS (Figure S3). Gratifyingly, we only observed depletion of L-lysine and the formation of a product 
consistent with lysine hydroxylation. Isolation of the product followed by NMR analysis and comparison 
to an enantiopure chemical standard revealed that S3ZC11 selectively produces (2S, 5R)-5-hydroxylysine 
(5-Hyl; 1) (Figure 1C, Figure S4).8 Steady state kinetic characterization showed that S3ZC11 catalyzes 
this reaction with a kcat of 25 ± 1 min–1, KM of 1.3 ± 0.2 mM, and kcat/KM of 20 ± 3 mM–1min–1 (Figure S5), 
which are within the range of values observed for similar enzymes reacting with their native substrates.5b 
On the basis of this observed substrate- and site-selectivity, we henceforth refer to this enzyme as K5H.  

Although several lysine hydroxylases have been reported to modify L-lysine at C3 and C4, K5H is 
unique in its ability to achieve the site- and stereoselective hydroxylation of free L-lysine at the C5 position.9 
Notably, the C5 selectivity of K5H for yields a β-amino alcohol on the side-chain, which is an important 
substructure of natural products, pharmaceuticals, agrochemicals, and as chiral ligands as well as a useful 
handle for downstream reactions.10  Furthermore, lysine 5-hydroxylation has been identified as a prominent 
post-translational modification (PTM) most commonly found in collagen and collagen-like proteins.11 
Despite these examples of lysine hydroxylases in biology, K5H has low sequence identity to all previously 
identified lysine hydroxylases protein hydroxylases, with the exception of Hydrox (Figure S1). Given its 
biological significance, several multi-step syntheses of (2S, 5R)-5-hydroxylysine have been reported since 
the first racemic synthesis in 1950,12 involving chiral (i) HPLC resolution, (ii) resolving agents, (iii) 
auxiliaries, (iv) catalysis, and (v) substrate-directed approaches to obtain enantiopure material.8, 13 In 
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comparison, K5H provides a one-step synthesis of the naturally-occurring diasteromer of 5-Hyl directly 
from L-lysine without protecting groups. Indeed, incubation of L-lysine with K5H (2.5 mol%) in pH 7.5 
HEPES buffer for 24 h at room temperature resulted in essentially quantitative conversion (>99%) to a 
single diastereomer of 5-Hyl as determined by NMR (Figure 2C; Figure S4).  

We next sought to utilize K5H to access 5-Hyl for the production of bioactive peptide analogues. 
Peptide and protein biologics constitute a rapidly growing class of molecules used to treat a range of human 
health conditions.14 As such, there is great interest in developing methods to access new amino acids,3a, 3d  
modify peptide architectures (e.g., macrocyclization or stapling),15 and append valuable payloads via 
bioconjugation strategies.16 Although ncAAs can be incorporated through solid- or solution-phase peptide 
synthesis, ribosomal synthesis offers an advantage in that the products are genetically encoded to allow for 
efficient engineering or evolution of large compound libraries. Our approach was to use cell-free gene 
expression17 to test whether 5-Hyl could be accommodated by the translational machinery. To this end, K5H 
was used to generate 1 in situ from L-Lys, which was then directly transferred into in vitro 
transcription/translation (IVTT) using PURExpress with the addition of the remaining 19 canonical amino 
acids and a plasmid encoding for a linear analogue of the peptide hormone oxytocin (Figure 2A).18 5-Hyl 
was successfully incorporated into the lysine site of the oxytocin analogue sequence as shown by high-
resolution LC-MS and MS/MS fragmentation (Figure 2C; Figure S6). This strategy could be generalized 
to seven additional peptides with variable lengths, amino acid compositions, secondary structures, and 
bioactivities, providing high levels (89% to essentially quantitative) of 5-Hyl incorporation (Table 1; 
Figure S7). Notably, in instances when multiple lysines were present in the sequence, each residue was 
replaced with 5-Hyl (Table 1, entries 7 and 8). These results demonstrate that this platform can be used to 
produce a wide range of other valuable lysine-containing peptides or proteins, such as cell-penetrating 
peptides for drug delivery, antibody-drug conjugates, and biomaterials.19  

With several 5-Hyl-containing peptides in hand, we turned our attention to characterizing the 
compatibility of unprotected 5-Hyl peptides with downstream chemical reactions (Figure 3). First, we 
demonstrated that the formylated-methionine that is introduced via IVTT through the start codon can be 
easily removed post-translationally upon treatment with cyanogen bromide in formic acid, exemplified by 
converting 2b into 3 (Figure S8).20 Furthermore, 5-Hyl can also still engage in typical reactivity through 
the e-amine.21 Incubation of the 5-Hyl oxytocin analogue 2b with biotin N-hydroxysuccinimide ester in 
sodium phosphate buffer pH 7.5 resulted in full consumption of the starting material and production of the 
corresponding biotinylated peptide 4 (Figure 3; Figure S9).  

We then set out to examine applications of the unique β-amino alcohol moiety of these 5-Hyl-containing 
peptides. The 5-hydroxyl group of 5-Hyl provides a second nucleophile for 5-membered ring formation 
that can generate new heterocycles or assist in downstream bioorthogonal chemistry. Inspired by a method 
developed by Raj and co-workers to cleave peptide backbones at serine and threonine residues,28 2b was 
treated with N,N’-disuccinimidyl carbonate (DSC), N,N’-diisopropylethylamine (DIEA), and 4-
dimethylaminopyridine (DMAP) in H2O/DMF, resulting in full consumption of starting material and 
formation of a oxazolidinone heterocycle (5), a common motifs in pharmaceuticals and chiral auxiliaries 
(Figure 3; Figure S10).29 To our knowledge, oxazolidinone formation of this nature on the side-chain of a 
peptide has not been previously reported. In addition to being key structural motifs in pharmaceuticals and 
chiral auxiliaries, oxazolidinones can also serve as precursors to oxazoline or oxazole rings, other 
pharmaceutically-relevant heterocycles,30 via additional dehydration. Furthermore, the oxazolidinone can 
serve as a protecting group for the reactive e-amine of Hyl, or provide a handle for further derivatizations 
through pH-controlled N-functionalizations.31  

The hydroxyl group of 1 also serves as a minimal handle for chemical ligation, promoting N-acylation 
of the e-amine through a neighboring group effect, differentiating 5-Hyl from Lys sidechains. Similarly, N-
terminal serine/threonines contain a β-amino alcohol that has been used for the ligation of peptides.32 These 
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N-termini preferentially react with an O-functionalized salicylaldehyde to form an imine, which then 
cyclizes upon attack from the vicinal hydroxyl group (7, Figure 4A). Spontaneous O-to-N acyl transfer 
occurs to afford an N-acylated N,O-benzylidene acetal (8). This intermediate can then be cleaved upon 
treatment with acid to reveal a backbone amide. If 5-Hyl were to display similar reactivity, it would allow 
us to site-selectively ligate various functional payloads at 5-Hyl positions. To test this hypothesis, we 
reacted 2b with O-benzoyl salicylaldehyde 6a and observed near quantitative (94%) consumption of the 
starting material and formation of the N,O-benzylidene acetal intermediate 8a. Subsequent treatment of the 
reaction mixture with TFA resulted in quantitative conversion to the desired N-functionalized peptide 9a 
(Figure 4B; Figure S11). Notably, no reaction occurs when using the analogous lysine-containing peptide, 
demonstrating the selectivity of this reaction for 5-Hyl residues (Figure S11).  

This ligation reaction can be applied to the transfer of functional payloads, which are accessed in a one-
step coupling reaction with salicylaldehyde to form the ester. Here, we show that amino acid-containing 
substrates can be easily prepared to yield branched peptides bearing Fmoc-protected Phe (9b) or Fmoc-
protected p-benzoyl-L-phenylalanine (Bpa; 9c), a photocrosslinking ncAA (Figure 4A; Figure S11).33 This 
method could be extended to ligate peptides or proteins bearing an O-salicylaldehyde ester at a side-chain 
or on the C-terminus. We anticipate that additional small-molecules, amino acids (canonical or 
noncanonical), peptides, proteins, antibodies, probes, dyes,34 or other payloads of interest could be 
bioconjugated selectively to 5-Hyl in this manner.  

Taken together, we have shown that the bioinformatics-guided discovery of K5H — the first free L-
lysine 5-hydroxylase — enables the efficient synthesis of diverse, value-added products under mild and 
sustainable biocatalytic conditions. This enables direct access to an enantiopure β-amino alcohol-containing 
ncAA in one-step without the need for protecting groups or chiral separation. In addition to its use as a 
chiral ligand, auxiliary, or building block,35 5-Hyl can be incorporated directly into peptides by IVTT, 
providing a modular, genetically-encoded method to produce peptides or proteins containing the 
synthetically versatile chiral β-amino alcohol motif as a chemical handle for downstream reactions.  

As noted, peptides comprise a unique class of pharmaceuticals, with more than 80 peptide drugs 
approved to treat a range of ailments including diabetes, cancer, HIV, and bacterial infections.14 Though 
there are over 7,000 naturally occurring peptides that have been identified, these compounds are not often 
suitable as therapeutics due to their poor chemical and physical stability and low membrane permeability. 
However, the introduction of ncAAs has proven beneficial for tuning the three-dimension structure, 
functionality, and properties of drug scaffolds.3a, 3e, 3f, 3j We show that the 5-Hyl residue provides unique 
side-chain reactivity via the β-amino alcohol motif, where a simple hydroxyl group introduces differential 
reactivity as compared to native Lys residues. This ncAA therefore enables the selective formation of 
various heterocycles or ligation of different chemical functionalities, providing many opportunities to 
further tune the structure and properties of bioactive peptides through bioconjugation.  
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Figure 1. Noncanonical amino acids as valuable chiral building blocks, featuring 5-hydroxylysine produced 
from the newly discovered and characterized Fe/aKG-dependent enzyme, K5H. (A) Examples of naturally-
produced and synthetic noncanonical amino acids. (B) Overlaid crystal structure of Hydrox (gray, PDB 
7JSD) and AlphaFold 2 model of K5H (blue) reveals high overall structural similarity. Hydrox residues 
R80 and H139 involved in recognizing the substrate a-carboxylate are conserved in K5H, whereas a water 
in Hydrox that hydrogen bonds the a-amine may be substituted by residue S216 in K5H. (C) HCCH COSY 
(700 MHz, D2O) of the purified product obtained from incubating K5H with 13C6, 15N2-L-lysine·2HCl.  
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Figure 2. Biocatalytic cascade enables the synthesis of 5-Hyl-containing peptide 2b. (A) Workflow for in 
situ biocatalytic production of 5-Hyl followed by in vitro transcription/translation (IVTT) to access an 
analogue of the peptide hormone oxytocin. (B) LC-MS analysis of Lys (black, m/z = 147.1128) and 5-Hyl 
(1; blue, m/z = 163.1077) produced by K5H. The reaction was allowed to proceed for 24 h at room 
temperature before being filtered through a 10-kDa MWCO spin column to remove the protein for LC-MS 
analysis. The average of three technical replicates is shown. (C) Extracted ion chromatograms of peptides 
obtained from IVTT including (solid line) or excluding (dashed line) K5H from the initial biocatalysis step 
to produce Lys- (2a; black, m/z = 1162.5926) or 5-Hyl-containing peptide (2b; blue, m/z = 1178.5874). 
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Table 1. Biologically active peptides synthesized via biocatalytic cascade using K5H to produce 5-Hyl in 
situ followed by IVTT. All Lys residues (bold) were successfully replaced with 5-Hyl. 5-Hyl incorporation 
was calculated by dividing the extracted ion counts (EIC) for 5-Hyl-containing peptides by that of the total 
peptides (Lys- and 5-Hyl-peptides) produced when K5H is added to the reaction mixture prior to IVTT. 

 

Entry Sequencea Biological Activity 5-Hyl 
Incorporation (%) 

1 AYIQNKPLG Oxytocin analogue; 
hormone 97 

2b CRKRLDRNC Anticancer22 95 

3 GLKAGVIAV Anticancer23 93 

4b KCCYSL Anticancer22 97 

5c PLYENKPRRPYIL 
Neurotensin; 

neuropeptide24 89 

6c PAKSNGGSN Serum thymic 
factor; hormone25 86 

7 YGGFLRKYPK 
a-Neoendorphin; 

opioid26 >99 

8 SGLDKDYLKPDD Anticancer27 98 
 

a Peptides synthesized via IVTT begin with formylated methionine (fM). b Quenched with DTT (25 mM) 
to reduce cysteine disulfide bonds. c The native peptide sequence contains an N-terminal pyroglutamic acid 
residue; however, proline was used as a surrogate for IVTT. 
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Figure 3. Examples of downstream chemical functionalizations available to 5-Hyl-containing peptides 
obtained via IVTT. Reaction conditions: (a) CNBr, 88% formic acid, MeCN/H2O, rt, dark, 12 h. (b) Sodium 
phosphate buffer pH 7.5, 37°C, 2 h. (c) DSC, DMAP, DIEA, DMF, 37°C, 12 h. Percentages depicted 
indicate consumption of starting material as determined by LC-MS. See Supporting Information for 
additional reaction details. 
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Figure 4. Chemoselective chemical ligation of 5-Hyl-containing peptides. (A) Using the β-amino alcohol 
motif, O-salicylaldehyde esters 6 couple with 5-Hyl-peptide 2b, proceeding through an N,O-benzylidene 
acetal intermediates 7 and 8, which can be cleaved with acid to afford side-chain modified peptides 9. 
Percentages depicted indicate consumption of starting material as determined by LC-MS. (B) Extracted ion 
chromatograms of the unmodified peptide (2b, black), acetal intermediate (8a, gray), and benzoylated 
peptide (9a, blue) throughout the reaction. See Supporting Information for additional reaction details. 
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