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Introduction. Chemical transformations on 

surfaces are defined by the sequence of elementary 

reactions that determine the overall catalytic rate 

and selection of chemical products.[1,2,3] All 

elementary steps including adsorption, desorption, 

bond-breaking and bond-forming reactions 

together describe the complete decomposition and 

formation of molecules on the surface.[4] Molecules 

reacting through the entire mechanism can move 

forwards and backwards along parallel reaction 

pathways on multiple catalytic active sites.[5] 

Reaction networks also exhibit interconnectedness 

that create internal reaction loops (Figure 1a), such 

that molecules can react through a sequence of 

elementary steps to return to original chemical 

intermediates (e.g., A* to B* to C* to A*, where * 

indicates a surface species).[6,7] Reaction loops exist 

for many reactions important to energy applications 

including steam reforming of methane, water gas 

shift, and methanol synthesis, and these loops can 

contribute significantly to diminished catalytic 

rates or altered product selectivity.[8,9,10]  

The concept of a reaction loop was examined 

by Onsager in the ‘triangle reaction’ of 

homogeneous reactants shown here (Figure 1b) for 

an alternative application as a cyclic surface 

reaction of A*, B*, and C*.[11] Any surface species 

may react to form any of the others, with the 

forward direction (A* to B* with rate coefficient k1) 

defined as clockwise and the reverse reaction 

direction (A* to C* with rate coefficient k-3) defined 

as counterclockwise. By the principle of 

microscopic reversibility, each forward and reverse 

reaction occurs through the same transition state 

such that the forward and reverse rates are equal at 

equilibrium.[7,12,13] A detailed balance of the triangle 

reaction yields the Onsager reciprocal relationship: 

 

Abstract. Chemical transformations on catalyst surfaces occur through series and parallel reaction pathways. These 

complex networks and their behavior can be most simply evaluated through a three-species surface reaction loop 

(A* to B* to C* to A*) that is internal to the overall chemical reaction. Application of an oscillating dynamic 

catalyst to this reactive loop has been shown to exhibit one of three types of behavior: (1) a positive net flux of 

molecules about the loop in the clockwise direction, (2) a negative net flux of molecules about the loop in the 

counterclockwise direction, or (3) negligible flux of molecules about the loop at the limit cycle of reaction. Three-

species surface loops were simulated with microkinetic modeling to assess the reaction loop behavior resulting 

from a catalytic surface oscillating between two or more catalyst surface energy states. Selected input parameters 

for the simulations spanned 11-dimensional parameter space using 127,688 different parameter combinations. 

Their converged limit cycle solutions were analyzed for their loop turnover frequencies, the majority of which were 

found to be approximately zero. Classification and regression machine learning models were trained to predict the 

sign and magnitude of the loop turnover frequency and successfully performed above accessible baselines. Notably, 

the classification models exhibited a baseline weighted F1 score of 0.48, whereas trained models achieved weighted 

F1 scores of 0.91 and 0.96 when trained on the parameters used to define the simulations and derived rate constants, 

respectively. The trained models successfully predicted catalytic loop behavior, and interpretation of these models 

revealed all input parameters to be important for the prediction and performance of each model. 
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which demonstrates the dependent relationship of 

rate constants around the reaction loop. As the 

reaction proceeds to equilibrium, the surface 

coverages of A*, B*, and C* proceed towards their 

steady state value with equal forward and reverse 

rates and zero net flux around the loop.[14] 

A catalyst that can change with time to promote 

catalytic reactions away from equilibrium was first 

described by Jencks in 1969.[15] His theoretical 

enzyme could be forced into two states, E and E’, 

each exhibiting unique state conformations such 

that forced enzyme state-to-state changes could 

catalyze either bond-breaking or bond-forming 

reactions. The limitation of this concept was the 

challenge of focusing the energy input to elicit 

precise changes to the enzyme, resulting in a 

reaction that could promote reactions away from 

equilibrium without violating microscopic 

reversibility.[15,14,16] Enzymes naturally exhibit a 

range of conformational oscillations, but the 

mechanistic role of these oscillations attributed to 

catalysis is debated.[17] Instead, other non-

biological mechanisms have been developed to 

force catalysts between electronic and/or physical 

catalytic states[18] with precisely defined temporal 

transitions (i.e., programmable catalysis) including: 

periodic illumination of heterogeneous catalysts,[19] 

oscillating catalyst surface strain,[20] and oscillating 

surface charge.[21,22] These heterogeneous catalyst 

perturbation methods forcibly change the free 

energy of adsorbed molecules as well as their 

transition state barrier energies. 

The implication of forced perturbation of 

catalysts for catalytic loops is described in Figure 

1c. For the three-species catalytic loop of A* to B* 

to C* to A*, molecules adsorb to and desorb from 

the surface with varying binding energy between 

two catalyst states; state 1 (brown) is weak binding, 

while state 2 (green) is strong binding. The extent 

of binding energy change of each intermediate 

varies with different reaction parameters, catalyst 
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Figure 1. Circumfluence of Programmable Catalytic Loops. (a) Surface chemistries exist as a network of series 

and parallel reactions with multiple internal loops. (b) The smallest possible reaction loop consists of three surface 

species connected through three unique transition states. (c) Oscillation of the catalyst surface electronic state through 

two or more states can lead to a net flux of molecules in a reaction loop. Three general behaviors of a three-species 

surface reaction loop include a limit cycle oscillating between three species (d), an oscillation predominately between 

two species (e), and termination of the reaction as a single surface species (f).  
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composition and structure, and method of 

perturbation,[23] ultimately requiring four scaling 

parameters to describe the dynamics of each 

interconnected elementary reaction and transition 

state.[24] The difference in intermediate binding 

energy in each state is defined by a linear scaling 

with slope, γ, and offset, δ, while the linear scaling 

of the transition state between two intermediates is 

defined using a Brønsted-Evans-Polanyi 

relationship with offset, β, and slope, α, 

proportional to the enthalpy of the surface 

reaction.[25,23,26,27] With two parameters describing 

each elementary reaction of species i on the catalyst 

surface (αi, βi) and two parameters describing the 

relationship between species i* and species A* (δi-

A, γi-A), the energy of each transition state varies 

uniquely with changes in catalyst state. For 

example, in the depicted system of Figure 1c, the 

A*-to-B* transition state energy decreases 

significantly between catalyst state 1 and state 2; 

this also leads to the formation of an ‘energy 

ratchet’ that prohibits B* from reacting backwards 

to A* in catalyst state 1.[28,29,30] The result is a 

sequence of catalytic reactions that enable 

continuous flow of molecules in a loop of A* to B* 

to C* to A* as long as the catalyst continues to 

oscillate between states.[31,32]  

Microkinetic models of three-species loops on 

heterogeneous catalyst surfaces (e.g., metals) have 

described the net flux of reactions in loops.[32] With 

four chemistry parameters (α, β, γ, and δ) 

describing each of the three elementary reactions, 

there exist several triangle reaction behaviors on 

oscillating catalyst surfaces. As depicted in Figure 

1d, triangle reaction systems on programmable 

catalyst surfaces that exhibit a net flux around the 

reaction loop are described with a limit cycle in 

catalyst surface coverage. Independent of the initial 

surface coverage, all reactions of this type converge 

on a limit cycle that changes shape and extent of 

surface coverage with different amplitude and 

frequency of surface oscillation.[32] For certain 

combinations of chemistry parameters, the net flux 

of the dynamic system can be forced to proceed in 

either the clockwise or counterclockwise 

direction.[32] Alternatively, some triangle reactions 

on programmable catalyst surfaces merely oscillate 

between a surface coverage of two species (Figure 

1e) or terminate in a surface covered in a single 

chemical species (Figure 1f). These two distinct 

behaviors of productive and non-productive loops 

pose both challenges and opportunities regarding 

programmable catalysts. Net loop behavior can 

behave productively, as a catalytic surface pump, to 

promote cyclic reactions from reactants to products. 

However, net loops can also be undesirable if they 

exist amongst surface intermediates, causing the 

dynamic input energy to the catalyst to be 

consumed by the continuous flow of molecules 

about an intermediate loop.  

Predicting the non-equilibrium flow of 

reactions in loops has a basis in the behavior of 

molecular machines and Brownian ratchets, which 

use chemical ‘fuel’ to promote non-equilibrium 

steady-state net circular flux of molecules in loops 

or in a continuous sequence.[33,34,35]  Examples of 

these systems that operate at non-equilibrium 

steady state include catenane, a molecular structure 

of two interlocking rings for which one ring can 

rotate unidirectionally around the other using 

chemical energy,[36,37,38,39] and kinesin, a biological 

protein motor that moves unidirectionally along 

intracellular microtubules using chemical energy 

(ATP to ADP).[40,41] The unidirectional motion of 

these chemically driven systems, rings and protein 

walkers (and molecular pumps), is predictable via 

‘ratchet constants’, which compare the relative 

magnitude of forward and reverse kinetic 

rates.[34,42,43,44] However, chemically driven non-

equilibrium systems are different from chemical 

reaction systems such as depicted in Figure 1c, for 

which molecules are excited to a higher energy state 

via mechanisms such as strain, condensed charge, 

or light.[14,42,45,46] One device that could modulate 

surface energies in this manner is a catalytic 

condenser;[21,47,48]
 these devices enable pre-

determined modulation of catalytic surface energy 

with time via an input ‘program’ that defines the 

timescales and extent of binding energy shift of all 

surface species. As such, existing descriptions of 

stochastic chemically driven mechanisms cannot 

predict the non-equilibrium behavior of pre-

determined programmable energy-driven catalytic 

reaction loops. 

The type of oscillatory behavior exhibited by a 

loop triangle reaction on a programmable 

heterogeneous catalytic surface is determined by 

the four parameters that describe the chemistry of 

each elementary step (α, β, γ, and δ). Prediction of 

loop behavior in programmable triangle reactions 

remains a challenge due to the multiple possible 

catalytic behaviors (Figure 1d-1f), the significant 
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number of parameters that describe the chemistry, 

the complexity of programs that define the transient 

behavior of catalyst surface states, and the effects 

of reaction conditions (e.g., temperature).  

In this work, we examined the catalytic surface 

triangle reaction (A* to B* to C* to A*) under 

surface energy modulation using simulated surface 

chemistry with microkinetic models and machine 

learning. An 11-dimensional parameter space (each 

describing the chemistry of elementary steps) was 

uniformly sampled using 177,147 (311) 

microkinetic simulations for a specified catalyst 

program. Machine learning (ML) models were 

trained to predict the results of a simulation (loop 

behavior) given these 11 input parameters as 

features. These models were further interrogated 

using interpretable ML techniques to understand 

which parameters govern loop behavior (e.g., 

change the loop from unproductive to productive). 

These simulations and the ensuing data analysis 

help shed insight on the complex interplay between 

these parameters in governing the productivity of 

loop reactions on programmable catalytic surfaces. 

 

Methods. Kinetic Model. The three-species 

reaction loop was modeled using Julia 1.9.0. This 

three-species loop simulation was consistent with 

that of the previous work studying this general loop 

reaction.[32] The model accounts for only the surface 

conversion of A*, B*, and C*; the adsorption and 

desorption energies were assumed too large to 

contribute to the chemical system, such that the 

molecules remained only on the surface. The 

microkinetic model included a unimolecular 

surface reaction for three elementary steps. The 

binding energy of each species changed in 

accordance with the dynamic perturbations of the 

catalyst surface. The mathematical derivation of 

these perturbations and their effect on the binding 

energies of surface species through linear scaling 

relationships and Brønsted-Evans-Polanyi 

relationships is included in previous work and the 

Supplemental Information (SI).[32] 

With the reaction model, forward integration 

was performed using Rosenbrock23 in Julia 1.9.0. 

The maximum number of oscillations was set to 

5,000, which at the fixed frequency of 50 s-1 allows 

100 seconds for the systems to converge on a steady 

state solution. Periodic checks for steady state, 

implemented with callbacks, resulted in the 

termination of the simulation once the time-

averaged elementary rate over one oscillation for all 

three elementary reactions was equal. Following 

the termination of the solver, the loop turnover 

frequency (TOF), defined as the time-averaged 

elementary rate of net reaction about the loop over 

one period of oscillation, was computed. Using 

mass action kinetics, the data stored in the 

simulation for the surface coverage of each species 

as a function of time was converted into elementary 

reaction rates as a function of time. The time-

averaged rate for each elementary reaction was 

determined by integrating forward and reverse 

elementary rates from the start of an oscillation (t1) 

to the end of an oscillation (t2) and then dividing by 

the period,  

 

𝑇𝑂𝐹𝐿𝑂𝑂𝑃 =
∫ (𝑟1(𝑡)−𝑟−1(𝑡))𝑑𝑡

𝑡2
𝑡1

𝑡2−𝑡1
=

∫ (𝑟𝑖(𝑡)−𝑟−𝑖(𝑡))𝑑𝑡
𝑡2

𝑡1

𝑡2−𝑡1
   

               (2) 

  

These simulations always resulted in a non-zero 

loop TOF (in part, due to floating point precision). 

As such, loop TOF magnitudes < 10-4 were assigned 

values of zero. In this way, systems that exhibited a 

loop TOF > 10-4 s-1 had a positive loop TOF and a 

clockwise non-equilibrium steady state flux about 

the loop, and those that exhibited a loop TOF < −10-

4 s-1 had a negative loop turnover frequency with 

counterclockwise non-equilibrium steady-state 

flux. Systems between those two cutoff values were 

assigned zero loop TOF, with negligible net flux of 

surface species at steady state. 

Parameter Low value Medium value High value 

𝛼 [A, B, C] 0.2 0.6 0.9 

𝛽 [A, B, C] (eV) 0.6 0.9 1.2 

𝛾 [B-A, C-A] 0.6 1.4 1.8 

𝛿 [B-A, C-A] (eV) 0.5 1.0 1.5 

Δ𝐵𝐸𝐴   (eV) 0.3 0.5 0.8 

 

Table 1. Values used to generate the input parameters for the simulations. 
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 To evaluate the full parameter space for the 

simulation of the three-species catalytic loop, the 11 

parameters defining the chemistry of the 

elementary steps were assigned a high, medium, 

and low value within ranges of reasonable values, 

all of which are listed in Table 1. Six additional 

parameters required to perform the simulations 

were assigned a fixed value: the frequency (f fixed 

to 50 Hz) and the catalyst descriptor (binding 

energy of A in catalyst state 1, BEA, fixed to 0.8 

eV), temperature (T fixed to 298.15K), total surface 

coverage of bound species (θ fixed to 1.0), duty 

cycle (D fixed to 0.5), and waveform shape (fixed 

to a square waveform). Assigning fixed values to 

these parameters reduced the dimensionality of the 

parameter space and decreased the number of 

simulations required to survey the parameter space. 

As the relationship between the catalyst’s 

oscillation frequency and the resulting loop 

turnover frequency has already been established, it 

was not included.[32]  

With these values, there are 177,147 (311) 

unique combinations of simulation parameters. 

From each of these combinations, the energy 

diagram was computed using γ𝑖−𝐴 and δ𝑖−𝐴 to 

compute the binding energies of species B* and C* 

in each state and 𝛼𝑖 and 𝛽𝑖 to compute the activation 

energy of each surface reaction. For all instances 

where an elementary step yielded a negative 

activation energy, the parameter set was excluded. 

After removing these instances of negative 

activation energy, 174,312 combinations remained. 

The microkinetic simulations were performed in 

parallel using CPU resources provided by the 

Minnesota Supercomputing Institute. Each 

parameter set was simulated using the three-species 

reaction loop simulation. 

Simulations that failed to converge on a steady-

state solution in 5,000 oscillations were re-

simulated with a new oscillation limit of 10,000. 

Extending the number of oscillations allowed some 

simulations to reach convergence; however, for 

most of these simulations, this extension did not 

result in convergence of the system, but rather led 

to issues of solver convergence and memory 

handling problems. Simulations that failed to 

converge were discarded, because the loop TOF 

could not be computed to a steady-state solution. 

The absence of these data points may remove 

particular clusters in the sampled parameter space, 

but these systems are also recognized to encompass 

many different time scales in the rate equations that 

may not be present in real systems and lead to stiff 

equations in the microkinetic model. The remaining 

127,688 converged simulations were used to 

develop and test machine learning approaches to 

model and understand the behavior of the three 

species loop on dynamic catalyst surfaces. 

Machine Learning Models. XGBoost, an open-

source library which provides an efficient 

implementation of the gradient boosting 

framework,[49] was used to train gradient boosted 

classification and regression models on a 90/10 

training/test data split.[50] Gradient boosting works 

by training a pool of ‘weak learners,’ decision trees 

whose predictions are slightly better than an 

average guess and generating an ensemble of these 

learners from the initial pool. Weak learners are 

added to the ensemble sequentially by a gradient 

descent algorithm such that the residuals of the 

ensemble are reduced. In this work, XGBoost was 

implemented using the XGBoost and scikit-learn 

packages.[49,51] Hyperparameters of each model 

were tuned using a randomized grid search and ten-

fold cross validation. Models were trained 

separately for two objectives: (i) a classification 

problem to label the loop TOF as positive, negative, 

or zero, (ii) for non-zero loop TOF simulations, a 

regression problem to predict the magnitude of loop 

TOF. For each problem, two feature sets were 

explored: (a) one relying only on the 11 input 

parameters, and (b) another that replaces the 

chemistry features with twelve rate constants 

derived from the original parameters (see SI for 

details). The chemistry parameters (αi, βi, δi-A, γi-A) 

were used to describe each elementary reaction. 

The binding energy of each surface species and the 

activation energy of each reaction were determined 

using linear scaling relationships and Brønsted-

Evans-Polanyi (BEP) relationships, respectively. 

[23,27,28,32] With the heat of reaction and activation 

energy for each elementary reaction, the forward 

and reverse rate constants of each were computed 

using transition state theory.[27,32] Classification 

models were evaluated using weighted F1 score. 

Regression models were evaluated based on their 

median absolute error (median AE) due to the many 

orders of magnitude spanned by the loop TOF. To 

apply the models for a new set of parameters, one 

could apply the trained classification model, then 

the regression model for all samples classified as 
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having non-zero loop TOF (positive or negative) to 

realize full predictability of the loop TOF.  

Permutation feature importances (PFI),[52] 

counterfactual explanations,[53] and Shapley 

additive explanation (SHAP) values[54] were used to 

understand the trained models. Each interpretable 

ML approach was applied to the 10% of the data 

that was not used for model training.  PFI was 

performed with 10 repeats, using the sklearn 

package. SHAP was performed using the shap 

package for each target class (positive, negative, 

and zero TOF).[54] Counterfactuals were generated 

for three transformations – zero to positive loop 

TOF, positive to negative loop TOF, and negative 

to positive loop TOF, using the Diverse 

Counterfactuals Explanations (DiCE) package.[53] 

For each transformation, features were minimally 

perturbed (as measured by Euclidean distance) to 

change the class label. For features involved in the 

perturbations (i.e. those with non-zero change) that 

resulted in the desired transformation, the mean 

perturbation was computed and normalized by the 

range of values simulated for that feature. 

 

Results & Discussion.  Dataset. 174,312 

microkinetic simulations were performed to 

determine the steady-state loop TOF as described in 

Methods. The uniform sampling of parameter 

combinations yielded certain parameter sets that 

proved difficult to converge. Of all the parameter 

combinations, 127,688 simulations converged to a 

steady state, comprising 73% of the total parameter 

space, while 46,624 simulations failed to converge. 

For further analysis, only the results of the 

converged simulation were considered. To classify 

the behavior of each converged simulation, the loop 

TOF, defined in equation 2, quantified the net flux 

of reacting surface species about the reaction loop 

at steady state. Simulations were separated into 

those with a zero loop TOF (|TOF| < 10-4 s-1) and 

those with a non-zero loop TOF. Of the simulations, 

63% had an output of zero loop TOF, while 37% 

were non-zero. Amongst the data for non-zero loop 

TOF, ~60% of the simulations exhibited a positive 

loop TOF, while ~40% exhibited negative loop 

TOF. This distribution of the loop TOF outputs is 

depicted in Figure 2.  

In Figure 3, we probe how the amplitude of 

oscillation in the catalyst program (ΔBEA) 

influences the magnitude of loop TOF, showing 

that the simulations with higher magnitudes of loop 

TOF were associated with higher ΔBEA. This is 

consistent with previous results where higher 

amplitudes of oscillation were identified to increase 

the TOF of catalytic loops having the same reaction 

parameters.[32] Despite the increase in high |TOF| 

simulations associated with larger ΔBEA, the 

magnitude of ΔBEA did not have an appreciable 

Figure 2. Complete Three-Species Loop Simulation Dataset. (a) Simulations that returned a non-zero loop TOF 

ranged in magnitude from 10-4 to 50 s-1. Most simulations exhibited lower magnitudes of loop TOF, < 10-2 s-1. (b) 

Nearly two-thirds of the output loop turnover frequency values were zero, defined as having magnitude less than 10-

4 s-1, with slightly more of the non-zero simulations having positive loop TOF. 
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effect on the number of simulations yielding zero 

TOF. This indicates that the lack of dynamic 

behavior in a catalytic loop is not due to the catalyst 

program (i.e., description of the catalyst surface 

oscillation) but rather due to the chemistry 

parameters (αi, βi, δi-A, γi-A) and the resulting 

reaction coordinate for the sampled amplitudes. 

Machine Learning Models. Machine learning 

(ML) methods were leveraged to understand the 

three-species dynamic loop and to predict loop 

behavior without the need for microkinetic 

simulations. Using the input data, models were 

developed to classify the behavior of the loop 

(positive, negative, or zero loop TOF) or to predict 

the magnitude of the loop TOF for those with non-

zero TOF. Each model leveraged the XGBoost 

open-source library to implement a gradient 

boosting framework. Model performance was 

assessed using weighted F1 scoring for the 

classification models and median absolute error 

(median AE) for the regression models. This is the 

first work to predict the dynamic behavior of 

catalytic loops using ML. As such, there is not an 

established baseline for comparing the performance 

of the models trained in this work, so simple 

baselines were generated for comparison. For the 

multi-class classification models, the baseline 

model predicts the most common class (zero TOF) 

for all samples and achieves a weighted F1 score of 

0.48 (with weighted F1 = 1.0 being perfect 

classification). For the regression models, the 

baseline model always predicts the median |TOF| of 

the regression test dataset (3.78 × 10−4 s-1). This 

baseline model performed with a median AE of 

2.21 × 10−4 s-1. If the ML models learn useful 

information, then their performance on held-out 

data should yield higher weighted F1 scores and 

lower median AE than the baselines. 

Classification of zero, positive, or negative 

TOF. Two feature sets were explored in this work – 

one making use of the 11 parameters that define 

each simulation (referred to as the original 

parameter, OP, dataset) and another that replaces 

the chemistry parameters with rate constants 

derived from transition state theory (RC). The 

behavior of the reaction loop (positive, negative, or 

zero TOF) was predicted using multi-class 

classification methods. For classification purposes, 

the output data was first divided into three classes 

based on loop turnover frequency with class 0 

(|TOF| < 10-4 s-1), class 1 (TOF > 10-4 s-1), and class 

2 (TOF < −10-4 s-1). The OP classifier achieved a 

weighted F1 score of 0.91 on an excluded test set of 

12,768 simulations (10% of the total), improving 

Figure 3. Analysis of Output Loop TOF based on Applied Amplitude. A zoomed in normalized histogram 

highlighting the distribution of non-zero loop TOF simulations with respect to ΔBEA. Each histogram is normalized 

by the number of converged simulations with the corresponding ΔBEA. For all ΔBEA values, near-zero TOF is the 

most common, though there were slightly more near-zero TOF for the smaller ΔBEA simulations. The ΔBEA of 0.8 

eV is most prominent in the samples with significant output frequency.  
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dramatically upon the baseline model that always 

predicts a loop TOF of zero (F1 = 0.48). The RC 

classifier improved upon the OP classifier with a 

weighted F1 score of 0.96 on the test set.  

Interpretable ML methods (PFI, SHAP, and 

counterfactual explanations) were applied to the 

trained models to understand the influence of the 

input parameters on model predictions and 

performance on held-out data. While the RC 

classifier improves upon the OP classifier, rate 

constant features are much more challenging to 

interpret than the original parameters used to define 

the microkinetic simulations. As such, the focus of 

this analysis will be the OP models. In Figure 4a, 

we show the sorted PFI for the OP classifier. The β𝑖 

features are shown to be the most important for 

determining the classification performance, 

followed relatively closely by δ𝑖 and 𝛾𝑖−𝐴 features. 

As β𝑖  is the offset in the BEP relationship for each 

elementary reaction, its value contributes 

significantly to the activation energies of each 

reaction. The high values of β𝑖 (1.2 eV, see Table 

1) result in a barrier to reaction much larger than for 

small values of β𝑖 (0.6 eV). The size of the reaction 

barrier of each elementary step is predictive of 

whether a surface species can react about the loop, 

and therefore permutations of this parameter 

deteriorate the classification of positive, negative, 

or zero TOF. δ𝑖−𝐴 and γ𝑖−𝐴 define the intermediate 

linear scaling relationships, determining the 

binding energies of each surface species. These 

values determine which species are energetically 

favored in each catalyst state, dictating the 

equilibrium coverages of each state. When different 

species are energetically favored in each state, there 

is higher or lower probability for a net flux of 

Figure 4. Permutation Feature Importance and SHAP Analysis of the OPClassifier. (a) Permutation feature 

importance (PFI) analysis on the original parameter (OP) classification model. (b-d) SHAP analysis on the OP 

classifier for each class: (b) zero TOF, (c) positive TOF, (d) negative TOF.  
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molecules at dynamic steady-state. In this way, 

δ𝑖−𝐴 and γ𝑖−𝐴 are related to the tendency for a 

reaction to flux in a loop-like manner when an 

oscillating stimulus is applied, causing them to be 

important features for determining the model’s 

performance. Although β𝑖  is shown in Figure 4a to 

have the highest importance, it is noteworthy that 

all 11 input parameters have significant importance 

in determining the performance of the trained 

classifier. This suggests that the loop behavior is 

governed by the thermodynamics and kinetics of all 

elementary steps as well as the amplitude of 

oscillations in the catalyst program.  

The feature importance analysis suggests 

species-dependent importances in the models (e.g., 

the PFI for β𝐶 > β𝐴 > β𝐵). However, the differences 

observed across the species-dependent parameters 

in Figure 4a are a result of the finite number of 

simulations that converged and the randomness 

associated with the method by which each model 

was trained. Due to the symmetry of the loop 

reaction that results from rotation of the loop, 

species dependence should not bring about higher 

importance; instead, if infinite data was provided, 

then each parameter for A, B, and C should have 

identical importance in the model since A, B, and C 

are equivalent for the purposes of the model 

systems studied here. In general, the similarity of 

feature importances within each parameter (e.g., all 

𝛿𝑖−𝐴 importances are similar to one another) 

suggests generally uniform sampling of the input 

data with respect to species (A, B, and C). 

SHAP (SHapley Additive exPlanations) values 

were used to interpret the relationship between the 

values of parameters (features) and the model 

predictions (positive, negative, or zero loop TOF). 

For this multi-class classification model, the SHAP 

values were three-dimensional, where each sample, 

defined as a unique set of parameter inputs (unique 

feature values), had a different output SHAP value 

for each class. For a given sample, the SHAP values 

reflect how each feature contributes to the (model-

predicted) probability of that sample belonging to a 

given class. In Figure 4b-d, we show the SHAP 

values for each class – zero TOF (class 0), TOF > 0 

(class 1), and TOF < 0 (class 2), respectively. When 

the model predicts zero loop TOF (Figure 4b), the 

SHAP analysis is consistent with the PFI results, 

with β𝑖  being the most important feature and 

δ𝑖−𝐴 and γ𝑖−𝐴 also holding high importance. For 

class 0 (zero TOF) in Figure 4b, high values of 

β𝑖  (up to 1.2 eV, see Table 1) correspond with the 

highest SHAP values, indicating an increase in the 

probability that a given sample has zero TOF. For 

an elementary step, a high value of β𝑖  decreases the 

probability of reaction at that given step, increasing 

the probability of a zero TOF loop. 

Interestingly, when the model predicts the 

directionality of loops with non-zero loop TOF, α𝑖 

becomes an important feature to govern whether the 

direction is clockwise (positive loop TOF, Figure 

4c) or counterclockwise (negative loop TOF, 

Figure 4d). High values of α𝑖 (up to 0.9, see Table 

1) were found to correspond almost exclusively 

with a high probability that a given sample is class 

1 (positive loop TOF) and low probability that it is 

class 2 (negative loop TOF). Accordingly, low 

values of α𝑖 were found to correspond almost 

exclusively with a low probability of a sample 

being class 1 and a high probability that it is class 

2. This is contradictory to the other most important 

feature, β𝑖, where values on either extreme (high or 

low) correspond to a moderately low and 

moderately high impact. The parameter α𝑖 is the 

slope of the BEP relationship and multiplied by the 

heat of surface reaction (Δ𝐻𝑅) when determining 

the activation energy of each step. In this way, the 

value of α𝑖 determines how the activation energy 

scales with respect to Δ𝐻𝑅. High values of α𝑖 lead 

to high barriers to reaction when Δ𝐻𝑅 > 0 and lower 

barriers when Δ𝐻𝑅 < 0. As Δ𝐻𝑅 is defined in the 

clockwise direction, the reactions with low barriers 

are thermodynamically driven in the forward 

direction, with Δ𝐻𝑅 < 0, promoting the clockwise 

direction of reaction. Conversely, for low value of 

α𝑖, the dependence of the activation energy on Δ𝐻𝑅 

is weakened, allowing for more manageable 

reaction barriers when Δ𝐻𝑅 > 0, promoting 

reactions in the negative, counterclockwise 

direction. 

The feature importance results of Figure 4a 

identified δ𝑖−𝐴 and γ𝑖−𝐴 to have important 

influence on the model’s performance, while the 

SHAP analysis in Figure 4b-4d reveals that 

different values of δ𝑖−𝐴 and γ𝑖−𝐴 do not 

prominently lead to different output predictions. 

The SHAP values instead reveal that the model uses 

β𝑖 as the key differentiation between loop and no 

loop behavior, while using α𝑖 to differentiate 

between positive and negative behavior.  
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Counterfactual explanations provided further 

interpretation of the classification model and the 

mechanism of its decisions. Counterfactuals were 

generated to find the smallest perturbation to the 

features of a given sample that resulted in the model 

predicting a different desired class. In generating 

counterfactuals, the size of the perturbation was 

minimized as the Euclidean distance between the 

original feature values and the counterfactual 

values within the 11-dimensional feature space. 

This resulted in simultaneous perturbations to 

multiple features to realize the change in prediction. 

In Figure 5, we show the mean perturbation to each 

group of features associated with three different 

class prediction changes – positive TOF to negative 

TOF (blue), negative TOF to positive TOF (pink), 

and zero TOF to positive TOF (yellow). The mean 

perturbation indicates the size of each perturbation 

normalized to the range of the feature’s simulated 

values (difference between the high and low value 

for each feature in Table 1), where a small (large) 

relative perturbation indicates that small (large) 

changes to the given feature are necessary to change 

the prediction label. This analysis indicates that 

perturbations on the order of 10-25% to any of the 

original parameters (the chemistry parameters or 

the amplitude of the catalyst program) can alter the 

direction or productivity of the catalytic loop. As 

with the SHAP analysis, the counterfactual analysis 

supports the suggestion that β𝑖 is a key parameter 

in dictating the behavior of the loop TOF, as evident 

by the small relative perturbations required to 

change class labels, which indicates the sensitivity 

of the loop TOF to slight changes in β𝑖. It is also 

noted that large changes in 𝛼𝑖 are required to induce 

a change in prediction from negative to positive 

loop TOF. This is consistent with the SHAP 

analysis in which low values of 𝛼𝑖 strongly 

correlated to a negative classification and high 

values with a positive classification. Overall, this 

counterfactual analysis using the trained models 

provides useful context for guiding the design of 

catalyst programs to achieve specific reaction 

behavior given some fixed inputs (e.g., the 

chemistry of certain elementary steps). 

Regression models to predict the TOF 

magnitude. For simulations having non-zero TOF, 

the TOF magnitude (|TOF|) was predicted using 

regression models trained on the 11 input 

parameters that varied across the simulations 

(original parameters, OP). Due to the distribution of 

|TOF| in the dataset (Figure 2a), the data were best 

interpreted on a log-scale. The models were 

therefore fit to a dataset that removed all samples 

with zero TOF and considered ln(|TOF|) for the 

remaining samples. Model performance was then 

assessed by mapping the predicted values back to a 

linear scale (eprediction) for comparison to the |TOF| 

Figure 5. Counterfactuals of the OPClassifier Model. Counterfactuals were explored for three class switches in 

the OP classifier model – switching the model prediction from positive to negative loop TOF (blue), negative to 

positive (purple), and zero to positive (pink). Each counterfactual involves a perturbation of the features 

corresponding with a given sample. The perturbation to each feature was averaged over all samples, then averaged 

across each type of feature (e.g., α𝑖 includes perturbations to α𝐴, α𝐵, and α𝐶). 
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resulting from the microkinetic simulations. The 

regression models were scored using median 

absolute error (median AE) as the target property 

spans several orders of magnitude. 

The median AE for the OP Regressor was 

1.54 × 10−4 s-1 on the test set, which is a 30% 

decrease in median AE from the baseline of 2.21 ×
10−4 s-1, where the baseline model always predicts 

|TOF| to be the median of the test dataset. When 

evaluating the predictions on a parity plot, Figure 

6a revealed that the predictions generally trended 

strongly with the actual values resulting from the 

simulations, with most errors within one order of 

magnitude of the target. The RC Regressor was 

trained and assessed in the same way as the OP 

Regressor but utilizing the derived rate constant 

(RC) features instead of the original parameters. 

The RC Regressor performed with a median AE of 

8.97 × 10−5 s-1, improving upon the OP Regressor 

by ~42%. The median AE values of the predictions 

reveal a significant increase in performance from 

the OP Regressor to the RC Regressor. In Figure 

6b, the parity plot for the RC predictions shows 

stronger correlation with the target than the OP 

regressor. Despite the similar median AE’s between 

the two models, the 75th percentile error for the OP 

model is 2.22 × 10−3 s-1 while that for the RC 

model is 1.41 × 10−3 s-1. Together these indicate 

small errors by the RC model for many more 

samples than the OP model. Similar to the 

comparison of the OP and RC models for 

classification, using rate constants as features 

improves model performance at the detriment of 

model interpretability. 

PFI for the OP Regressor shown in Figure 7a 

was consistent with the OP Classifier as 𝛽𝑖 was 

again identified as the most important feature. 

However, the regression models show significantly 

more dependence upon the most important 𝛽𝑖 

features compared with the classification models, 

which show relatively uniform reliance on several 

features (Figure 4a). As with the SHAP values 

associated with zero TOF predictions made by the 

OP Classifier (Figure 4b), the SHAP values for the 

OP Regressor shown in Figure 7b indicate that 𝛽𝑖 

features have the most importance in determining 

the model prediction. Low values of β𝑖 were found 

to correspond almost exclusively with a high value 

of loop TOF while high values correspond almost 

exclusively with low values of loop TOF. 

Interestingly, and in contrast with any of the 

classification predictions, the catalyst program 

amplitude, ΔBEA, is shown to contribute strongly to 

the magnitude of TOF predicted by the models, as 

indicated by the large SHAP values and clear trend 

between high (low) values of ΔBEA and high (low) 

values of predicted |TOF|.  

Comparison of Machine Learning Models. ML 

models trained on high-throughput microkinetic 

simulations revealed how the inputs to the 

simulations (the nature of the reaction and catalyst 

system) determined the behavior of three-species 

dynamic loops. The classification models exhibited 

high weighted F1 scores of 0.91 and 0.96 for the OP 

Figure 6. Parity Plots for the XGBRegressors. (a) The OP Regressor model demonstrates the proper trend of 

prediction vs actual value, yet the width of the results identifies significant variation between the actual and predicted 

loop turnover frequencies. (b) The RC Regressor demonstrates more accurate performance on the dataset as indicated 

by more narrow spread on the parity plot. For both plots, the number of points lying in a particular region of the parity 

plot is indicated by the colorbar and the histogram on either axis. The red dashed line indicates a perfect 1:1 correlation.  
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and RC models, respectively. These scores are near 

that of a perfect model (weighted F1 score of 1.0) 

and are drastic improvements from a baseline 

model that always predicts a loop TOF of zero (F1 

of 0.48). Both regression models also exhibited 

improved performance relative to the baseline 

median AE (2.21 × 10−4 s-1) realizing a 30% and 

59% decrease in median AE relative to the baseline 

model, for the OP and RC regressor models, 

respectively. The separate training and disparate 

performance of classification and regression 

models suggests that it is more straightforward to 

find relationships between the inputs and the 

direction of the catalytic loop (classification) than 

to directly predict the magnitude of the loop TOF 

(regression). Predicting the |TOF| may be 

complicated by the nature of the data, which spans 

~6 orders of magnitude for the diverse parameter 

combinations explored in this work. 

The classification model trained on the original 

chemical parameters (OP) presented interpretable 

results that emphasized all features to have 

importance in the trained model. Breakdown of the 

PFI and SHAP reflected minor differences, where 

β𝑖 was identified as the most important feature to 

determine whether a loop reaction will have a zero 

or non-zero loop TOF. Furthermore, γi-A and δi-A 

were also identified as important features, and α𝑖 

was isolated as a key feature to determine positive 

versus negative dynamic behavior. Interpretation of 

the regression model having the same features 

showed again that all features inform the models 

prediction and indicated β𝑖 to be the most important 

parameter in dictating the magnitude of the loop 

TOF. The classification model and regression 

model trained on the rate constant data (RC 

Classifier and Regressor) resulted in higher 

performance than the models trained on the original 

chemical parameters (OP Classifier and Regressor); 

however, the models trained on the rate constants 

are difficult to interpret due to the inability to 

differentiate between each different rate constant in 

the context of a symmetrical reaction. 

The ML models performed consistently on 

training and tests sets but may not generalize to out 

of distribution (OOD) data. Since these models 

have only seen three values of each input 

parameter, their performance may decrease when 

assessed on systems that include more varied 

parameter values. In response to this, there are key 

takeaways that will help inspire future work in this 

area. This dataset would have benefitted from 

exploration of multiple frequencies and a more 

random parameter selection. Simulating multiple 

frequencies would have aided in the understanding 

of cutoff frequencies for each individual elementary 

reaction; it would also have helped to understand 

reaction systems that have no loop TOF at low 

applied frequency but significant loop TOF at high 

applied frequencies. A more random generation of 

the input parameter sets would have challenged the 

models to learn more complex underlying 

relationships between these parameters and the loop 

dynamics.  

Despite the shortcomings associated with the 

discrete parameter sampling, the models were 

Figure 7. Permutation Feature Importance and SHAP analysis on the OP Regressor model. (a) 

Permutation feature importance (PFI) analysis on the original parameter (OP) regressor model. (b) SHAP 

analysis on the OP regressor. 
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found to be effective in predicting the loop behavior 

and allowed for insight into the relative importance 

of each parameter in predicting the behavior of a 

loop reaction. If specific catalytic loop behavior is 

desired, then the data and models can be leveraged 

to understand the value of scaling parameters or 

catalyst programs that would produce that behavior 

and desired loop turnover frequency. Furthermore, 

the new understanding of which features are most 

consequential to each behavior improves our 

understanding of which scaling parameters should 

be the focus in designing dynamic catalyst systems. 

 

Conclusions.  Applying a dynamic surface to a 

three-species catalytic reaction loop results in three 

types of steady state behavior: clockwise reaction 

flux about the loop (positive loop TOF), 

counterclockwise reaction flux about the loop 

(negative loop TOF), and negligible flux (|TOF| < 

10-4 s-1). Screening the input parameters for this 

catalytic system demonstrated that most considered 

reaction loops yield negligible loop TOF. Machine 

learning models trained on the generated dataset 

were successful in predicting the loop behavior and 

improved further using derived rate constants as 

input features. However, applying these models to 

more complex chemistries may require further 

development of the predictive models and their 

infrastructure. The ML models also demonstrate 

that all studied parameters play a role in 

determining the performance of the models and 

their predictions of surface behavior. Among the 

studied parameters, 𝛽𝑖 (the offset parameter in the 

BEP relationship, used to determine activation 

energy of each elementary reaction) was found to 

be the most consequential parameter, especially for 

determining the magnitude of the loop TOF. 

Overall, this work shows how the connection of 

microkinetic simulation and machine learning can 

be further integrated with the design of 

programmable dynamic catalyst systems. The 

ability to predict system behavior from fundamental 

reaction parameters or to determine the parameters 

necessary to achieve a desired catalytic behavior 

indicates a promising future direction for rational 

design of programmable catalysts for reactions with 

complex surface mechanisms.   

 

Acknowledgements.  This work was supported as 

part of the Center for Programmable Energy 

Catalysis, an Energy Frontier Research Center 

funded by the U.S. Department of Energy, Office 

of Science, Basic Energy Sciences at the University 

of Minnesota under award #DE-SC0023464. 

 

Data availability statement. The code and data 

used to perform the simulations and analysis 

described in this work can be found at 

https://github.com/Kyle-Nord/programmable-

loop-directionality.  

 

Supporting Information. The Supporting 

Information file includes: 

Binding energies derivation, microkinetic 

model derivation, code development and 

block logic diagrams 

References 
(1) Aris, Rutherford. MATHEMATICAL ASPECTS 

OF CHEMICAL REACTION. Ind. Eng. Chem. 

1969, 61 (6), 17–29. 

https://doi.org/10.1021/ie50714a005. 

(2) Rangarajan, S.; Bhan, A.; Daoutidis, P. 

Language-Oriented Rule-Based Reaction 

Network Generation and Analysis: Description of 

RING. Computers & Chemical Engineering 

2012, 45, 114–123. 

https://doi.org/10.1016/j.compchemeng.2012.06.

008. 

(3) Razdan, N. K.; Lin, T. C.; Bhan, A. Concepts 

Relevant for the Kinetic Analysis of Reversible 

Reaction Systems. Chem. Rev. 2023, 123 (6), 

2950–3006. 

https://doi.org/10.1021/acs.chemrev.2c00510. 

(4) Dumesic, J. A. The Microkinetics of 

Heterogeneous Catalysis; 1993; Vol. 40. 

(5) Motagamwala, A. H.; Dumesic, J. A. 

Microkinetic Modeling: A Tool for Rational 

Catalyst Design. Chemical Reviews 2021, 121 

(2), 1049–1076. 

https://doi.org/10.1021/acs.chemrev.0c00394. 

(6) Fredrickson, A. G. Stochastic Triangular 

Reactions. Chemical Engineering Science 1966, 

21 (8), 687–691. https://doi.org/10.1016/0009-

2509(66)80018-0. 

(7) Krupka, R. M.; Kaplan, H.; Laidler, K. J. Kinetic 

Consequences of the Principle of Microscopic 

Reversibility. Trans. Faraday Soc. 1966, 62, 

2754. 

(8) Michael, B. C.; Donazzi, A.; Schmidt, L. D. 

Effects of H2O and CO2 Addition in Catalytic 

Partial Oxidation of Methane on Rh. Journal of 

Catalysis 2009, 265 (1), 117–129. 

https://doi.org/10.1016/j.jcat.2009.04.015. 

https://doi.org/10.26434/chemrxiv-2024-n10m0 ORCID: https://orcid.org/0000-0001-5810-1953 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://github.com/Kyle-Nord/programmable-loop-directionality
https://github.com/Kyle-Nord/programmable-loop-directionality
https://doi.org/10.26434/chemrxiv-2024-n10m0
https://orcid.org/0000-0001-5810-1953
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

____________________________________________________________________________ 
 
Murphy, et al.   Page 14 

(9) Lacerda de Oliveira Campos, B.; Herrera 

Delgado, K.; Pitter, S.; Sauer, J. Development of 

Consistent Kinetic Models Derived from a 

Microkinetic Model of the Methanol Synthesis. 

Industrial & Engineering Chemistry Research 

2021, 60 (42), 15074–15086. 

https://doi.org/10.1021/acs.iecr.1c02952. 

(10) Grabow, L. C.; Gokhale, A. A.; Evans, S. T.; 

Dumesic, J. A.; Mavrikakis, M. Mechanism of 

the Water Gas Shift Reaction on Pt:  First 

Principles, Experiments, and Microkinetic 

Modeling. J. Phys. Chem. C 2008, 112 (12), 

4608–4617. https://doi.org/10.1021/jp7099702. 

(11) Onsager, L. Reciprocal Relations in Irreversible 

Processes. I. Physical Review 1931, 37 (4), 405–

426. https://doi.org/10.1103/PhysRev.37.405. 

(12) Tolman, R. C. The Principle of Microscopic 

Reversibility. Proc. Natl. Acad. Sci. U. S. A. 

1925, 11, 436. 

(13) Robert L. Burwell Jr.; Ralph G. Pearson. The 

Principle of Microscopic Reversibility. The 

Journal of Physical Chemistry 1966, 70 (1), 300–

302. 

(14) Aprahamian, I.; Goldup, S. M. Non-Equilibrium 

Steady States in Catalysis, Molecular Motors, 

and Supramolecular Materials: Why Networks 

and Language Matter. Journal of the American 

Chemical Society 2023. 

https://doi.org/10.1021/jacs.2c12665. 

(15) Jencks, W. P. Catalysis in Chemistry and 

Enzymology; McGraw-Hill Book Co: New York, 

NY, 1969; Vol. 47. 

https://doi.org/10.1021/ed047pa860.2. 

(16) Astumian, R. D.; Chock, P. B.; Tsong, T. Y.; 

Westerhoff, H. V. Effects of Oscillations and 

Energy-Driven Fluctuations on the Dynamics of 

Enzyme Catalysis and Free-Energy Transduction. 

Physical Review A 1989, 39 (12), 6416–6435. 

https://doi.org/10.1103/PhysRevA.39.6416. 

(17) Olsson, M. H. M.; Parson, W. W.; Warshel, A. 

Dynamical Contributions to Enzyme Catalysis:  

Critical Tests of A Popular Hypothesis. Chem. 

Rev. 2006, 106 (5), 1737–1756. 

https://doi.org/10.1021/cr040427e. 

(18) Shetty, M.; Walton, A.; Gathmann, S. R.; 

Ardagh, M. A.; Gopeesingh, J.; Resasco, J.; 

Birol, T.; Zhang, Q.; Tsapatsis, M.; Vlachos, D. 

G.; Christopher, P.; Frisbie, C. D.; Abdelrahman, 

O. A.; Dauenhauer, P. J. The Catalytic 

Mechanics of Dynamic Surfaces: Stimulating 

Methods for Promoting Catalytic Resonance. 

ACS Catalysis 2020, 12666–12695. 

https://doi.org/10.1021/acscatal.0c03336. 

(19) Qi, J.; Resasco, J.; Robatjazi, H.; Alvarez, I. B.; 

Abdelrahman, O.; Dauenhauer, P.; Christopher, 

P. Dynamic Control of Elementary Step 

Energetics via Pulsed Illumination Enhances 

Photocatalysis on Metal Nanoparticles. ACS 

Energy Letters 2020, 3518–3525. 

https://doi.org/10.1021/acsenergylett.0c01978. 

(20) R., W. G.; Shizhong, L.; J., D. P.; G., V. D. 

Catalytic Resonance of Ammonia Synthesis by 

Simulated Dynamic Ruthenium Crystal Strain. 

Science Advances 2022, 8 (4), eabl6576. 

https://doi.org/10.1126/sciadv.abl6576. 

(21) Onn, T. M.; Gathmann, S. R.; Wang, Y.; Patel, 

R.; Guo, S.; Chen, H.; Soeherman, J. K.; 

Christopher, P.; Rojas, G.; Mkhoyan, K. A.; 

Neurock, M.; Abdelrahman, O. A.; Frisbie, C. D.; 

Dauenhauer, P. J. Alumina Graphene Catalytic 

Condenser for Programmable Solid Acids. JACS 

Au 2022. https://doi.org/10.1021/jacsau.2c00114. 

(22) Onn, T. M.; Gathmann, S. R.; Guo, S.; Solanki, 

S. P. S.; Walton, A.; Page, B. J.; Rojas, G.; 

Neurock, M.; Grabow, L. C.; Mkhoyan, K. A.; 

Abdelrahman, O. A.; Frisbie, C. D.; Dauenhauer, 

P. J. Platinum Graphene Catalytic Condenser for 

Millisecond Programmable Metal Surfaces. 

Journal of the American Chemical Society 2022, 

144 (48), 22113–22127. 

https://doi.org/10.1021/jacs.2c09481. 

(23) Ardagh, M. A.; Birol, T.; Zhang, Q.; 

Abdelrahman, O. A.; Dauenhauer, P. J. Catalytic 

Resonance Theory: SuperVolcanoes, Catalytic 

Molecular Pumps, and Oscillatory Steady State. 

Catalysis Science and Technology 2019, 9 (18), 

5058–5076. https://doi.org/10.1039/c9cy01543d. 

(24) Dauenhauer, P. J. Up up down down Left Right 

Left Right B A Start for the Catalytic Hackers of 

Programmable Materials. Matter 2023, 6 (12), 

4145–4157. 

https://doi.org/10.1016/j.matt.2023.11.008. 

(25) Munter, T. R.; Bligaard, T.; Christensen, C. H.; 

Nørskov, J. K. BEP Relations for N2 

Dissociation over Stepped Transition Metal and 

Alloy Surfaces. Physical Chemistry Chemical 

Physics 2008, 10 (34), 5202–5206. 

https://doi.org/10.1039/b720021h. 

(26) Sutton, J. E.; Vlachos, D. G. A Theoretical and 

Computational Analysis of Linear Free Energy 

Relations for the Estimation of Activation 

Energies. ACS Catalysis 2012, 2 (8), 1624–1634. 

https://doi.org/10.1021/cs3003269. 

(27) Gathmann, S. R.; Ardagh, M. A.; Dauenhauer, P. 

J. Catalytic Resonance Theory: Negative 

Dynamic Surfaces for Programmable Catalysts. 

Chem Catalysis 2022. 

https://doi.org/10.1016/j.checat.2021.12.006. 

(28) Ardagh, M. A.; Abdelrahman, O. A.; 

Dauenhauer, P. J. Principles of Dynamic 

Heterogeneous Catalysis: Surface Resonance and 

Turnover Frequency Response. ACS Catalysis 

https://doi.org/10.26434/chemrxiv-2024-n10m0 ORCID: https://orcid.org/0000-0001-5810-1953 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-n10m0
https://orcid.org/0000-0001-5810-1953
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

____________________________________________________________________________ 
 
Murphy, et al.   Page 15 

2019, 9 (8), 6929–6937. 

https://doi.org/10.1021/acscatal.9b01606. 

(29) Ardagh, M. A.; Shetty, M.; Kuznetsov, A.; 

Zhang, Q.; Christopher, P.; Vlachos, D.; 

Abdelrahman, O.; Dauenhauer, P.; Ardagh, M. 

A.; Shetty, M.; Kuznetsov, A.; Zhang, Q.; 

Christopher, P.; Vlachos, D. G.; Abdelrahman, 

O.; Dauenhauer, P. J. Catalytic Resonance 

Theory : Parallel Reaction Pathway Control 

Catalytic Resonance Theory : Parallel Reaction 

Pathway Control. 2019, No. 2. 

https://doi.org/10.26434/chemrxiv.10271090.v1. 

(30) Borsley, S.; Gallagher, J. M.; Leigh, D. A.; 

Roberts, B. M. W. Ratcheting Synthesis. Nat Rev 

Chem 2024, 8 (1), 8–29. 

https://doi.org/10.1038/s41570-023-00558-y. 

(31) Abdelrahman, O. A.; Dauenhauer, P. J. Energy 

Flows in Static and Programmable Catalysts. 

ACS Energy Letters 2023, 8 (5), 2292–2299. 

https://doi.org/10.1021/acsenergylett.3c00522. 

(32) Murphy, M. A.; Gathmann, S. R.; Bartel, C. J.; 

Abdelrahman, O. A.; Dauenhauer, P. J. Catalytic 

Resonance Theory: Circumfluence of 

Programmable Catalytic Loops. Journal of 

Catalysis 2024, 430, 115343. 

https://doi.org/10.1016/j.jcat.2024.115343. 

(33) Amano, S.; Esposito, M.; Kreidt, E.; Leigh, D. 

A.; Penocchio, E.; Roberts, B. M. W. Using 

Catalysis to Drive Chemistry Away from 

Equilibrium: Relating Kinetic Asymmetry, Power 

Strokes, and the Curtin-Hammett Principle in 

Brownian Ratchets. Journal of the American 

Chemical Society 2022, 144 (44), 20153–20164. 

https://doi.org/10.1021/jacs.2c08723. 

(34) Astumian, R. D.; Mukherjee, S.; Warshel, A. The 

Physics and Physical Chemistry of Molecular 

Machines. ChemPhysChem 2016, 1719–1741. 

https://doi.org/10.1002/cphc.201600184. 

(35) Amano, S.; Borsley, S.; Leigh, D. A.; Sun, Z. 

Chemical Engines: Driving Systems Away from 

Equilibrium through Catalyst Reaction Cycles. 

Nat. Nanotechnol. 2021, 16 (10), 1057–1067. 

https://doi.org/10.1038/s41565-021-00975-4. 

(36) Kay, E. R.; Leigh, D. A. Beyond Switches: 

Rotaxane- and Catenane-Based Synthetic 

Molecular Motors. Pure and Applied Chemistry 

2008, 80 (1), 17–29. 

https://doi.org/10.1351/pac200880010017. 

(37) Wilson, M. R.; Solà, J.; Carlone, A.; Goldup, S. 

M.; Lebrasseur, N.; Leigh, D. A. An Autonomous 

Chemically Fuelled Small-Molecule Motor. 

Nature 2016, 534 (7606), 235–240. 

https://doi.org/10.1038/nature18013. 

(38) Au-Yeung, H. Y.; Deng, Y. Distinctive Features 

and Challenges in Catenane Chemistry. Chem. 

Sci. 2022, 13 (12), 3315–3334. 

https://doi.org/10.1039/D1SC05391D. 

(39) Amano, S.; Fielden, S. D. P.; Leigh, D. A. A 

Catalysis-Driven Artificial Molecular Pump. 

Nature 2021, 594 (7864), 529–534. 

https://doi.org/10.1038/s41586-021-03575-3. 

(40) Huxley, A. F.; Simmons, R. M.; Astumian, R. D. 

The Role of Thermal Activation in Motion and 

Force Generation by Molecular Motors. 

Philosophical Transactions of the Royal Society 

of London. Series B: Biological Sciences 2000, 

355 (1396), 511–522. 

https://doi.org/10.1098/rstb.2000.0592. 

(41) Dean Astumian, R. Symmetry Based Mechanism 

for Hand-over-Hand Molecular Motors. 

Biosystems 2008, 93 (1), 8–15. 

https://doi.org/10.1016/j.biosystems.2008.04.005. 

(42) Astumian, R. D. Optical vs. Chemical Driving for 

Molecular Machines. Faraday Discuss. 2017, 

195 (0), 583–597. 

https://doi.org/10.1039/C6FD00140H. 

(43) Ragazzon, G.; Prins, L. J. Energy Consumption 

in Chemical Fuel-Driven Self-Assembly. Nature 

Nanotechnology 2018, 13 (10), 882–889. 

https://doi.org/10.1038/s41565-018-0250-8. 

(44) Das, K.; Gabrielli, L.; Prins, L. J. Chemically 

Fueled Self-Assembly in Biology and Chemistry. 

Angewandte Chemie - International Edition 

2021, 60 (37), 20120–20143. 

https://doi.org/10.1002/anie.202100274. 

(45) Astumian, R. D. Kinetic Asymmetry and 

Directionality of Nonequilibrium Molecular 

Systems. Angewandte Chemie 2024, 136 (9), 

e202306569. 

https://doi.org/10.1002/ange.202306569. 

(46) van Leeuwen, T.; Lubbe, A. S.; Štacko, P.; 

Wezenberg, S. J.; Feringa, B. L. Dynamic 

Control of Function by Light-Driven Molecular 

Motors. Nat Rev Chem 2017, 1 (12), 1–7. 

https://doi.org/10.1038/s41570-017-0096. 

(47) Onn, T. M.; Oh, K.-R.; Adrahtas, D. Z.; 

Soeherman, J. K.; Hopkins, J. A.; Frisbie, C. D.; 

Dauenhauer, P. J. Flexible and Extensive 

Platinum Ion Gel Condensers for Programmable 

Catalysis. ACS Nano 2024, 18 (1), 983–995. 

https://doi.org/10.1021/acsnano.3c09815. 

(48) Oh, K.-R.; Onn, T. M.; Walton, A.; Odlyzko, M. 

L.; Frisbie, C. D.; Dauenhauer, P. J. Fabrication 

of Large-Area Metal-on-Carbon Catalytic 

Condensers for Programmable Catalysis. ACS 

Appl. Mater. Interfaces 2024, 16 (1), 684–694. 

https://doi.org/10.1021/acsami.3c14623. 

 

 

 

https://doi.org/10.26434/chemrxiv-2024-n10m0 ORCID: https://orcid.org/0000-0001-5810-1953 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-n10m0
https://orcid.org/0000-0001-5810-1953
https://creativecommons.org/licenses/by-nc-nd/4.0/

