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Single particle inductively coupled plasma – mass spectrometry (SP ICP-MS) has evolved into one of the most powerful techniques for the bottom-up 

characterisation of nanoparticle suspensions. The latest generations of time-of-flight mass analysers offer new perspectives on single particles by rapidly 

collecting full mass spectra and providing information on particle composition and abundances even in unknown samples. However, SP ICP-TOFMS is 

associated with vast data sizes with complex structure, which can hamper its applicability and the interrogation of specific particle features. Unlocking the full 

potential of SP ICP-TOFMS requires dedicated, easy-to-use software solutions to navigate through data sets and promote transparent, efficient and precise 

processing. SPCal is an open-source SP data processing platform, which we have previously released for quadrupole-based data. In this work, we expand its 

reach by enabling the analysis of TOF-based SP data sets additionally. We have incorporated various tools to facilitate the handling, manipulation and 

calibration of large data sets and provide the required statistical fundament and models to promote accurate thresholding. Non-target screening tools are 

integrated to pinpoint particulate elements in unknown samples without the requirement for a-priori investigations or modelling. Next to basic functions like 

the calibration of size and mass distributions, methods to carry out cluster analysis (PCA, HAC) provide the means to study groups of particles based on their 

composition and conditional data filtering allows the interrogation of particle populations by selectecting specific features. 

Introduction 

The properties of nanoparticles (NPs) are stipulated by a set of 

parameters which include size, composition, and number 

concentrations. These parameters are difficult to determine, 

and we struggle to find and study the basic traits of common 

entities. The growing production of engineered nanomaterials, 

the increasing emission of incidental particles as well as the 

investigation of natural entities all call for dedicated methods to 

pinpoint particles and to study their unique facets.1 Methods 

require the ability to assess NPs on a particle-to-particle basis 

whilst offering high matrix-tolerance and means to pinpoint 

relevant particles across a large size-scale among unobtrusive 

entities. This is only possible at high single particle (SP) counting 

rates and high levels of both selectivity and sensitivity.2 These 

parameters are especially important for environmental 

samples, where no previous knowledge on rare and abundant 

entities is available. Particles in such samples may contain 

virtually any element of the periodic table, occur at very low 

number concentrations and in varying compositions. Their 

tracing resembles the veritable search for a needle in a haystack 

and their detailed characterisation poses even more 

challenges.3 

Single particle inductively coupled plasma – mass spectrometry 

(SP ICP-MS) has become one of the most powerful techniques 

for counting particles and establishing models on size 

distributions and compositions. The concept of SP ICP-MS is 

based on the individual introduction of particles into a plasma, 

where atomisation and ionisation processes take place. 

Consequently, each particle disintegrates into a cloud of 

elemental cations, which can be extracted in discrete ion 

packages and detected separately as resolved pulses. In ICP-MS, 

the quadrupole is the most commonly used mass analyser, 

providing high detection power and simple operation.2,4 

However, a major disadvantage of this analyser is associated 

with time-consuming scanning operations when analysing 

varying m/z. Therefore, quadrupoles can only analyse one m/z 

per SP at a sufficient data acquisition rate (typically ≥ 10kHz). 

This is a significant restriction as it prevents quadrupole-based 

instruments from being used to study SP composition and limits 

non-target particle screening approaches.3  

These disadvantages can be overcome with a time-of-flight 

(TOF)-based ICP-MS. Currently, there are two manufacturers 

which provide commercial instruments with the capability to 

record full mass spectra fast enough to support the advanced 

study of SPs. These instruments offer a vast potential to 

advance our understanding of nano- and microparticles but 

provide extremely large and complex data sets, which are 

difficult to encompass and interrogate.  

Currently there exists no independent or open-source data 

processing platform for ICP-TOFMS. While manufacturers do 

provide some software, many studies still replace or extend 

data processing capabilities using inhouse software and scripts.  

One recent example is a set of data processing tools that 

support TOFWERK instrument data sets.5  

We have previously reported an open-source data processing 

platform named “SPCal”, which was designed for quadrupole-

based SP data sets.6 It was developed and distributed with the 

aim to drive transparent processing, to enable more 

comparability and to implement state-of-the-art algorithms and 
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(statistical) approaches, which have been developed over the 

recent years. 

With the present work, we expand the capabilities and 

applicability of SPCal to enable the analysis of TOF-based SP 

data sets in addition to quadrupole-based data. We propose an 

improved platform, which incorporates dedicated statistical 

approaches, new models, and state-of-the-art tools to drive the 

interrogation of complex particle suspensions using SP ICP-

TOFMS. The new software has several powerful ICP-ToF data 

processing features while retaining its ease-of-use for users new 

to SP data processing.  

Experimental 

Instrumentation 

SPCal is designed to be vendor-independent and is compatible with 

various data formats. Data shown here was recorded on a Vitesse 

ICP-TOFMS instrument (Nu Instruments, Wrexham, UK). Data 

acquisition was carried out with Nu Codaq software. At least three 

mass spectra were binned and saved to disk at approximately 10 kHz. 

This raw data was directly analysed with SPCal. Raw data from Nu 

Instruments, exported csv and txt files, and TOFWERK HDF5 data can 

be imported. 

Data processing 

Different functions, calibration pathways and tools are implemented 

in SPCal and fundamental ideas and concepts have previously been 

published elsewhere.6 Here, critical considerations are briefly 

summarised whilst pointing out new, ToF specific, functions and 

adaptations. 

When loading a data set, SPCal first determines which type of mass 

analyser has been used by checking for low integer values. If more 

than 75% of values below 5 counts are integers, then a quadrupole-

based analyser is assumed. Integer values are taken as ℤ ± 𝟎. 𝟎𝟓 as 

exported quadrupole data frequently contain a small offset from true 

integer values. For low mean signal values, Poisson and Compound 

Poisson statistics are used for quadrupole- and TOF-based data sets 

respectively, to determine the decision limit over which a particle is 

recognised. Gaussian statistics are used in both cases for increased 

baseline signals, when less than 5% of  non-zero signal is below 5 

counts. This corresponds to a mean background of around 10 but was 

found to be more resilient to high particle counts. Statistics can be 

stipulated if required. The decision limit can be adjusted by 

modification of the pre-set α or σ values, which both stipulate the 

quantiles for thresholding and as such, the probability to falsely 

identify a signal as a SP event. Following summaries and discussions 

in the Multi-Agency Radiological Laboratory Analytical Protocols 

(MARLAP),7 different Poisson-based methods can be used for 

thresholding: Currie’s method, Formula A, Formula C and the 

Stapelton approximation. An option to carry out iterative 

thresholding is implemented (and suggested) to approximate the 

real “ionic mean”. Here, this iterative algorithm consecutively 

eliminates recognised SP signals from the mean signal to recalculate 

the mean and threshold until no new SP signals are found and thus 

the limit no longer decreases. 

When loading TOF-based data sets a periodic table is displayed, from 

which elements/isotopes may be selected for in-depth analysis. For 

unknown samples, a non-target screening function is used to 

pinpoint particulate elements as explained in detail later. Once 

elements/isotopes are selected, contiguous regions of SP events are 

summed. In the case of ToF data, a single particle (and its 

composition) is described by contiguous regions of any signal for 

selected isotopes. Calibration of data to determine particle number 

concentration, sizes, and mass as implemented as described for 

previous SPCal versions.6 

Results and discussion 

Decision limit and background modelling 

Unlike quadrupole-based ICP-MS instruments, ICP-TOFMS 

instruments use fast analogue-to-digital converters (ADCs) to 

resolve the short detection intervals at which different m/z are 

detected. This detection paradigm excludes a pulse-counting 

mode and exposes the probabilistic response of the electron 

multiplier, typically a micro-channel plate or similar detector.8 

Additionally, spectra must be binned as acquisition speed 

exceeds rates at which data can be saved.9 These factors give 

rise to a single ion signal or single ion area (SIA) distribution, as 

a means to convert raw ADC signal to counts. Usually, only the 

mean of the SIA for every element is considered, although mass 

dependant approaches have been suggested.10 The 

probabilistic nature of the SIA and the binning of spectra 

complicate the definition of a decision limit, over which a signal 

event is identified as SP event with sufficient accuracy. While SP 

ICP-QMS data sets with low background can be described with 

Poisson statistics,11 SP ICP-TOFMS data requires a compound 

Poisson approach in which the number of binned spectra as well 

as the SIA distribution is known.12 While the number of binned 

spectra is an experimentally set parameter, determination of 

the SIA requires the analysis of an ionic standard. Experimental 

SIAs were recorded by analysing an ionic standard with low ion 

transmission ensuring the sporadic arrival of individual ions at 

the detector. The probability of a multi-ion acquisition event 

was calculated for each element using eq. 1, where P(0’) is the 

fraction of non-zero values with a multi-ion probability P(>1) 

below 0.1%. 

𝑃(> 1) = Γ(3, 𝑃(0′))  (1) 

 

Each ion that strikes the detector produces a signal that is 

sampled from the SIA distribution and thus the result of 

multiple ions is a compound-Poisson sampling of the SIA. Eq. 2 

describes the Poisson process of ions arriving at the detector 

while eq. 3 states that the signal for each ion will be defined by 

the gain statistics of the detector. 

𝑘 = Poisson(λ)   (2) 

𝑌 = ∑ SIA(𝑖)𝑘
𝑖=1    (3) 
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SPCal provides two methods to calculate thresholds for ToF 

data. If the single-ion signal distribution of the detector is 

provided, then software uses it to simulate a compound-

Poisson distribution with λ of the signal mean. Many values are 

drawn using the statistics above and the threshold can then be 

defined as the desired quantile of this simulation. This method 

will accurately predict the threshold, as it uses the true signal 

distribution but is slow and computationally expensive. This is 

compounded at low alpha values, where the number of 

simulations required for accuracy grows.13 

The second method recognises that the SIA can be 

approximated with lognormal or gamma distributions.8 For this 

method a log-normal is chosen as the cumulative density 

function (CDF) is well defined, allowing easy extraction of the 

quantile for any given alpha value. Single-ion distributions from 

Nu Instruments and TOFWERKs instruments were fit using a log-

normal, both having an optimal shape parameter σ of 0.47 

(Figure 1C,D). The fit is particularly accurate in the tail portion 

of the distribution, where the thresholding will occur. The 

optimal σ and 𝜇 = ln(1) −  0.5𝜎2 (to produce a mean value of 

one) were used in eq. 4 to approximate the signal produced by 

the SIA. 

𝑌 =  ∑ Lognormal(𝜇, 𝜎2)𝑖
𝑘
𝑖=1  (4) 

To approximate the entire compound-Poisson process, the sum 

of k log-normal distributions must be calculated for each 

possible value of k in the Poisson distribution that is greater 

than zero. The sum of these log-normal distributions is 

approximated using another log-normal with parameters from 

eq. 5 and 6, using the method defined by Fenton.14 

𝜎𝑘
2 = ln ((𝑒𝜎2

− 1)
𝑘𝑒2𝜇

(𝑘𝑒𝜇)2 + 1)  (5) 

𝜇𝑘 = ln(𝑘𝑒𝜇) +
𝜎2−𝜎𝑘

2

2
  (6) 

Finally, the cumulative distribution function (CDF) of each of 

these new log-normal distributions 𝐹𝑋 is then weighted by the 

probability from the Poisson PMF 𝑓. A threshold can then be 

calculated using eq. 7, returning the first value at which the CDF 

𝐹𝑌 is greater than the desired zero-truncated quantile 𝑞0, 

calculated from the quantile q using eq 8. 

𝐹𝑌(𝑥) = ∑ 𝑓(𝑘; 𝜆) 𝐹𝑋(𝑥; 𝜇𝑘 , 𝜎𝑘
2)𝑘  (7) 

𝑞0 =  
𝑞−𝑓(0;𝜆)

1−𝑓(0;𝜆) 
  (8) 

This method is much faster than the simulation and requires 

only two parameters: the signal mean and the shape parameter 

σ of the single-ion distribution. These factors enable iterative 

thresholding to better estimate detection limits in cases where 

the background distribution is not known, such as when 

particles are partially dissolved or when unknown samples are 

analysed.15 

The LN approximation approach is visualised in Figure 1A where 

LN distributions for different Poisson events k were created 

(orange, yellow, purple and green lines) and summed (red line) 

to fit an ideal compound-Poisson process. It is visible that the 

 

Figure 1. A shows the LN approximation to fit an ideal compound Poisson process. LNs for different k (Poisson events) are simulated and summed 
(red) to fit the Compound Poisson distribution (bar diagram). Reproduced from Ref. 17 with permission from the Royal Society of Chemistry. B 
shows the relation between the threshold and α error rate for different (ionic background) means. It is visible that the true SIA is fitted well by 
the LN approximation method. C and D show real SP ICP-TOFMS data obtained from the two current vendors and the application of the LN 
approximation.  
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simulated compound-Poisson distribution approximates the 

compound process well and that the experimental (black 

vertical line) and approximated decision limits (red dashed line) 

(0.999th percentile) predicted approximately the same value.  

In Figure 1B, thresholds at different error rates (dashed lines) 

were simulated and plotted to compare the LN approximation 

at different mean background values to a Monte Carlo 

simulation of the compound-Poisson process (1 billion points; 

solid line). While threshold values were approximated well, 

small divergences were observed at high background levels and 

low error rates (e.g., λ = 10 counts) and Gaussian statistics may 

be more adequate to reflect these conditions more accurately. 

SPCal uses an automatic decision function in which Compound 

Poisson statistics are only applied to data sets with low mean 

backgrounds and Gaussian statistics are called otherwise. 

Finally, experimental SIAs (histograms, Figure 1C and D) were 

recorded for instruments from the two manufacturers and 

fitted using the proposed LN approximation (red line) 

demonstrating a high level of accordance for experimental and 

simulated distributions.  

 

Non-target particle screening 

Establishing the presence and composition of particles is 

fundamental to analysis, and yet can be difficult to achieve in 

practice. Typically, samples will have little to no a priori 

information and the presence of particles must be 

experimentally determined. In the case of environmental 

samples, where particle numbers are low, this requires 

extended analysis times and, with sequential mass analyses 

such as a quadrupole ICP-MS, analysis must be repeated for 

each element to inquire the presence of a particle.3 SP ICP-

TOFMS generally allows the acquisition of all m/z in a single 

measurement and is therefore predestined to carry out 

screening approaches. However, existing SP analysis algorithms 

are limited in their ability to pinpoint NP events for every 

element in data sets that can easily exceed several gigabytes. 

Additionally, the SIA needs to be known for every isotope signal 

to define a decision limit over which a particle is recognised as 

such. This would require a separate analysis of an ionic standard 

for each element. The shape parameter for the optimal log-

normal fit changes slightly over the mass range from 0.43 – 0.49 

from 45 to 238 amu. However, using the LN approximation with 

a sigma of 0.47 for all masses produces a maximum error of 2% 

in the quantile predicted for a mean signal of 1.0 at an alpha 

value of 1e-6, compared to using the optimal shape. For 

elements with lower m/z, errors were approximately 5%. 

Therefore, SIAs for individual elements do not need to be 

determined in parallel and are modelled with minimal input 

allowing rapid and efficient thresholding. The LN approximation 

approach has therefore a high utility to pinpoint particulate 

elements in unknown samples.16 SPCal incorporates a “non-

target screening” approach that rapidly defines a decision limit 

for all recorded m/z. Compound Poisson (LN approximation) or 

Gaussian statistics are called depending on the mean signal of 

the data set. Contiguous regions above the decision limit are 

counted and reported in parts-per-million relative to the total 

number of screened data points. The minimum score over 

which elements are pinpointed and can be chosen freely (by 

default set to 100 ppm). The score is reported as colour code 

which directly allows an overview on particulate element 

abundances across the periodic table. To limit processing time, 

screening is limited to a user selectable number of events at the 

start of the data file (by default the first 1,000,000 data points). 

Figure 2 shows an example from a recently published study 

where SP data from a diluted whisky sample was processed to 

indicate particulate elements.16 Using a threshold of 25 ppm 

whilst acquiring a mass range from 45-210 amu pinpointed Ti, 

Fe, Ag, Sn and Au as particulate elements within seconds and 

without previous knowledge.  

Calculator 

Simple arithmetic operations can be performed to investigate 

the sums, differences, or ratios of elements/isotopes on a per-

particle basis. This has different utilities and can for example be 

used for standardisation (e.g., an internal ionic standard) to 

compensate for signal drift, for calibration (e.g., isotope 

dilution analysis) as well as to correct for spectral interferences 

mathematically. Furthermore, the signal of all isotopes of an 

element as well as cumulative element signals contained in a 

single particle can be summed up to increase signal to noise 

ratios as previously demonstrated by Lockwood et al.9 An 

example is shown in Figure 3, where up-conversion NPs 

containing Gd and Yb were analysed. The single isotopes of 

both elements can be recorded individually as shown on the 

left. However, the summing of all Gd and Yb isotopes increases 

the overall signal for both elements, improving mass and size 

detection limits. Summing the element signals of Yb and Gd 

enhances figures of merit further.  

 

 

 

Figure 2. Loading SP ICP-TOFMS data is recognised by SPCal and a periodic 
table is called to select elements for further analysis. A non-target 
screening function is implemented. Mean signals for all isotopes are 
determined and a decision limit calculated. SP detections are counted and 
elements with particle numbers above a selectable threshold are 
highlighted in a colour code. 
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Compositional analysis 

One of the fundamental benefits of simultaneous mass 

acquisition is the ability to determine the elemental 

composition of individual particles. SPCal provides a simple 

interface to perform clustering, adapted from Tharaud et al.17, 

who used hierarchical agglomerative clustering (HAC) to 

classify both engineered and natural nanoparticles in the 

environment based on their isotopic/elemental composition. 

Here, events are grouped by successively merging pairs of 

clusters in a tree-like hierarchy. Clusters can then be separated 

by a minimum required distance within each cluster. HAC is 

implemented in the current software using a C extension and 

can be limited by both a minimum Euclidean distance and 

minimum cluster size. Prior to clustering, data can be 

calibrated to subsequently report mass/size compositions of 

elements in clusters. An example is shown for up-conversion 

NPs in Figure 3b. Individual clusters can subsequently be 

selected to display cluster-specific plots such as histograms and 

scatter plots. Finally, principal component analysis is 

implemented, to visualize the principal components and 

investigate composition-specific clusters visually as shown in 

Figure 4f.  

Conditional analysis 

SP ICP-TOFMS provides the option to interrogate SP events based 

on specific features. This conditional analysis provides opportunities 

to select specific size, mass or signal ranges, in which particles are 

further interrogated as well as to limit analyses to SP events 

associated with a specific cluster or containing one or a specific set 

of elements. This is demonstrated in Figure 4, where a mix containing 

small Au NPs (40 nm mean size), large Au NPs (100 nm mean size) 

 

Figure 3. (a) shows one function of the in-built calculator. NPs containing 
Yb and Gd can be detected based on individual isotopes. However, 
isotopes for each element can be accumulated to increase signal to noise 
ratios and even signals from different elements can be summed up to 
improve figures of merit further. (b) shows a HAC analysis of the analysed 
NP sample and determined 3 clusters with different element composition. 

 

Figure 4. (a) shows the raw data obtained after analysing a mixture of Au NPs (40 and 100 nm) and AuAg coreshell particles (15-50-15 nm). (b) shows 
the result of HAC determining two clusters either containing only Au or Au and Ag. Using conditional analysis, the second cluster was selected to 
determine the mass ratio (c) of Au and Ag on a SP level and the size distribution of this cluster (d). Using the condition to only analyse NPs not containing 
Ag allows to resolve the distribution of the 40 nm and 100 nm Au NPs as shown in (e). (f) shows a PCA analysis which display three clusters of NPs 
containing either only Au, Ag and Au and only Ag. The latter was not visible as cluster in HAC (b) due to a set minimum cluster size. 
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and coreshell AuAg NPs were analysed. Figure 4a shows the raw 

signals and SP events with varying signal intensity and composition. 

HAC was performed and identified two types of particles as expected 

– those which only contain Au, and which contain both Au and Ag 

(Figure 4b). The second cluster was subsequently selected for more 

thorough analysis as shown in Figure 4c and d, where a mass scatter 

plot of SP events as well as size histograms for each element fraction 

for this cluster were plotted, respectively. For the latter, it needs to 

be considered that SPCal projects size data by assuming a perfectly 

spherical shape, which is not the case for the Ag shell in a AuAg core 

shell particle. In case of more complex particles containing 

substructures and exhibiting different shapes (e.g., nanorods), mass-

based histograms are more adequate and can be selected instead. 

Figure 4e shows a conditional analysis in which only particles without 

Ag were calibrated and plotted in a size histogram. This allows the 

resolution of 40 nm and 100 nm Au NP fractions whilst eliminating 

interfering Au signals from the AuAg core-shell particles. Figure 4f 

shows the PCA analysis for SPCal to investigate the NP mixture and 

demonstrates the possibility to pinpoint three clusters. Here, a third 

cluster is visible, which was not picked up by the HCA due to the 

chosen minimum cluster size. This third cluster (top) contains only Ag 

without detectable fractions of Au, most likely due to synthesis 

impurities. 

Conclusions 

The maturation of TOF analysers capable of single particle 

applications provides new paradigms for the implementation of 

non-target particle screening and the determination of particle 

compositions. However, to really exploit this technology and to 

bring SP analyses to the next level, we need to overcome several 

challenges associated with data processing. On the one hand, 

we have vast data sets, accumulated at rates exceeding 1-2 

GB/min and, on the other hand, we require new ideas, models, 

statistics, and filters to interrogate specific aspects and features 

of NPs. One of the largest challenges is the harmonisation of 

data analysis and processing protocols to provide transparent, 

reproducible, and traceable analyses across different labs, 

instruments and applications. 

SPCal is an open-source python-based platform designed to 

enable the analysis of data sets recorded with instruments from 

various vendors. Building on software for quadrupole-based 

data, this work improves the underlying codebase and expands 

the application of SPCal to SP ICP-TOFMS. Easy handling of 

complex data sets and essential tools for SP analyses are 

accessed through a graphical user interface. Compound Poisson 

or Gaussian statistics are used to determine decision limits and 

a LN approximation method was developed to quickly calculate 

limits, specifically to drive non-target particle screenings. 

Several tools to facilitate calibrations via ionic responses or 

transport efficiency are readily integrated to enable the 

calculation of particle number concentrations as well as size and 

mass distributions. TOF-specific tools are integrated to enable 

compositional (HCA, PCA) and conditional analysis, to select 

specific particle features and to inquire isotope and element 

ratios in SP events. 

Additional informati on 

Further information on the installation, background and theory, 

usage and guided examples is available online 

(https://spcal.readthedocs.io/en/latest/index.html) and can be 

accessed via the “help” function in the GUI. The executable file 

is built on the GitHub server and hosted there. Users not 

wanting to run the executable file or not using Windows, may 

run the source code directly via python. Both the (latest) 

executable file and the source code can be found on 

https://github.com/djdt/spcal.  
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