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Abstract 

Noble metals, which form a significant proportion of catalysts at present, are not sustainable, 

which necessitates the need for non-noble metal alternatives.  This report contains a thorough 

analysis of data obtained from the CAS Content CollectionTM, pertaining to the recent 

development of non-noble metal catalysts, their usage, and applications. We herein identify the 

research trends since 2012 in four subfields: electrocatalysts, homogeneous catalysts, 

photocatalysts, and biocatalysts.  Within the subfields, we present: the most reported catalysts; 

emerging catalyst substances; significant reactions, and applications; map of the cooccurrence 

of catalyst substances with their reactions and applications.  With this article, we aim to provide 

a data driven overview of the complex publication landscape and unique scientific insights for a 

deeper understanding of the field.   

 

Introduction 

In 1987, the United Nations (UN) released the report, Our Common Future, which defined the 

concept of sustainable development as “development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs.”1  Sustainability 

consists of three aspects: economy, society, and environment.2  In turn, sustainable chemistry 

can be evaluated by three metrics: renewable percentage, optimum efficiency, and waste 

percentage.3 Catalysts are one of the tools that accommodate these parameters to achieve 

sustainability.  

 

Noble metals such as platinum, palladium, iridium, and ruthenium feature desired catalytic 

properties, such as high temperature tolerance and good catalytic activity.  For instance, 

Sonogashira coupling,4, 5 Suzuki–Miyaura coupling,6, 7 Heck reaction,8, 9 and Stille coupling10, 11 

need palladium as catalysts that result in good yields under various conditions. Iridium and 

ruthenium also possess catalytic capabilities for arylation, allylation, and other cross-coupling 

reactions.12, 13 Obtaining these noble metals catalysts presents a challenge when it comes to 

sustainability and the prices are subject to market fluctuations.14  Noble metals are mostly 

extracted from low grade ores for which a large amount needs to be mined to extract a small 
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amount of metal, resulting in environmental damage and high refining cost. For example, 

around 12 tons of ore is used to produce approximately 31 grams of platinum.15  In addition, 

refining of these low-grade ores requires a large amount of energy that is obtained typically via 

fossil fuels. The high cost and low abundance of noble metals are limiting factors in many key 

technologies such as fuel cells,16 zinc-air batteries,17 water splitting to produce hydrogen,18, 19 

and hydrogenation.20 Due to their sustainable cost and minimum environmental impact, noble 

metal replacement in catalytic applications has attracted the attention of scientists.  

The chemical properties which cause noble metals to excel as catalysts are their resistance to 

corrosion, ability to undergo 2-electron oxidation state changes21 common in catalytic 

processes, affinity toward π-bonds, and high product selectivity (Table 1). Ideal candidates for 

the replacements of noble metal catalysts are the 1st row transition metals namely titanium, 

vanadium, chromium, manganese, iron, cobalt, nickel, and copper because of their high 

availability in the Earth’s crust.  In addition, many non-noble metal catalysts are more tolerable 

in the human body compared to noble metal catalysts.22 Unfortunately, the stability under 

reaction conditions of non-noble metal catalyst presents a major challenge.23   

 

Table 1: Properties of noble metals and transition metals 

 

Property Noble metal 
1st row transition 

metal 
Notes 

Stability High Prone to corrosion  

Availability in earth 
crust 

Scarce Very high  

Tolerance in human 
body 

Low High 

1300ppm of iron is 
permitted in pharma 
products vs 10ppm in 
case of noble 
metals,24 which 
needs more energy 
to achieve 

Mining process 
Polluting and energy 
intensive 

Less pollution and 
energy consumption 

 

Ability to undergo 2-
electron oxidation 
stage changes 

Yes 
Prefer 1-electron 
oxidation state 
change 

Most catalytic 
processes involve 2-
electron transfer 
reactions 

Selectivity of 
products 

High Low  

 

With the help of a search query (See SI for more details), documents related to non-noble 

metal-based catalysts were identified and the related data was extracted from the CAS Content 

CollectionTM, the largest collection of human curated scientific knowledge. The bibliographic 

analysis and curated data presented in this manuscript aims to provide an enhanced landscape 
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view on this research topic, helping researchers and decision makers understand the progress 

in this specific area of study. 

As previously mentioned, the CAS Content CollectionTM was used to retrieve information 

regarding the use and application of non-noble metal catalysts / catalysis from the documents 

published 2012 onwards, resulting in around 50,000 publications (51,286 journals and 5978 

patents). In general, the publication trend of non-noble metal catalysts/catalysis manifests a 

steady growth, and the journal articles dominate the publication volume (82%) between 2012 

and 2024 (Figure 1).  

 

 

Figure 1. General journal and patent publication trend of non-noble metal catalysts/catalysis. 

When it comes to journal publications, the countries with the highest number of publications in 

descending order are China, United States, India, Germany, and South Korea (Figure 2A). The 

countries with the greatest number of patent publications are China, the United States, Japan, 

South Korea, and Germany. (Figure 2B). 
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Figure 2. Top countries or regions in terms of journal (A) and patent (B) publications related to 

non-noble metal catalysts / catalysis. 

The top 15 institutions with the highest number of journal publications among all countries are 

only from China (Figure 3 top left).  Upon excluding China, Singapore and the United States 

have 2 institutions each in the top institutions with the most journal publications (Figure 3 top 

right).  The top 15 institutions with the highest number of patent publications contain 14 

institutions from China, and 1 from Germany.  Upon excluding China, the top 15 institutions are 

from 7 different countries, with 4 from the United States, 3 from Germany, 3 from South Korea, 

and 2 from India.   
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Figure 3. Institutions with the highest number of journal and patent publications reporting non-

noble metal catalysts. 

 

We further separated the institutions with the highest number of patents into commercial and 

non-commercial categories (Figure 4).  In the commercial category, BASF SE has the highest 

number of patents, mostly reporting new inventions for the catalytic synthesis of chemicals.25  

Institutions belonging to China Petroleum and Chemical Corporation (SINOPEC) has the next 

highest number of patents in commercial category.  Codexis Inc which develops enzymes has 

patented biocatalysts for various synthetic applications related to pharmaceutical, food, medical 

applications.26  
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Figure 4. Commercial (bottom) and non-commercial (top) institutions with the highest number of 

patents reporting non-noble metal catalysts. 

In this report, we focus on looking into bibliometric data on sustainable chemistry using non-

noble metal catalysts in four research fields: electrocatalysts, photocatalysts, homogeneous 

catalysts, and biocatalysts. Data regarding these subfields was obtained by further narrowing 

the original search query (See SI for more details). Figure 5 shows the number of publications 

in the selected fields, where electrocatalyst-related publications are highest followed by 

biocatalysts, homogeneous catalysts and photocatalysts. Numbers of patents published were 

similar for biocatalysts, electrocatalysis and homogeneous catalysts, whereas relatively lesser 

patents were published using photocatalysts. We provide analysis of the developments and 

publications in these subfields in the sections that follow.  
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Figure 5. Publication volumes for the four subfields: Homogeneous Catalyst, Electrocatalyst, 

Photocatalyst, and Biocatalyst in journals and patents. 

 

We investigated the general trends among the catalysts substance to get a broader view.  

Figure 6 illustrates the number of publications in the various substance classes to which the 

catalysts belong to in journals(left) and patents(right).  Elements and organic/inorganic small 

molecules are the biggest class of catalysts.  This is followed by complex and unknown 

substances (called as ‘manual registration’ in CAS substance classes)27 which can be defined 

as: substances without known compositions like commercial catalysts; substances with known 

but large/complex structures such as enzymes.  The fourth biggest category of catalysts are the 

‘tabular inorganic’, which are inorganic substances which are mixtures of compounds such as 

mixed or doped metal oxides, and sulfides.  The chart also shows the further distribution of the 

catalyst substance classes to the major types of catalysts.  The obvious trends are the high 

contribution of elements, small molecules, and enzymes to the electrocatalysts, homogeneous 

catalysts, and biocatalysts respectively.      
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Figure 6.  Number of publications in the various substance classes of the catalysts and their 

distribution among the types of catalysis in journals (left) and patents (right)   

Electrocatalysts 

Electrocatalysts participate in electrochemical reactions as the electrodes, or the catalytic 

materials coated on the surface of electrodes. Platinum is the most used electrode material in 

electrochemical devices because of its catalytic activity. However, its limited abundance and 

high costs are hurdles that impede the advancement of certain vital electrochemical 

applications.28 In this section, we further analyze of non-noble metal electrocatalysts data 

related to sustainability, which was retrieved from our primary search query data using a more 

narrow electrocatalyst specific search query (See SI for more details).  

In general, electrocatalyst-related publications show a steady growth in journals and a slower 

growth in patents (Figure 7). Volume of publications in journals is considerably higher than 

patents, which demonstrates that much of the research in this area is yet to reach the point of 

commercialization. We anticipate that there will be more innovative ideas to be commercialized 

in the future, resulting in a higher growth in patents.  
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Figure 7. Annual publication trends of electrocatalysts in journals and patents. 

The Most Used Substances 

To further reveal the trend of substances used as electrocatalysts, herein we selected 

substances whose CAS indexed role is catalyst. Figure 8 shows that the top two substances are 

carbon and platinum. Carbon based materials are utilized as support to produce non-noble 

metal electrodes, while platinum based electrodes are used as a benchmark for comparison.29 

Nickel, graphene, cobalt, nitrogen, and iron are also frequently used for electrocatalyst 

research. Nitrogen is present in N-doped carbon materials which possess active sites for 

catalytic reactions.30  Single atom catalysts of transition metals such as iron, copper, and 

manganese loading on nitrogen doped carbon supports perform efficiently as oxygen reduction 

reaction catalysts in fuel cells. Cobalt, nickel, copper containing core-shell catalysts made of Co-

Ni carbonate hydroxides (CoNiCH) and  Cu(OH)2[Cu(OH)2@CoNiCH] was found to be efficient 

for oxygen evolution reaction.31 Copper, nickel, and phosphorus composites enable urea 

electrolysis to produce hydrogen at low overpotentials.32 Similar to platinum ruthenium dioxide 

(RuO2) and iridium oxide (IrO2) are used as benchmark for comparison with non-noble metal-

based electrocatalysts for oxygen evolution reaction applications. 
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Figure 8. Mostly used catalyst substances in electrocatalyst related publications. 

 

The Emerging Trends of Substances in Electrocatalysts 

Catalyst substances that grew significantly in recent years are presented in the Figure 9 

alongside their growth trends.  Co-Fe alloy, Fe-Ni alloy, vanadium, niobium, zinc, nickel 

selenide, cobalt diselenide, nickel sulfide, MoO2, and MoO3 are identified as the emerging 

catalysts.  Co-Fe alloy and Fe-Ni alloy are efficient bifunctional catalysts capable of performing 

both oxygen evolution (OER) and oxygen reduction (ORR) used in applications such as zinc-air 

batteries33-35 and water splitting.36  Nickel selenides are efficient for hydrogen evolution due to 

their low overpotential.37, 38  Cobalt diselenide is an efficient non-noble metal based bifunctional 

catalyst capable of performing both oxygen evolution and hydrogen evolution (HER), used 

mostly in HER studies.39, 40  Composites containing various nickel sulfides are bifunctional 

catalysts capable of performing both OER and HER reactions with low overpotentials.41, 42  The 

growth of molybdenum dioxide in recent years is due to its low cost, high stability, and low 

overpotential for HER applications.43-45  Due to its stability in alkaline medium and efficient HER 

catalytic performance, there is increase in research interest in molybdenum trioxide recently.46, 
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47   Vanadim doping has been found to increase the durability of phosphide and sulfide catalysts 

used for OER and HER reactions, which has been attributed to the high valency of vanadium.48, 

49 

Figure 9. Emerging substances as electrocatalysts in publications from 2013-2022.In Figure 9, 

the emerging trend of electrocatalysts are shown. 

 

To develop a broader perspective of the substances used as electrocatalysts and to find use of 

substances with varying composition such as layered double hydroxides (LDH) and MXenes, 

we delved into the prevalent substance classes and their patent to journal ratios (Figure 10).  

LDH, transition metals, transition metal phosphides, and noble metals are among the top 

substances used as catalysts.  Due to its high surface area, tunable and variable composition, 

stability, and ease of doping and intercalation, LDH and composites containing LDH are studied 

for HER,50 OER,51 and ORR,52 which are applied in fuel cells, overall water splitting, and zinc-air 

batteries.  Other carbon-based substances, and polymers in the list are used as supports, 

binders, and fillers.  MXene is another substance class like LDH, that did not appear in the top 

catalyst substances due to its variable composition.  MXenes are layered substances which 

possess multiple sites known for their catalytic activity such as metal nitride, metal carbide, and 

carbon nitride within their structure.  These favorable properties have driven studies using 

MXenes as catalysts and co-catalysts for water splitting reactions.53-55  The figure also presents 

the patent to journal ratio, which is high among the metallic catalysts compared to the other 

catalysts.         
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Figure 10: Substance groups which are used as electrocatalysts and their patent to journal 

ratio.   

We then delved into reaction related topics and their patent to journal ratio (Figure 11).    The 

publication volumes of the top 25 reaction topics show oxygen evolution reaction (OER), 

electrochemical reduction, hydrogen evolution reaction (HER), and water splitting as the top 

reaction types.  OER is a well-known half reaction in the overall water splitting process used to 

produce hydrogen.  OER also plays a significant role in zinc-air batteries; these batteries hold a 

higher energy density than lithium batteries, hence their emergence as an alternative for 

applications requiring less voltage.  Due to the efforts to generate hydrogen, a potential green 

fuel, hydrogen evolution reaction has gained significance.  Platinum is considered as the best 

HER catalyst; any breakthrough in finding sustainable alternative to Pt will have significant 

impact in the green hydrogen production industry.56 

The co-occurrence between catalysts and reactions is shown in Figure 12. One of the 

observations is the use of layered materials such as graphene, graphite, sulfur, and 

molybdenum sulfide in intercalation reactions.  Molybdenum sulfide, cobalt, copper, 
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molybdenum, nickel phosphide, and molybdenum carbide also co-occur with the hydrogen 

evolution reaction.      

Figure 11. Most reported reactions in electrocatalysts and their patent to journal ratio 
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Figure 12. Co-occurrence of catalyst substances and reactions in electrocatalyst publications.   

The most indexed uses and their patent to journal ratio are presented in Figure 13.  As seen in 

the indexed reactions, uses related to water splitting are present in most publications.  A notable 

usage is the bifunctional catalysts, which are capable of catalyzing both the anode and cathode 

reactions in overall water splitting,57 and zinc-air battery.58  A variety of transition metal based 

sulfide,59 phosphide,60 oxide,61 and alloy62 catalysts have displayed bifunctional capabilities.  

Lastly, reduction reaction catalysts have the highest patent to journal ratio among of the various 

uses, which seems to be due to the high commercial interest in oxygen reduction reaction 

catalysts having applications in fuel cells.63  An analysis of cooccurrence of the usage and 

catalyst substances (Figure 14), shows that carbon, graphite, graphene, and nitrogen are the 

primary non-metal substances that co-occurred with catalysts/catalysis-based usage concepts; 

nickel, cobalt, iron, copper, molybdenum disulfide, and zinc are the metal substances that reveal 

high to moderate co-occurrence in electrocatalyst-related research documents. 
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Figure 13. Most reported uses in electrocatalyst publications and their patent to journal ratio 
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Figure 14. Co-occurrence of catalyst substances and uses in electrocatalyst publication. 

The most prevalent devices or parts of the devices indexed from non-noble metal electrocatalyst 

related publications are fuel cells and batteries (Figure 15).  Hydrogen based fuel cells play a 

major role in the proposed hydrogen economy, and research on fuel cells is driven by the need 

for efficient, stable, and cost effective catalysts64 for ORR65 and hydrogen oxidation reactions.66  

Batteries have become essential for storing the various forms of green energy, solving the issue 

that arises due to their intermittent nature.  However, the primary driver behind the need for non-

noble metal alternatives in battery research are the zinc-air batteries.  Zinc-air batteries involve 

ORR and OER which traditionally need expensive platinum catalysts, hence need alternatives.67  
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Solar cells, supercapacitors, and photoelectrochemical cells are other popular devices.  To bring 

down the cost of solar cells, there is a need for alternatives to the platinum counter electrodes.68, 

69 Figure 16 shows the prevalence of the catalyst substances within different apparatus types.  

Zinc and ruthenium dioxide have high co-occurrence with batteries due to the battery 

technologies such as zinc-air and zinc-ion, where ruthenium dioxide is used as oxygen evolution 

reaction catalyst.  Palladium is widely used as catalyst in fuel cell related applications.  Owing to 

their photocatalytic activity, titania is prevalent in the solar cells and photoanodes.  Photoanodes 

are part of photoelectrochemical cells for overall water splitting, where ferric oxide70 is used as 

the photocatalyst, and NiO,71 cobalt phosphide,72 and nickel dihydroxide73 are used as 

cocatalysts for oxygen evolution reaction.         

 

Figure 15. Most prevalent devices in electrocatalyst publications 
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Figure 16. Cooccurrence between the most reported apparatuses and catalysts substance in 

electrocatalyst publications  

Selected Articles in Electrocatalysts from the Dataset 

Selected articles from the dataset of electrocatalysts reflecting the major types of substances 

and their function are summarized below.  

Multimetallic systems, such as bimetallic systems have better electronic conductivity than 
monometallic catalysts.74, 75 First-row transition metal-based trimetallic oxide-hydroxide 
electrocatalysts have shown advanced catalytic properties when compared to mono- and 
bimetallic-based catalysts.76-78 For instance, Nanda et al. reported porous nanosheets 
composed of cobalt, nickel and manganese oxide-hydroxide that manifest higher catalytic 
activity than bimetallic systems (Ni-Mn, Co-Mn or Co-Ni).79 This trimetallic nanosheet showed 
0% loss of current density after 8000 cycles and performed better than commercially available 
RuO2 catalysts in terms of durability and catalytic activity.  
  
Cobalt oxides demonstrate efficient catalytic properties as anode materials for oxygen evolution 
reaction (OER) in acidic media, but their structural stability is limited under open circuit or high 
potential applications.80-82  A nitrogen-doped carbon coated Co3O4 (Co3O4@C) was reported by 
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Galán-Mascarós et al. showing performance consistency towards OER.83 This scalable 
electrode composite (Co3O4@C/GPO) was made by mixing Co3O4@C, graphite (G), and 
paraffin oil (PO) in a specific ratio by weight. This type of anode composite sustains OER 
performance in 1M H2SO4 solution for over 40 hours.  
Due to the high porosity and large surface area of metal-organic frameworks (MOFs), they are 
applied for water splitting applications.84 Heteroatom doping and nanofabrication are utilized to 
enhance the catalytic properties of MOFs. Yun et al. revealed a bifunctional electrocatalysts, V 
doped Ni-Fe MOFs@graphene oxide, synthesized by vanadium doping and carbonization of 
bimetallic Ni-Fe MOFs.85 The V–Ni0.06Fe0.06 MOF/GO performed as a bifunctional electrocatalyst 
for HER and OER in the presence of an acidic or alkaline solution.  
  
Due to the low cost and earth abundance, molybdenum sulfide (MoS2) has been identified as a 
promising electrocatalyst for HER.86, 87  However, MoS2 shows poor oxygen evolution activity 
because of its insufficient binding with the reaction intermediate on the catalytic site. Liu et al. 
utilized 3d transition metal doping to modify the active site of MoS2. 3d-TMO6@MoS2 (TM = Mn, 
Fe, and Co) shows better OER catalytic activity than the standard catalyst, IrO2. This catalyst 
also possesses structural stability.88  
  
 
Electrochemical synthesis of H2O2 via 2-electron oxygen reduction is challenging due to the high 

cost of noble metal-based catalysts such as Au–Pd89 and Au–Pt–Ni.90 Nickel oxide possess 

unsaturated metal centers that facilitate proper *OOH binding for electrochemical synthesis of 

hydrogen peroxide,91 whereas amorphous metal oxides possess better catalytic properties due 

to their coordinately unsaturated open sites.92  Zhang et al. displayed amorphous nickel oxides 

coated on carbon nanosheets (NiOx-C).93  This scalable composite NiOx-C selectively catalyzes 

2-electron oxygen reduction (~91%) in 0.1M KOH between 0.15–0.60 V to produce H2O2 due to 

high NiOx-C–*OOH binding strength. 

 

Photocatalysts 

In photocatalysis, semiconductor materials absorb light energy and produce electron-hole pairs 

which drive reduction, and oxidation reactions respectively.  The use of photocatalysis to split 

water and produce hydrogen only using solar energy is considered an ideal solution to energy 

and environmental problems.  Solar energy is primarily composed of visible light and infrared 

radiation.  Most of the photocatalysts known till date either function only under UV light 

irradiation, do not have sufficient efficiency under visible light irradiation for practical 

applications, or suffer from low long term stability issues.  The challenge and the primary focus 

in the field of photocatalysis has been to find semiconductor materials which are capable of 

splitting water using only solar energy and remain stable under the operating conditions.  To 

scale up the production of hydrogen to levels that meet global energy needs, an enormous 

amount of photocatalysts will be needed, and hence it is necessary that they are made of earth 

abundant elements to become cost effective.   

The search query resulted in 6507 documents out of which 6159 were journal publications and 

338 were patents.  We found a total of 676 review articles within the journal publications.    

Figure 17 shows the number of publications in the from 2012.  The number of publications in the 

journals and patents shows a steady increase over the years, demonstrating the continuous 
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rising interest in this field. The huge difference between journal publications and the patents is 

an indication that research in this area of sustainable photocatalysts has still not reached the 

point of commercialization.    

 

Figure 17. Year-wise number of publications related to photocatalysts. 

 

As expected, the 15 topmost cited documents were reviews of the existing literature and they 

cover various aspects such as co-catalysts for photocatalysts,94 catalytic water treatment,95 

hydrogen evolution, silver nanoparticles, Cu based nanoparticles,96 noble-metal free 

nanoparticles,97 semiconductors for photocatalytic water splitting, transition-metal based co-

catalysts for photocatalytic water splitting, carbon nitride photocatalysts, MXene 

photocatalysts,98 nano and microstructured catalysts,99 non-noble metal plasmonic 

photocatalysts,100 and single-atom catalysts on 2D nanomaterials.  6 out of the top 25 most cited 

photocatalyst related documents were about graphitic carbon nitride, highlighting the interest 

and the potential of this specific photocatalyst.   

Frequently Used Substances and their Growth Trend 

An analysis of the substances with the catalyst role showed that carbon nitride (C3N4), titania, 

cadmium sulfide, and molybdenum sulfide are among the most reported catalysts (Figure 18).  

The other catalysts in the top 15 are zinc oxide, Co3O4, tungsten oxide, indium zinc sulfide, 

Fe2O3, BiVO4, cadmium zinc sulfide, and nickel phosphide. Carbon nitride is a promising 

photocatalyst due to its visible light absorption, stability in alkaline and acidic conditions, and 

organic composition.101  Cadmium sulfide has bandgap and band positions suitable for overall 

water splitting using visible light irradiation. However, it is unstable due to photocorrosion and 

the potential for environmental pollution due to the presence of toxic cadmium.  Despite these 

concerns, studies on CdS continue due to hopes of stabilizing it and containing the 

environmental damage at a later stage.102   
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The most reported photocatalysts were also color coded according to their patent-to-journal 

ratio.  In general, oxide photocatalysts such as tungsten trioxide, zinc oxide and titanium dioxide 

have high contribution from patents, compared to nitride and sulfide photocatalysts.  Due to its 

visible light activity and stability, films of WO3 has been patented for applications such as air 

purification103, 104 and refining.105     

In addition, from the pool of 100 photocatalysts with the highest number of publications, we 

selected 10 catalysts that demonstrated the highest growth within the last five years (Figure 19).  

Carbon nitride stands out from the rest of the catalysts due to its relatively very high number of 

publications along with rapid growth in recent years.  Factors such as band gap suitable for 

visible light absorption, band positions suitable for overall water splitting, metal-free composition 

and ease of preparation contribute to the high interest in carbon nitride photocatalysts.  Most of 

the other catalysts with higher number of publications are also growing rapidly, due to the recent 

interest in finding sustainable alternatives to the existing catalysts.  It is also worthwhile to note 

that titanium dioxide continues to draw interest more than 5 decades after the first report of 

using it for photocatalytic water splitting.   

 

Figure 18. Catalysts substance with the highest number of publications color coded according 

to their patent to journal ratio. 
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Figure 19. Emerging photocatalysts with the high growth in publications 

We then analyzed the data to find the reactions which are facilitated using photocatalysts.   

Figure 20 presents the most reported reactions along with their patent to journal ratios.  

Photocatalysts are most used for water splitting to produce hydrogen, and for the decomposition 

of pollutants.  The electron-hole pairs generated can be used for carrying out both the reduction 

and the oxidation reactions, as seen by the presence of both photooxidation and photochemical 

reduction.  Due to the limited availability of photocatalysts capable of performing overall water 

splitting, a combination of two different photocatalysts each capable of performing only water 

oxidation or water reduction in a tandem reaction is widely studied.106  Electrochemical reduction 

and oxidation are other important reactions in the publications reporting photocatalysts. 

Electrocatalysts which enhance the hydrogen evolution or oxygen evolution reaction, referred to 

as co-catalysts, are loaded on to the surface of the photocatalysts.107, 108  To a lesser extent, 

photocatalysts are also studied for organic reactions such as regioselective synthesis,109 and 

diastereoselective synthesis.110       

Figure 21 shows the cooccurrence between the reactions and the most used catalysts within the 

photocatalyst dataset.  Due to their band positions suitable for hydrogen evolution reaction and 

low cost, sulfide photocatalysts such as molybdenum disulfide,111, 112 cadmium sulfide, zinc 

sulfide, and cadmium zinc sulfide have higher contribution to this reaction type.  Despite their 

favorable properties, stability is a common drawback in the sulfide photocatalysts constraining 

their success.  Sulfide based materials such MoS2 are also widely explored as co-catalysts to 

enhance the hydrogen evolution properties of stable photocatalysts such as C3N4.113, 114  Despite 

its large bandgap capable of absorbing only UV light, ZnO continues to be explored as 

photocatalysts, due its benign nature and low cost, especially for photocatalytic decomposition 

of pollutant molecules.115  The visible light activity of ZnO is increased by doping it with metals, 

non-metals, and creating heterojunctions116 with other small bandgap semiconductors.115, 117  
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The presence of iron in decomposition and photooxidation studies can be attributed to the use 

of photo Fenton reaction, which involves iron and hydrogen peroxide, and iron containing metal 

organic frameworks118 115, 117  The presence of iron in decomposition and photooxidation studies 

can be attributed to the use of photo Fenton reaction, which involves iron and hydrogen 

peroxide, and iron containing metal organic frameworks118 for the oxidation of pollutant 

substances.119  In the oxygen evolution reaction type, bismuth vanadate and cobalt have high 

contribution due to their high photocatalytic120 and co-catalytic121 activity respectively towards 

this reaction type.  Another catalyst with high contribution is eosin, which has high presence in 

organic conversion reactions,122, 123 due to its use as a photosensitizer in these reactions.     

2,4,5,6-Tetrakis(9H-carbazol-9-yl) isophthalonitrile also called as 4CzIPN and rose bengal are 

other organic photocatalysts widely used in various organic conversion reactions.122, 124  

 

 

  

Figure 20. Most reported reactions in the photocatalyst publications 
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Figure 21. Co-occurrence between the top reactions and the most reported catalyst substance 

in the photocatalysis related publications.   

Figure 22 lists the most reported usage within the photocatalyst dataset.  The cooccurrence 

between the usage and the catalysts within the photocatalyst dataset is presented in Figure 23.  

The trend among the usage is like the reaction types (Figure 20), with water splitting, and the 

related catalysts being the predominant ones.      
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Figure 22. Most prevalent usage in the photocatalyst related publications 
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Figure 23. Co-occurrence between the top usage and the most reported catalyst substance in 

the photocatalyst publications.   
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In addition to their usage directly as photocatalysts in powder or film form, photocatalysts are 

also used to fabricate devices or parts of the devices to study the properties of either the 

photocatalyst or the entire device.  By analyzing the CAS Content CollectionTM data, a list of the 

most reported devices or parts of devices was generated and are listed in Figure 24.  

Photocatalysts are fabricated as photocathodes, photoanodes, which are either part of 

photoelectrochemical cells used for water splitting to produce hydrogen or as solar cells.  

Photocatalysts are also part of various types of solar cells where the photogenerated electrons 

and holes are used to produce electricity instead of carrying out chemical reactions.  Among 

these devices, patent to journal ratio is high among the solar cells, electroluminescent devices, 

photochemical reactors, and photoelectric devices.   

We further analyzed the cooccurrence between the various devices and the most reported 

photocatalysts (Figure 25).  Bismuth vanadate and tungsten trioxide have a higher than usual 

contribution to the photoanodes category, as they are predominantly used for the oxidation of 

water.  Molybdenum disulfide, cupric oxide, cuprous oxide, and cadmium sulfide are the 

photocatalysts used in photocathodes for the reduction of water to produce hydrogen, whereas 

nickel monoxide is co-catalyst used to enhance the hydrogen production.   

 

Figure 24. Most reported apparatuses in the photocatalyst related publications 
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Figure 25. Co-occurrence of the most reported catalyst substances and the apparatuses in the 

photocatalyst publications. 
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Selected Journals in Photocatalysts from the Dataset 

In the efforts to achieve sustainability in photocatalysis, nonmetal-based catalysts such as 

graphitic carbon nitride (CN) are getting more attention due to their catalytic activity towards 

photosynthesis.125 Microporous organic polymers (MOPs) are also studied due to their gas 

separation properties126 and potential photocatalytic properties, for example, CO2 

photoreduction.127, 128 Kung et al. reported a covalently linked graphitic carbon nitride-

melamine—resorcinol—formaldehyde (MRF) microsphere polymers, which possesses 

photocatalytic properties for CO2 reduction to methanol.129 This material has efficient charge 

separation due to its covalent C-N bond between CN and MRF, which results in higher 

photocatalytic properties than CN and MRF alone by 21 and 10 times respectively. 

Titania and zirconia are both known for their chemical stability and photocatalytic properties.130, 

131  The wide band gap of these two types of catalysts (TiO2: ~3.2 eV; ZrO2: >5 eV) resulted in 

limited photocatalytic activity under visible light.131, 132 The graphitic carbon nitride (CN) 

possesses a lower band gap (2.7 eV) and has been proven to form composite materials with 

titania. This binary TiO2–CN composite material becomes the visible light photocatalyst.133  

Herein, Chen et al. reported a ternary nanocomposite formed by titania, zirconia, and CN that 

has high specific surface area and bandgap falling in the visible light region.134  This 

nanocomposite photocatalyst further displays its high catalytic efficiency in photodegradation of 

the antibiotic, berberine hydrochloride (BH). 

Boron nitride (BN) is another type of nonmetal photocatalysts due to good thermal stability.135  

Doping heteroatoms and building hierarchical structures are two promising strategies that could 

enhance catalytic properties of BN-based materials.136, 137 Herein, Lee et al. revealed a 

hierarchical BN-like flower catalyst with B–O active site that facilitates the photocatalysis of CO2 

reduction.138  This as-prepared catalyst has 26.7 and 7.3 times of CO production rate more than 

the bulk BN and bulk CN for the CO2 reduction reaction. 

Synthetic dyes like methylene blue are major water pollutants, resulting in the degradation of 

methylene blue to be widely studied.139  TiO2 and ZnO have been studied to remove dyes and 

other pollutants.140  Majority of their light absorption falls in UV light region.141, 142  Doping 

tungsten into ZnO makes the light absorption extend to visible light region and improves the 

photocatalytic efficiency.143  Ibupoto et al. developed a low temperature method for the 

synthesis of tungsten-doped ZnO photocatalysts that perform highly efficient methylene blue 

degradation.144  These tungsten-doped ZnO can catalyze the complete degradation of 

methylene blue to a weakly acid aqueous solution within an hour. 

As previously mentioned, hydrogen production from water splitting catalyzed by photocatalysts 

has become attractive in the past few decades.145-148  ZnS, ZnCdS, MoS2, and their composite 

materials have been studied for the photocatalytic hydrogen production.149-151  MOS2/ZnS,152  

MoS2/ZnxCd1-xS,153 and ZnxCd1-xS/ZnS154 generally performed better than the single component 

materials in photocatalytic hydrogen evolution. Few layers of MOS2 cocatalysts loaded on the 

surface of CdS photocatalysts have been found to drastically enhance photocatalytic hydrogen 

generation.155 Similarly, Shangguan et al. reported few-layered MoS2/ZnxCd1-xS/ZnS 

heterostructures with high efficiency for photocatalytic hydrogen evolution.156  A supernatant 

MoS2 colloidal solution was used to react with ZnxCd1-xS/ZnS(en)1/2 to form the catalyst. This 

kind of heterostructures possess superior performance in photocatalytic hydrogen production 

over other ZnCdS@MoS2 catalysts. 
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Homogeneous Catalysts 

Platinum group metals (PGMs) are predominant in homogeneous catalysis because of their 
high activity, stability, and versatility. They can activate various bonds and form stable 
complexes with different ligands. They can also catalyze a wide range of reactions such as 
hydrogenation, oxidation, coupling, cyclization, polymerization and asymmetric synthesis.157 
They can also exhibit multiple oxidation states and redox behavior that can facilitate catalytic 
cycles. Table 2 highlights some of the significant reactions that PGMs are used as catalysts.  

Table 2. Examples of PGM-based homogeneous catalysts. 

Metal Applications 

Platinum(II) 
hydrosilylation of alkenes and alkynes, silane etherification, Wacker oxidation of alkenes and 
Heck coupling of aryl halides. 

Palladium(II) 
Suzuki cross-coupling of aryl halides, Sonogashira coupling of alkynes, carbonylation of aryl 
halides and allylic alkylation. 

Rhodium(I) 
hydroformylation of alkenes, hydroboration of alkenes, asymmetric hydrogenation of ketones 
and olefin metathesis. 

Iridium(I) 
asymmetric hydrogenation of imines, transfer hydrogenation of ketones, water oxidation and C-
H borylation. 

Ruthenium(II) 
olefin metathesis, ring-closing metathesis, Grubbs-Hoveyda cross-metathesis and Noyori 
asymmetric hydrogenation of ketones. 

Osmium(VIII) 
dihydroxylation of alkenes, Sharpless asymmetric dihydroxylation and Jacobsen-Katsuki 
epoxidation 

As an expert-curated resource, the CAS content is utilized here for the quantitative analysis of 
publications against variables including time, country/region, research area, and substance 
details. Homogeneous catalysts query (see SI for more details) was used to retrieve documents 
that are specific to reports discussing using sustainable catalysts for homogeneous catalysis 
and/or the studies for the replacement of noble-metal catalysts. A total of 7865 documents were 
used for the analysis described below.  

Figure 26 provides the annual publication trend in this area with a breakdown of journal and 
patent publications. Like the general search described above there has been significant growth 
in the area since 2012 where there were less than 400 total publications and more than 1000 in 
2023.  
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Figure 26. Annual number of publications in homogeneous catalysts among journals and 
patents. 

Coupling Reaction Concepts 

Table 3. The top 10 coupling reaction concepts from the publications analyzed. 

Reaction concept Number of publications 

Cross-coupling reaction 292 

Coupling reaction 247 

Suzuki coupling reaction 148 

Sonogashira coupling reaction 88 

Heck reaction 54 

Oxidative cross-coupling reaction 38 

Cross-coupling reaction, regioselective 21 

Cross-coupling reaction, stereoselective 19 

Buchwald-Hartwig reaction 15 

Stille coupling reaction 10 
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Coupling and cross-coupling ranks among the most studied reactions from our search and 
among the hetero-coupling reactions Suzuki coupling is the most studied (Table 3). This is 
sensible as Suzuki coupling is a widely used method for making carbon-carbon bonds between 
organoboron compounds and organic halides or triflates, using a palladium catalyst and a base. 
It has many advantages over other coupling methods, such as easy availability and stability of 
organoboron compounds, mild reaction conditions, high functional group tolerance, and low 
toxicity and environmental impact. Suzuki coupling plays a prominent role in medicinal 
chemistry.158 For these reasons Suzuki coupling has been a prime target in the search for more 
sustainable catalysts. Famously, there have been examples of reports where authors claimed to 
demonstrate palladium-free Suzuki coupling that were later shown to be catalyzed from 
palladium contamination. 

Leadbeater et. al. reported the first example of transition-metal free Suzuki coupling reactions in 
2003.159 The group later discovered that the Na2CO3 used for the reaction contained palladium 
contamination. The group subsequently published an updated procedure for the reaction to 
include parts-per-billion levels of palladium as a catalyst.160 In 2021 Xu et al.  claimed that bis(o-
tolyl)amine organocatalysts161-164 However, several groups independently reinvestigated their 
claims and found that the amine catalysts were contaminated with palladium complexes that 
were entrained during the chromatographic purification of the amine.162-164  The paper was 
retracted by the authors in 2021. 

Given these instances, it is crucial to employ rigorous methods to rule out palladium 
contamination in new catalysts. Ensuring the purity and identity of the catalyst involves 
performing rigorous purification and characterization, which may include recrystallization, 
distillation, sublimation, chromatography, mass spectrometry, nuclear magnetic resonance 
spectroscopy, infrared spectroscopy, X-ray crystallography, and elemental analysis. Sensitive 
and accurate analysis of the catalyst and the reaction mixture for trace amounts of palladium 
can be achieved using techniques such as inductively coupled plasma mass spectrometry (ICP-
MS), X-ray fluorescence spectroscopy (XRF), energy-dispersive X-ray spectroscopy (EDX), or 
electrochemical deposition. Additionally, performing control experiments using different sources 
of the catalyst, solvents, bases, substrates, reaction conditions, and palladium scavengers helps 
rule out any possible sources of palladium contamination or interference. Finally, mechanistic 
studies using isotopic labeling, kinetic analysis, intermediate trapping, or spectroscopic 
monitoring are essential to elucidate the reaction pathway and identify the active species. 
Employing these methods ensures that the reported catalyst performance is not compromised 
by unnoticed palladium contamination. 

The Most Used Substances 

We further analyzed the frequency of the substance use in the field of homogeneous catalysts 
(Figure 27). Iodine is the most frequently used catalyst substance.  Various studies suggest that 
iodine catalysis primarily happens by activation of reactant through halogen bonding.165, 166    For 
example, iodine is used for oxidative cyclization and oxo-acyloxylation of alkenes and enol 
ethers.167, 168 Nickel,169, 170 cobalt,171, 172 iron,169 and copper169 usually catalyze coupling 
reactions, C–H functionalization, asymmetric hydrogenation, and direct arylation with their 
metal-complex forms. Eosin,171-174 iron,169 and copper169 usually catalyze coupling reactions, C–
H functionalization, asymmetric hydrogenation, and direct arylation with their metal-complex 
forms. Eosin,173, 174 tetrabutylammonium iodide,175, 176 and 2,4,5,6-tetra(9H-carbazol-9-
yl)isophthalonitrile177, 178 perform like iodine by creating radical species to initiate the reaction. 
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Tris(pentaflurophenyl)borane play the role as a Lewis acid catalyst to promote hydroarylation179 
and hydrosilylation.180 p-toluenesulfonic acid (pTSA)177, 178, 181, 182 perform like iodine by creating 
radical species to initiate the reaction. Tris(pentaflurophenyl)borane play the role as a Lewis 
acid catalyst to promote hydroarylation179 and hydrosilylation.180 p-toluenesulfonic acid 
(pTSA)181, 182 and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)183, 184 also perform catalytic 
reactions as metal-free catalysts. 

 

Figure 27. Top 35 substance mostly used as homogeneous catalysts. 

In Figure 28, the emerging trend of homogeneous catalysts are shown. Transition metal based 

catalysts, zinc, nickel, copper, cobalt, manganese, and molybdenum emerge in the period of 

2013–2022.185-187  2,4,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) is a visible light driven 

homogeneous photocatalyst capable of functioning under visible light for organic 

transformations124 185-187  2,4,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) is a visible light 

driven homogeneous photocatalyst capable of functioning under visible light for organic 

transformations124 such as difunctionalization of alkenes and alkynes,122  and cyanoalkylation.123  

Acridinium, 10-methyl-9-(2,4,6-trimethylphenyl)-, perchlorate (9-Mesityl-10-methylacridinium 

perchlorate) is another visible light active organic photocatalyst188 known for its high efficiency in 

generating radical initiators due to its long lived electron transfer state.189  Boron trifluoride 

etherate is a metal-free Lewis acid catalyst for various reactions such as reductive aldol 
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reaction,190 vinylation of carbonyl oxygen,191 and electrophilic addition/cyclization of 1,3-

enynes.192 

 

 

Figure 28. Sustainable homogeneous catalysts which grew significantly between 2013-2022. 

In addition to individual catalyst substances, we analyzed the data for substance classes used 

as homogeneous catalysts (Figure 29).  The top substance groups to which the homogeneous 

catalysts belonged to are transition metals, Lewis acids, N-heterocyclic carbenes, transition 

metal complexes, and Bronsted acids.  Most common Lewis acids catalysts are organoboron 

catalysts,193 which can form frustrated Lewis pairs (FLP) capable of catalyzing a range of 

organic reactions including hydrogenation, dehydrogenation and cycloisomerization.194  Metals, 

noble-metals, and bases have high patent to journal ratio indicating high commercial interest in 

these substances.   
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Figure 29. Substance classes reported as homogeneous catalysts. 

Figure 30 shows the types of reactions reported using sustainable homogeneous catalysts and 

their patent to journal ratio.  Reactions to synthesize a specific isomer are the most reported 

reaction types.  The other most reported reactions include tandem reaction, cyclization, and 

oxidation reactions.  Reaction types with high patent to journal ratio are hydrogenation, 

heterocyclization, reduction, oxidation, and condensation reactions.   

Non-metal substances such as iodine, eosin, tetrabutyl iodide, and 2,4,5,6-tetra(9H-carbazol-9-

yl)isophthalonitrile, which are radical initiators in homogeneous catalysis, possess high 

frequency of co-occurrence with regioselective synthesis, diastereoselective synthesis, and 

cross-coupling reactions (Figure 31). Metal substances like cobalt, iron, nickel, and copper 

mainly co-occurred with cross-coupling reactions, oxidation, reduction, hydrogenation, and 

electrochemical reactions. 
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Figure 30. Reactions in high numbers within the homogeneous catalysts publications 
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Figure 31. Co-occurrence between catalyst substances and reactions in homogeneous catalyst 

publication. 

Figure 32 lists the most reported uses in the homogeneous catalysis dataset.  In addition to the 

general use cases such photocatalysts and organocatalysts, cyclization, cross-coupling, and 

oxidation catalysts are among the most reported uses.  Polymerization, ring-opening, 

hydrosilylation, and oxidation in particular have a high patent to journal ration indicating 

commercial interest.   

Co-occurrence between the catalyst substances and their uses is presented in Figure 33.  

Trends such as the use of palladium diacetate as coupling catalysts, eosin in photocatalysts, 

cobalt, nickel, and iron in hydrogen and oxidation catalysts, are evident from this map.  Other 

notable uses are 2,4,5,6-Tetra(9H-carbazol-9-yl)isophthalonitrile in alkylation and bond 

formation catalysts, p-toluenesulfonicacid in polymerization catalysts, and copper in oxidative 

cyclization catalysts.    
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Figure 32. Most prevalent usage in homogeneous catalyst publications 
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Figure 33. Co-occurrence between most reported usage and the catalyst substances in 

homogeneous catalyst publications 

 

Biocatalysts / enzymes 

Biocatalysts are based on natural proteins, enzymes, which can catalyze specific chemical 

reactions outside the living cells. Enzymatic biocatalysts are true green and sustainable 

catalysts.  Produced from available renewable feedstocks (plants, animal tissues, bacteria, 

yeast, and fungi), they are organic, biodegradable, non-toxic and can function under mild 

reaction conditions (aqueous medium, pH ~7, normal temperature and pressure).195 Other 

advantages of biocatalysts include reduced number of byproducts and toxic waste. They also 

provide shorter and more selective synthetic pathways. All these benefits give a boost to the 

global biocatalyst market which is expected to reach 170 kilotons by 2026 if it continues to grow 

at a projected rate of 6.4%.196  

 
In Figure 34, between 2012 and 2023, the number of journal publications on biocatalysts almost 
doubled. The rapid growth of biocatalyst patents from 2012 to 2014 was replaced by a slow climb 
up to 2021 with downs in 2018 and 2020. Although the fraction of patent documents makes up 
only a tenth of the total publication volume, the number of patents increased overall.  

 

Figure 34. Annual publication trend of biocatalysts from 2012 to 2024. 

Enzyme Class 

Enzymes can be classified into 6 main classes according to the type of reaction they catalyze: 

oxidoreductases (peroxidase, laccase, tyrosinase, glucose oxidase), transferases 

(phosphorylase, glycosyltransferase, acyltransferase), hydrolases (cellulase, amylase, 

xylanase, lipase, protease), lyases (decarboxylase, aldolase, dehydratase), isomerases 

(racemase, epimerase, isomerase), and ligases (ligase, synthase, acyl CoA synthase). Among 

them the three classes, oxidoreductases, transferases, and hydrolases, are the most abundant 

types of enzymes.197  
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Hydrolases occupy more than 50% of the total biocatalysts market followed by 

oxidoreductases and transferases.196 The major application of these three enzymes is 

shown in Table 4. 

Table 4. Three major enzyme classes and their applications. 

Enzymes Hydrolases Oxidoreductases Transferases 

Major application 

Synthesis of 
pharmaceutical 

compounds198-200, 
polymer synthesis201 

198-200, polymer 
synthesis201  

Biofuel cells, 
oxidation 

polymerization of 
aromatic 

compounds197  

Transferring 
functional groups197  

 

 
Top Substances Used in Biocatalysts 

The combination of metal-based catalysts and enzymes represents an inexpensive and 

environmentally attractive research area202. Also, combining transition metal catalysts with 

engineered or artificial metalloenzymes expands the range of catalyzed reactions and improves 

their reactivities.203 The use of olefin metathesis catalyst (Ru complex) in combination with a 

cytochrome P450 enzyme greatly improved the epoxidation selectivity.204 Transition metal 

complexes biocompatible with living organisms were reported to be efficient biocatalysts. For 

example, iron(III) phthalocyanine facilitates olefin cyclopropanation in the presence of E. coli 

living microorganisms.205 

Enzymes that attracted the most attention as potential biocatalysts are shown in Figure 35.  

Among them are triacylglycerol lipase and lipase CaLB.  The hydrolases and oxireductases 

such as peroxidase, laccase, glucose oxidase, alcohol/glucose dehydrogenase, and carbonyl 

reductase contribute to this field significantly. Carbon-based materials and transition metals (Ni, 

Fe, Pt, Cu, Co) are widely used to optimize enzymatic systems which makes them attractive.202, 

206  Nickel and cobalt coordinated covalent organic frameworks were found to exhibit oxidase like 

properties.  Nickel and iron containing metal organic framework nanozymes showed peroxidase 

like activity for biosensing applications.207  NiFe hydrogenase catalysts which are immune to 

inhibition by oxygen were studied recently for hydrogen oxidation reactions, which are 

traditionally catalyzed by expensive Pt catalysts.208  This trend shows that the hydrolases and 

oxireductases are two primary types of biocatalysts and the combination between biocatalysts 

and metal catalysts is another approach in this field. 209  Nickel and iron metal organic 

frameworks containing nanozymes showed peroxidase like activity for biosensing 

applications.207  Successful application of NiFe hydrogenase enzymes for hydrogen oxidation 

reaction traditionally catalyzed by expensive Pt had been reported.208  

The substance classes used in biocatalysis are presented in Figure 36.  Enzymes dominate 

other classes of compounds in both journal and patent publications.  Immobilized enzymes are 

in second place.  Immobilizing enzymes provide several benefits such as minimizing enzymes 

inhibition by the products, reusing the catalysts without the need for separation of the used 

biocatalysts, and enables establishing continuous flow biocatalysis.210, 211  Most of the patents 
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involve the application of enzymes and encapsulated enzymes for the synthesis of organic and 

biomolecules212, 213  Most of the patents involve the application of enzymes and encapsulated 

enzymes for the synthesis of organic and biomolecules212, 213 and conversion of biomass.214  

The other substances broadly used as biocatalysts are porphyrins, enzyme mimics, 

hemoglobins, and co-enzymes. Porphyrins including metalloporphyrins, their analogues and 

derivatives exhibit enzyme like properties.215, 216  Porphyrins are commonly used in 

electrocatalytic applications.217  The visible light absorption ability of porphyrin-based 

compounds enables their application in photocatalytic and photosensitizer applications.218, 219  

Vitreoscilla hemoglobin has been reported as an efficient biocatalyst for organic synthesis.220, 221 

The class of coenzymes represents a special case. Coenzyme includes an organic molecule 

that binds to the active sites of certain enzymes assisting catalytic reactions. The patent to 

journal ratio for coenzymes is the highest among the substance classes, showing high 

commercial interest towards these biocatalysts.  

 

Figure 35. Most reported catalyst substances in biocatalyst publications 
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Figure 36.  Most reported substance classes used as catalysts in the biocatalysis dataset. 

The most reported reactions in the biocatalyst publications and their patent-to-journal ratio are 

shown in Figure 37.  The top reported biocatalyzed reactions are enantioselective synthesis, 

transesterification, and oxidation.  Enantioselective reactions plays a crucial role in synthesis of 

specific organic molecules, whereas transesterfication has applications in biodiesel and food 

industry. Biomass hydrolysis and electrochemical reduction are also top reactions catalyzed by 

enzymes. 

The cooccurrence between catalysts and reactions in biocatalysts publications is presented in 

Figure 38. Triacylglycerol lipase, lipase CaLB (Candida antarctica), and alcohol dehydrogenase 

have high cooccurrence with enantioselective synthesis, hydrolysis, reduction, and 

hydrogenation. Laccase, peroxide, glucose oxidase, NADH, NAD, and NADPH frequently 

appeared with oxidation and reduction. 
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Figure 37. Most reported reactions in biocatalyst publications 
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Figure 38. Co-occurrence between the reactions and catalyst substances in the publications 

reporting biocatalysis.  

Figure 39 list the most reported uses in biocatalyst publications.  Photocatalysts and 

electrochemical reaction catalysts are the major uses as a wide variety of applications which 

involve light and electrochemical studies respectively are ascribed to these two categories.  

Figure 40 maps the co-occurrence of usage with catalyst substances providing further insights.   

Triacylglycerol lipase and lipase CaLB (Candida antarctica) cooccurred with immobilized 

enzymes, transesterification catalyst, esterification catalysts, and nanocatalysts. Alcohol 

dehydrogenase, laccase, peroxidase, glucose oxidase, NADH and NAD co-occurred with 

photocatalysts and electrochemical reaction catalysts. Alcohol dehydrogenase, NADH, NAD, 

and NADPH showed up with coenzymes, as they are either coenzymes themselves (ex. NADH, 

NAD and NADPH) or enzymes which benefit from these coenzymes. 
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Figure 39. Most reported uses in biocatalyst publications 
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Figure 40. Co-occurrence of the uses and catalyst substances in biocatalyst publications 

Biochemical fuel cells, biosensors, bioreactors, and their individual components such as 

electrodes are the most reported apparatuses within the biocatalysis publications (Figure 41).  

The high patent to journal ratio of bioelectrodes and electrodes for the biochemical fuel cells 

shows commercial interest in these devices.  The cooccurrence of the catalysts and 

apparatuses is showing in Figure 42.  Due to its ability to facilitate oxygen reduction reaction, 

laccase is the most used substance in biochemical fuel cells.222, 223  Triacylglycerol lipase and 

carbon are the most used catalysts in bioreactors and fuel cell cathodes respectively.  Glucose 

oxidase is the most used substance in biosensors due to the need for glucose monitoring in 

healthcare.   
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Figure 41. Most reported apparatuses in the biocatalyst publications 
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Figure 42. Co-occurrence of apparatus and catalyst substances biocatalysis publications. 

Selected Journals in Biocatalysts from the Dataset 

Herein research articles in biocatalysts that elucidate the types of enzymes, their combinations, 
advanced modifications, and formation of biocomposites with artificial materials are described. 
 
Synthesis of α-chiral amines with high stereoselectivity and efficiency challenging.224 
Biocatalysis have become one of the major approaches to obtain optically pure chiral amines.225  
Many bioactive compounds such as alkaloids have more than one stereocenter and a 
biocatalytic cascade helps to achieve stereoselectivity throughout the synthesis of alkaloids and 
chiral amines.225  Many bioactive compounds such as alkaloids have more than one 
stereocenter and a biocatalytic cascade helps to achieve stereoselectivity throughout the 
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synthesis of alkaloids and chiral amines.224, 226, 227 Herein, Mutti et al. revealed a one-pot 
biocatalytic system composed of ene-reductases (EReds) and imine reductases (IReds) to 
facilitate the stereoselective synthesis of amines with two stereocenters from α,β-unsaturated 
ketones (conversion rate: >99%; diastereomeric ratio: up to 99.0:1.0; enantiomeric ratio: up to 
>99:<1).228  
  
Catalytic conversion of cyclic compounds into expanded/shrunk cyclic compounds is of great 
importance for pharmaceutical research.229, 230 Transition metal-catalyzed ring expansion via 
carbon-carbon bond activation has been well-studied.231-233 N-heterocycles, especially the 
azetidines, are very important moieties/building blocks of biologically active compounds, which 
have limited synthetic options.234 Arnold et al. reported a novel synthesis of azetidine via one-
carbon ring expansion of aziridines using engineered cytochrome P450, called P411-AzetS.235 
P411-AzetS enables highly enantioselective [1,2]-Stevens rearrangement resulting in highly 
enantiopure azetidine derivatives (enantiomeric ratio, 99:1).  
  
Regulation of carbon dioxide has been a paramount topic in relation to control of global 
warming. Carbon capture, utilization, and storage (CCUS) technologies are rapidly emerging 
and attract considerable research interest.236 Conversion of CO2 into bicarbonate or carbonate 
is one of the methods to store CO2 in aqueous solution. Carbonic anhydrases (CA) can catalyze 
CO2 hydration and bicarbonate dehydration.237  Amao et al. developed a bienzymatic system 
composed of CA and formate dehydrogenase(CbFDH) that catalyzes CO2 conversion at a wide 
range of pH.238 Addition of CA promotes the CbFDH catalyzed CO2 reduction to formate in 
higher pH region (>9.5) conditions. At lower pH (6.3–6.5), CA primarily converts CO2 into 
bicarbonate. This CA/CbFDH system facilitates CO2 storage at a wide range of pH by 
alternatively using one of the enzymes.  
  
  
The obstacles of the application enzymes in industry are stability, long term storage, reusability, 
and recovery.239, 240 Immobilization of enzymes removes these disadvantages and enables the 
application.241, 242 Dos Santos et al. utilized Taguchi method to optimize the immobilization of 
lipase A from Candida antartica(CALA) onto halloysite nanotubes (Hal) for p-nitrophenyl 
butyrate hydrolysis.243  In this study, CALA-Hal displays better stability at 50–90 °C and higher 
catalytic activity at pH 9 compared to original lipase A.  
  
As mentioned in the previous paragraph, enzyme immobilization can also be carried out using 
porous organic frameworks such as metal-organic frameworks (MOFs) and hydrogen-bonded 
organic frameworks (HOFs) to form biocomposites with high activity, stability, reusability, and 
recyclability.244-246  Nidetzky et al. reported a D-amino acid oxidase (DAAO)-immobilized on 
tetraamidine/tetracarboxylate-based HOFs (BioHOF-1). They applied polypeptide chain to 
functionalize DAAO (Z-DAAO) and enhance the immobilization of DAAO on BioHOF-1 (Z-
DAAO@BioHOF-1).247  This functionalized biocomposite, Z-DAAO@BioHOF-1 displayed higher 
enzyme loading (2.5 fold) and activity (6.5 fold) compared to non-functionalized DAAO 
biocomposite (DAAO@BioHOF-1). Z-DAAO@BioHOF-1 demonstrates better activity than other 
carriers such as zeolite-based frameworks biocomposite, Z-DAAO@ZIF-8, and it retains the 
activity after 10 cycles of D-methionine oxidation.  
 

These selected journals reveal the broad interests that researchers have in biocatalyst. Using 

single or various enzymes and supporting materials, like porous materials to form stable 

biocomposites, facilitates organic reactions. 
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Conclusions 

Sustainable catalysts using non-noble metal catalysts to replace noble metals has advanced a 

lot in the last 11 years. The general publication trends show a steady growth of novel ideas in 

this field. With subject-specific search queries, we further analyzed the publications of 

electrocatalysts, photocatalysts, homogeneous catalysts, and biocatalysts. Detailed analysis in 

these subfields of catalysts include publication trends; most prevalent catalysts, reactions, uses, 

and apparatuses; cooccurrence of catalysts with reactions, uses, and apparatuses; extent of 

commercial interest in substances and applications.  

In electrocatalysts, the primary contributors to non-noble metal alternative catalysts are 

transition metals, metal oxides, metal phosphides, metal chalcogenides, layered double 

hydroxides, alloys, and mXenes.  Water splitting, oxygen evolution reaction, hydrogen evolution, 

oxygen reduction reaction which have applications in fuel cells, hydrogen generation, batteries, 

and solar cells are the major drivers of research in electrocatalysts. Driven primarily by the need 

for energy and its storage, a widely variety of catalysts continue to emerge in electrocatalysts.  

Research publications in photocatalysis continues to increase over the years and the focus is on 

finding a suitable photocatalyst with enough efficiency for commercial solar hydrogen production 

from water and for pollutant degradation rather than on replacing any noble metal. Due to its 

visible light absorption capability, carbon nitride has replaced TiO2 as the most studied 

photocatalyst and continues to grow rapidly. Though the reactions and uses in photocatalysts 

are mostly related to hydrogen production and pollutant degradation, a small but considerable 

number of them are related to light driven organic reactions and organic photocatalysts.  

Homogeneous catalysts analysis demonstrates that publications distributed to various organic 

reactions, such as cyclization, cross-coupling reaction, arylation, etc. Suzuki coupling reaction is 

the top named reaction focused by researchers. Transition metals, acids, bases, metal 

complexes, are some of the major classes of substances used as homogeneous catalysts.  

These catalysts, some of which are photoactive, are used for a range of reactions used in 

organic synthesis with emphasis on stereoselectivity.     

Our analysis of biocatalysts shows that there is considerable interest in using biocatalysts as a 

sustainable way of catalyzing various reactions. The consistent increase in the number of 

publications shows growing interest in this area. The combination of biocatalysts and metal 

catalysts is also an emerging approach to achieve the sustainability of valuable molecule 

production. In addition to the highly prevalent enzymes, organometallic substances which mimic 

enzymes, and other bioderived molecules are also studied as biocatalysts. Biocatalysts have 

wide variety of applications such as organic synthesis, fuel cells, and sensors.   

Overall, non-noble metal-based catalysts made of organic, inorganic, and bio-based substances 

continues to attract interest in the efforts to achieve the same catalytic performance as the noble 

metals and to replace them. The continued increase in such publications is an indication of the 

progress made in these efforts.   
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