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Abstract

Noble metals, which form a significant proportion of catalysts at present, are not sustainable,
which necessitates the need for non-noble metal alternatives. This report contains a thorough
analysis of data obtained from the CAS Content Collection™, pertaining to the recent
development of non-noble metal catalysts, their usage, and applications. We herein identify the
research trends since 2012 in four subfields: electrocatalysts, homogeneous catalysts,
photocatalysts, and biocatalysts. Within the subfields, we present: the most reported catalysts;
emerging catalyst substances; significant reactions, and applications; map of the cooccurrence
of catalyst substances with their reactions and applications. With this article, we aim to provide
a data driven overview of the complex publication landscape and unique scientific insights for a
deeper understanding of the field.

Introduction

In 1987, the United Nations (UN) released the report, Our Common Future, which defined the
concept of sustainable development as “development that meets the needs of the present
without compromising the ability of future generations to meet their own needs.” Sustainability
consists of three aspects: economy, society, and environment.? In turn, sustainable chemistry
can be evaluated by three metrics: renewable percentage, optimum efficiency, and waste
percentage.® Catalysts are one of the tools that accommodate these parameters to achieve
sustainability.

Noble metals such as platinum, palladium, iridium, and ruthenium feature desired catalytic
properties, such as high temperature tolerance and good catalytic activity. For instance,
Sonogashira coupling,* ® Suzuki—Miyaura coupling,® ” Heck reaction,® ° and Stille coupling®-
need palladium as catalysts that result in good yields under various conditions. Iridium and
ruthenium also possess catalytic capabilities for arylation, allylation, and other cross-coupling
reactions.? 13 Obtaining these noble metals catalysts presents a challenge when it comes to
sustainability and the prices are subject to market fluctuations.'* Noble metals are mostly
extracted from low grade ores for which a large amount needs to be mined to extract a small
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amount of metal, resulting in environmental damage and high refining cost. For example,
around 12 tons of ore is used to produce approximately 31 grams of platinum.'*> In addition,
refining of these low-grade ores requires a large amount of energy that is obtained typically via
fossil fuels. The high cost and low abundance of noble metals are limiting factors in many key
technologies such as fuel cells,*® zinc-air batteries,*” water splitting to produce hydrogen,* 1°
and hydrogenation.?° Due to their sustainable cost and minimum environmental impact, noble
metal replacement in catalytic applications has attracted the attention of scientists.

The chemical properties which cause noble metals to excel as catalysts are their resistance to
corrosion, ability to undergo 2-electron oxidation state changes? common in catalytic
processes, affinity toward 11-bonds, and high product selectivity (Table 1). Ideal candidates for
the replacements of noble metal catalysts are the 1% row transition metals namely titanium,
vanadium, chromium, manganese, iron, cobalt, nickel, and copper because of their high
availability in the Earth’s crust. In addition, many non-noble metal catalysts are more tolerable
in the human body compared to noble metal catalysts.?? Unfortunately, the stability under
reaction conditions of non-noble metal catalyst presents a major challenge.?

Table 1: Properties of noble metals and transition metals
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electron transfer
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With the help of a search query (See Sl for more details), documents related to non-noble
metal-based catalysts were identified and the related data was extracted from the CAS Content
Collection™, the largest collection of human curated scientific knowledge. The bibliographic
analysis and curated data presented in this manuscript aims to provide an enhanced landscape
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view on this research topic, helping researchers and decision makers understand the progress
in this specific area of study.

As previously mentioned, the CAS Content Collection™ was used to retrieve information
regarding the use and application of non-noble metal catalysts / catalysis from the documents
published 2012 onwards, resulting in around 50,000 publications (51,286 journals and 5978
patents). In general, the publication trend of non-noble metal catalysts/catalysis manifests a
steady growth, and the journal articles dominate the publication volume (82%) between 2012
and 2024 (Figure 1).
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Figure 1. General journal and patent publication trend of non-noble metal catalysts/catalysis.
When it comes to journal publications, the countries with the highest number of publications in
descending order are China, United States, India, Germany, and South Korea (Figure 2A). The
countries with the greatest number of patent publications are China, the United States, Japan,
South Korea, and Germany. (Figure 2B).
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Figure 2. Top countries or regions in terms of journal (A) and patent (B) publications related to
non-noble metal catalysts / catalysis.

The top 15 institutions with the highest number of journal publications among all countries are
only from China (Figure 3 top left). Upon excluding China, Singapore and the United States
have 2 institutions each in the top institutions with the most journal publications (Figure 3 top
right). The top 15 institutions with the highest number of patent publications contain 14
institutions from China, and 1 from Germany. Upon excluding China, the top 15 institutions are
from 7 different countries, with 4 from the United States, 3 from Germany, 3 from South Korea,
and 2 from India.
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patented biocatalysts for various synthetic applications related to pharmaceutical, food, medical

highest number of patents in commercial category. Codexis Inc which develops enzymes has
applications.?®

Figure 3. Institutions with the highest number of journal and patent publications reporting non-

noble metal catalysts.
Institutions belonging to China Petroleum and Chemical Corporation (SINOPEC) has the next

We further separated the institutions with the highest number of patents into commercial and
number of patents, mostly reporting new inventions for the catalytic synthesis of chemicals.?®

non-commercial categories (Figure 4).
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Figure 4. Commercial (bottom) and non-commercial (top) institutions with the highest number of
patents reporting non-noble metal catalysts.

In this report, we focus on looking into bibliometric data on sustainable chemistry using non-
noble metal catalysts in four research fields: electrocatalysts, photocatalysts, homogeneous
catalysts, and biocatalysts. Data regarding these subfields was obtained by further narrowing
the original search query (See Sl for more details). Figure 5 shows the number of publications
in the selected fields, where electrocatalyst-related publications are highest followed by
biocatalysts, homogeneous catalysts and photocatalysts. Numbers of patents published were
similar for biocatalysts, electrocatalysis and homogeneous catalysts, whereas relatively lesser

patents were published using photocatalysts. We provide analysis of the developments and
publications in these subfields in the sections that follow.
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Figure 5. Publication volumes for the four subfields: Homogeneous Catalyst, Electrocatalyst,
Photocatalyst, and Biocatalyst in journals and patents.

We investigated the general trends among the catalysts substance to get a broader view.
Figure 6 illustrates the number of publications in the various substance classes to which the
catalysts belong to in journals(left) and patents(right). Elements and organic/inorganic small
molecules are the higgest class of catalysts. This is followed by complex and unknown
substances (called as ‘manual registration’ in CAS substance classes)?” which can be defined
as: substances without known compositions like commercial catalysts; substances with known
but large/complex structures such as enzymes. The fourth biggest category of catalysts are the
‘tabular inorganic’, which are inorganic substances which are mixtures of compounds such as
mixed or doped metal oxides, and sulfides. The chart also shows the further distribution of the
catalyst substance classes to the major types of catalysts. The obvious trends are the high
contribution of elements, small molecules, and enzymes to the electrocatalysts, homogeneous
catalysts, and biocatalysts respectively.
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Figure 6. Number of publications in the various substance classes of the catalysts and their
distribution among the types of catalysis in journals (left) and patents (right)

Electrocatalysts

Electrocatalysts participate in electrochemical reactions as the electrodes, or the catalytic
materials coated on the surface of electrodes. Platinum is the most used electrode material in
electrochemical devices because of its catalytic activity. However, its limited abundance and
high costs are hurdles that impede the advancement of certain vital electrochemical
applications.?® In this section, we further analyze of non-noble metal electrocatalysts data
related to sustainability, which was retrieved from our primary search query data using a more
narrow electrocatalyst specific search query (See Sl for more details).

In general, electrocatalyst-related publications show a steady growth in journals and a slower
growth in patents (Figure 7). Volume of publications in journals is considerably higher than
patents, which demonstrates that much of the research in this area is yet to reach the point of
commercialization. We anticipate that there will be more innovative ideas to be commercialized
in the future, resulting in a higher growth in patents.
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Figure 7. Annual publication trends of electrocatalysts in journals and patents.
The Most Used Substances

To further reveal the trend of substances used as electrocatalysts, herein we selected
substances whose CAS indexed role is catalyst. Figure 8 shows that the top two substances are
carbon and platinum. Carbon based materials are utilized as support to produce non-noble
metal electrodes, while platinum based electrodes are used as a benchmark for comparison.?
Nickel, graphene, cobalt, nitrogen, and iron are also frequently used for electrocatalyst
research. Nitrogen is present in N-doped carbon materials which possess active sites for
catalytic reactions.*® Single atom catalysts of transition metals such as iron, copper, and
manganese loading on nitrogen doped carbon supports perform efficiently as oxygen reduction
reaction catalysts in fuel cells. Cobalt, nickel, copper containing core-shell catalysts made of Co-
Ni carbonate hydroxides (CoNiCH) and Cu(OH);[Cu(OH).@CoNiCH] was found to be efficient
for oxygen evolution reaction.3! Copper, nickel, and phosphorus composites enable urea
electrolysis to produce hydrogen at low overpotentials.®? Similar to platinum ruthenium dioxide
(RuO3) and iridium oxide (IrO2) are used as benchmark for comparison with non-noble metal-
based electrocatalysts for oxygen evolution reaction applications.
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Figure 8. Mostly used catalyst substances in electrocatalyst related publications.

The Emerging Trends of Substances in Electrocatalysts

Catalyst substances that grew significantly in recent years are presented in the Figure 9
alongside their growth trends. Co-Fe alloy, Fe-Ni alloy, vanadium, niobium, zinc, nickel
selenide, cobalt diselenide, nickel sulfide, MoO,, and MoOs are identified as the emerging
catalysts. Co-Fe alloy and Fe-Ni alloy are efficient bifunctional catalysts capable of performing
both oxygen evolution (OER) and oxygen reduction (ORR) used in applications such as zinc-air
batteries®3-3® and water splitting.*® Nickel selenides are efficient for hydrogen evolution due to
their low overpotential.®” 3 Cobalt diselenide is an efficient non-noble metal based bifunctional
catalyst capable of performing both oxygen evolution and hydrogen evolution (HER), used
mostly in HER studies.®®%° Composites containing various nickel sulfides are bifunctional
catalysts capable of performing both OER and HER reactions with low overpotentials.*! 42> The
growth of molybdenum dioxide in recent years is due to its low cost, high stability, and low
overpotential for HER applications.***** Due to its stability in alkaline medium and efficient HER
catalytic performance, there is increase in research interest in molybdenum trioxide recently.*®
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47 Vanadim doping has been found to increase the durability of phosphide and sulfide catalysts

used for OER and HER reactions, which has been attributed to the high valency of vanadium.*®
49
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Figure 9. Emerging substances as electrocatalysts in publications from 2013-2022.In Figure 9,
the emerging trend of electrocatalysts are shown.

2017 2018

To develop a broader perspective of the substances used as electrocatalysts and to find use of
substances with varying composition such as layered double hydroxides (LDH) and MXenes,
we delved into the prevalent substance classes and their patent to journal ratios (Figure 10).
LDH, transition metals, transition metal phosphides, and noble metals are among the top
substances used as catalysts. Due to its high surface area, tunable and variable composition,
stability, and ease of doping and intercalation, LDH and composites containing LDH are studied
for HER,*® OER,! and ORR,*? which are applied in fuel cells, overall water splitting, and zinc-air
batteries. Other carbon-based substances, and polymers in the list are used as supports,
binders, and fillers. MXene is another substance class like LDH, that did not appear in the top
catalyst substances due to its variable composition. MXenes are layered substances which
possess multiple sites known for their catalytic activity such as metal nitride, metal carbide, and
carbon nitride within their structure. These favorable properties have driven studies using
MXenes as catalysts and co-catalysts for water splitting reactions.>** The figure also presents
the patent to journal ratio, which is high among the metallic catalysts compared to the other
catalysts.
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Figure 10: Substance groups which are used as electrocatalysts and their patent to journal
ratio.

We then delved into reaction related topics and their patent to journal ratio (Figure 11). The
publication volumes of the top 25 reaction topics show oxygen evolution reaction (OER),
electrochemical reduction, hydrogen evolution reaction (HER), and water splitting as the top
reaction types. OER is a well-known half reaction in the overall water splitting process used to
produce hydrogen. OER also plays a significant role in zinc-air batteries; these batteries hold a
higher energy density than lithium batteries, hence their emergence as an alternative for
applications requiring less voltage. Due to the efforts to generate hydrogen, a potential green
fuel, hydrogen evolution reaction has gained significance. Platinum is considered as the best
HER catalyst; any breakthrough in finding sustainable alternative to Pt will have significant
impact in the green hydrogen production industry.%®

The co-occurrence between catalysts and reactions is shown in Figure 12. One of the
observations is the use of layered materials such as graphene, graphite, sulfur, and
molybdenum sulfide in intercalation reactions. Molybdenum sulfide, cobalt, copper,
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molybdenum, nickel phosphide, and molybdenum carbide also co-occur with the hydrogen
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Figure 11. Most reported reactions in electrocatalysts and their patent to journal ratio
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Figure 12. Co-occurrence of catalyst substances and reactions in electrocatalyst publications.

The most indexed uses and their patent to journal ratio are presented in Figure 13. As seen in
the indexed reactions, uses related to water splitting are present in most publications. A notable
usage is the bifunctional catalysts, which are capable of catalyzing both the anode and cathode
reactions in overall water splitting,>” and zinc-air battery.5® A variety of transition metal based
sulfide,*® phosphide,®° oxide,5! and alloy®? catalysts have displayed bifunctional capabilities.
Lastly, reduction reaction catalysts have the highest patent to journal ratio among of the various
uses, which seems to be due to the high commercial interest in oxygen reduction reaction
catalysts having applications in fuel cells.®® An analysis of cooccurrence of the usage and
catalyst substances (Figure 14), shows that carbon, graphite, graphene, and nitrogen are the
primary non-metal substances that co-occurred with catalysts/catalysis-based usage concepts;
nickel, cobalt, iron, copper, molybdenum disulfide, and zinc are the metal substances that reveal
high to moderate co-occurrence in electrocatalyst-related research documents.
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Figure 13. Most reported uses in electrocatalyst publications and their patent to journal ratio
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The most prevalent devices or parts of the devices indexed from non-noble metal electrocatalyst
related publications are fuel cells and batteries (Figure 15). Hydrogen based fuel cells play a
major role in the proposed hydrogen economy, and research on fuel cells is driven by the need
for efficient, stable, and cost effective catalysts® for ORR® and hydrogen oxidation reactions.®®
Batteries have become essential for storing the various forms of green energy, solving the issue
that arises due to their intermittent nature. However, the primary driver behind the need for non-
noble metal alternatives in battery research are the zinc-air batteries. Zinc-air batteries involve
ORR and OER which traditionally need expensive platinum catalysts, hence need alternatives.®’
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Solar cells, supercapacitors, and photoelectrochemical cells are other popular devices. To bring
down the cost of solar cells, there is a need for alternatives to the platinum counter electrodes.®®
% Figure 16 shows the prevalence of the catalyst substances within different apparatus types.
Zinc and ruthenium dioxide have high co-occurrence with batteries due to the battery
technologies such as zinc-air and zinc-ion, where ruthenium dioxide is used as oxygen evolution
reaction catalyst. Palladium is widely used as catalyst in fuel cell related applications. Owing to
their photocatalytic activity, titania is prevalent in the solar cells and photoanodes. Photoanodes
are part of photoelectrochemical cells for overall water splitting, where ferric oxide™ is used as
the photocatalyst, and NiO,* cobalt phosphide,’? and nickel dihydroxide’ are used as
cocatalysts for oxygen evolution reaction.
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Figure 15. Most prevalent devices in electrocatalyst publications
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Figure 16. Cooccurrence between the most reported apparatuses and catalysts substance in
electrocatalyst publications

Selected Articles in Electrocatalysts from the Dataset

Selected articles from the dataset of electrocatalysts reflecting the major types of substances
and their function are summarized below.

Multimetallic systems, such as bimetallic systems have better electronic conductivity than
monometallic catalysts.’* ’® First-row transition metal-based trimetallic oxide-hydroxide
electrocatalysts have shown advanced catalytic properties when compared to mono- and
bimetallic-based catalysts.”®’® For instance, Nanda et al. reported porous nanosheets
composed of cobalt, nickel and manganese oxide-hydroxide that manifest higher catalytic
activity than bimetallic systems (Ni-Mn, Co-Mn or Co-Ni).” This trimetallic nanosheet showed
0% loss of current density after 8000 cycles and performed better than commercially available
RuO; catalysts in terms of durability and catalytic activity.

Cobalt oxides demonstrate efficient catalytic properties as anode materials for oxygen evolution

reaction (OER) in acidic media, but their structural stability is limited under open circuit or high
potential applications.®%82 A nitrogen-doped carbon coated Coz04 (Cos04@C) was reported by
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Galan-Mascarés et al. showing performance consistency towards OER.82 This scalable
electrode composite (Co304@C/GPO) was made by mixing Cos04@C, graphite (G), and
paraffin oil (PO) in a specific ratio by weight. This type of anode composite sustains OER
performance in 1M H,SO4 solution for over 40 hours.

Due to the high porosity and large surface area of metal-organic frameworks (MOFs), they are
applied for water splitting applications.?* Heteroatom doping and nanofabrication are utilized to
enhance the catalytic properties of MOFs. Yun et al. revealed a bifunctional electrocatalysts, V
doped Ni-Fe MOFs@graphene oxide, synthesized by vanadium doping and carbonization of
bimetallic Ni-Fe MOFs.2® The V—NioosFe0.0s MOF/GO performed as a bifunctional electrocatalyst
for HER and OER in the presence of an acidic or alkaline solution.

Due to the low cost and earth abundance, molybdenum sulfide (MoS;) has been identified as a
promising electrocatalyst for HER.8 8" However, MoS; shows poor oxygen evolution activity
because of its insufficient binding with the reaction intermediate on the catalytic site. Liu et al.
utilized 3d transition metal doping to modify the active site of M0S,. 3d-TMOs@MoS; (TM = Mn,
Fe, and Co) shows better OER catalytic activity than the standard catalyst, IrO». This catalyst
also possesses structural stability.%®

Electrochemical synthesis of H.O, via 2-electron oxygen reduction is challenging due to the high
cost of noble metal-based catalysts such as Au—Pd®® and Au—Pt—Ni.%® Nickel oxide possess
unsaturated metal centers that facilitate proper *OOH binding for electrochemical synthesis of
hydrogen peroxide,®® whereas amorphous metal oxides possess better catalytic properties due
to their coordinately unsaturated open sites.®?> Zhang et al. displayed amorphous nickel oxides
coated on carbon nanosheets (NiOx-C).%® This scalable composite NiOx-C selectively catalyzes
2-electron oxygen reduction (~91%) in 0.1M KOH between 0.15-0.60 V to produce H>O> due to
high NiOx-C—*OOH binding strength.

Photocatalysts

In photocatalysis, semiconductor materials absorb light energy and produce electron-hole pairs
which drive reduction, and oxidation reactions respectively. The use of photocatalysis to split
water and produce hydrogen only using solar energy is considered an ideal solution to energy
and environmental problems. Solar energy is primarily composed of visible light and infrared
radiation. Most of the photocatalysts known till date either function only under UV light
irradiation, do not have sufficient efficiency under visible light irradiation for practical
applications, or suffer from low long term stability issues. The challenge and the primary focus
in the field of photocatalysis has been to find semiconductor materials which are capable of
splitting water using only solar energy and remain stable under the operating conditions. To
scale up the production of hydrogen to levels that meet global energy needs, an enormous
amount of photocatalysts will be needed, and hence it is necessary that they are made of earth
abundant elements to become cost effective.

The search query resulted in 6507 documents out of which 6159 were journal publications and
338 were patents. We found a total of 676 review articles within the journal publications.

Figure 17 shows the number of publications in the from 2012. The number of publications in the
journals and patents shows a steady increase over the years, demonstrating the continuous
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rising interest in this field. The huge difference between journal publications and the patents is
an indication that research in this area of sustainable photocatalysts has still not reached the
point of commercialization.
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Figure 17. Year-wise number of publications related to photocatalysts.

As expected, the 15 topmost cited documents were reviews of the existing literature and they
cover various aspects such as co-catalysts for photocatalysts,®* catalytic water treatment,®
hydrogen evolution, silver nanoparticles, Cu based nanopatrticles,® noble-metal free
nanoparticles,®” semiconductors for photocatalytic water splitting, transition-metal based co-
catalysts for photocatalytic water splitting, carbon nitride photocatalysts, MXene
photocatalysts,®® nano and microstructured catalysts,®® non-noble metal plasmonic
photocatalysts,? and single-atom catalysts on 2D nanomaterials. 6 out of the top 25 most cited
photocatalyst related documents were about graphitic carbon nitride, highlighting the interest
and the potential of this specific photocatalyst.

Frequently Used Substances and their Growth Trend

An analysis of the substances with the catalyst role showed that carbon nitride (CsN.), titania,
cadmium sulfide, and molybdenum sulfide are among the most reported catalysts (Figure 18).
The other catalysts in the top 15 are zinc oxide, Co304, tungsten oxide, indium zinc sulfide,
Fe-03, BiVO4, cadmium zinc sulfide, and nickel phosphide. Carbon nitride is a promising
photocatalyst due to its visible light absorption, stability in alkaline and acidic conditions, and
organic composition.'®* Cadmium sulfide has bandgap and band positions suitable for overall
water splitting using visible light irradiation. However, it is unstable due to photocorrosion and
the potential for environmental pollution due to the presence of toxic cadmium. Despite these
concerns, studies on CdS continue due to hopes of stabilizing it and containing the
environmental damage at a later stage.'%?
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The most reported photocatalysts were also color coded according to their patent-to-journal
ratio. In general, oxide photocatalysts such as tungsten trioxide, zinc oxide and titanium dioxide
have high contribution from patents, compared to nitride and sulfide photocatalysts. Due to its
visible light activity and stability, films of WOz has been patented for applications such as air
purification!® 1% and refining.1%

In addition, from the pool of 100 photocatalysts with the highest number of publications, we
selected 10 catalysts that demonstrated the highest growth within the last five years (Figure 19).
Carbon nitride stands out from the rest of the catalysts due to its relatively very high number of
publications along with rapid growth in recent years. Factors such as band gap suitable for
visible light absorption, band positions suitable for overall water splitting, metal-free composition
and ease of preparation contribute to the high interest in carbon nitride photocatalysts. Most of
the other catalysts with higher number of publications are also growing rapidly, due to the recent
interest in finding sustainable alternatives to the existing catalysts. It is also worthwhile to note
that titanium dioxide continues to draw interest more than 5 decades after the first report of
using it for photocatalytic water splitting.
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Figure 18. Catalysts substance with the highest number of publications color coded according
to their patent to journal ratio.

https://doi.org/10.26434/chemrxiv-2023-v30kj-v3 ORCID: https://orcid.org/0000-0002-0645-0622 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0


https://doi.org/10.26434/chemrxiv-2023-v30kj-v3
https://orcid.org/0000-0002-0645-0622
https://creativecommons.org/licenses/by/4.0/

= Bismuth vanadate Indium zinc sulfide Carbon nitride
Boron nitride —=—Tungsten trioxide —Zinc sulfide

—_
N
L

—e—Zinc oxide —Copper(ll) oxide - Copper(l) oxide

—

—=—|ron(lll) oxide

o
o

o
o

o
~

o
(N

Number of publications (Normalized)

W0 g 0 o T ge® g et

Publication year

Figure 19. Emerging photocatalysts with the high growth in publications

We then analyzed the data to find the reactions which are facilitated using photocatalysts.
Figure 20 presents the most reported reactions along with their patent to journal ratios.
Photocatalysts are most used for water splitting to produce hydrogen, and for the decomposition
of pollutants. The electron-hole pairs generated can be used for carrying out both the reduction
and the oxidation reactions, as seen by the presence of both photooxidation and photochemical
reduction. Due to the limited availability of photocatalysts capable of performing overall water
splitting, a combination of two different photocatalysts each capable of performing only water
oxidation or water reduction in a tandem reaction is widely studied.'® Electrochemical reduction
and oxidation are other important reactions in the publications reporting photocatalysts.
Electrocatalysts which enhance the hydrogen evolution or oxygen evolution reaction, referred to
as co-catalysts, are loaded on to the surface of the photocatalysts.'°” 1% To a lesser extent,
photocatalysts are also studied for organic reactions such as regioselective synthesis,**® and
diastereoselective synthesis.1?

Figure 21 shows the cooccurrence between the reactions and the most used catalysts within the
photocatalyst dataset. Due to their band positions suitable for hydrogen evolution reaction and
low cost, sulfide photocatalysts such as molybdenum disulfide,!'* 112 cadmium sulfide, zinc
sulfide, and cadmium zinc sulfide have higher contribution to this reaction type. Despite their
favorable properties, stability is a common drawback in the sulfide photocatalysts constraining
their success. Sulfide based materials such MoS; are also widely explored as co-catalysts to
enhance the hydrogen evolution properties of stable photocatalysts such as C3N4.1t* 114 Despite
its large bandgap capable of absorbing only UV light, ZnO continues to be explored as
photocatalysts, due its benign nature and low cost, especially for photocatalytic decomposition
of pollutant molecules.'*® The visible light activity of ZnO is increased by doping it with metals,
non-metals, and creating heterojunctions**® with other small bandgap semiconductors.® 117
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The presence of iron in decomposition and photooxidation studies can be attributed to the use
of photo Fenton reaction, which involves iron and hydrogen peroxide, and iron containing metal
organic frameworks!8 115117 The presence of iron in decomposition and photooxidation studies
can be attributed to the use of photo Fenton reaction, which involves iron and hydrogen
peroxide, and iron containing metal organic frameworks!*® for the oxidation of pollutant
substances.!*® In the oxygen evolution reaction type, bismuth vanadate and cobalt have high
contribution due to their high photocatalytic*?® and co-catalytic*?* activity respectively towards
this reaction type. Another catalyst with high contribution is eosin, which has high presence in
organic conversion reactions,'?? 122 due to its use as a photosensitizer in these reactions.
2,4,5,6-Tetrakis(9H-carbazol-9-yl) isophthalonitrile also called as 4CzIPN and rose bengal are
other organic photocatalysts widely used in various organic conversion reactions.'?? 124
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Figure 20. Most reported reactions in the photocatalyst publications
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Figure 21. Co-occurrence between the top reactions and the most reported catalyst substance
in the photocatalysis related publications.

Figure 22 lists the most reported usage within the photocatalyst dataset. The cooccurrence
between the usage and the catalysts within the photocatalyst dataset is presented in Figure 23.
The trend among the usage is like the reaction types (Figure 20), with water splitting, and the
related catalysts being the predominant ones.
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Figure 22. Most prevalent usage in the photocatalyst related publications
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the photocatalyst publications.
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In addition to their usage directly as photocatalysts in powder or film form, photocatalysts are
also used to fabricate devices or parts of the devices to study the properties of either the
photocatalyst or the entire device. By analyzing the CAS Content Collection™ data, a list of the
most reported devices or parts of devices was generated and are listed in Figure 24.
Photocatalysts are fabricated as photocathodes, photoanodes, which are either part of
photoelectrochemical cells used for water splitting to produce hydrogen or as solar cells.
Photocatalysts are also part of various types of solar cells where the photogenerated electrons
and holes are used to produce electricity instead of carrying out chemical reactions. Among
these devices, patent to journal ratio is high among the solar cells, electroluminescent devices,
photochemical reactors, and photoelectric devices.

We further analyzed the cooccurrence between the various devices and the most reported
photocatalysts (Figure 25). Bismuth vanadate and tungsten trioxide have a higher than usual
contribution to the photoanodes category, as they are predominantly used for the oxidation of
water. Molybdenum disulfide, cupric oxide, cuprous oxide, and cadmium sulfide are the
photocatalysts used in photocathodes for the reduction of water to produce hydrogen, whereas
nickel monoxide is co-catalyst used to enhance the hydrogen production.
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Figure 24. Most reported apparatuses in the photocatalyst related publications
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Figure 25. Co-occurrence of the most reported catalyst substances and the apparatuses in the
photocatalyst publications.
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Selected Journals in Photocatalysts from the Dataset

In the efforts to achieve sustainability in photocatalysis, nonmetal-based catalysts such as
graphitic carbon nitride (CN) are getting more attention due to their catalytic activity towards
photosynthesis.'?> Microporous organic polymers (MOPs) are also studied due to their gas
separation properties'?® and potential photocatalytic properties, for example, CO>
photoreduction.'” 28 Kung et al. reported a covalently linked graphitic carbon nitride-
melamine—resorcinol—formaldehyde (MRF) microsphere polymers, which possesses
photocatalytic properties for CO; reduction to methanol.'® This material has efficient charge
separation due to its covalent C-N bond between CN and MRF, which results in higher
photocatalytic properties than CN and MRF alone by 21 and 10 times respectively.

Titania and zirconia are both known for their chemical stability and photocatalytic properties.™®
31 The wide band gap of these two types of catalysts (TiO2: ~3.2 eV; ZrO,: >5 eV) resulted in
limited photocatalytic activity under visible light."3" 132 The graphitic carbon nitride (CN)
possesses a lower band gap (2.7 eV) and has been proven to form composite materials with
titania. This binary TiO—CN composite material becomes the visible light photocatalyst.'3
Herein, Chen et al. reported a ternary nanocomposite formed by titania, zirconia, and CN that
has high specific surface area and bandgap falling in the visible light region.'* This
nanocomposite photocatalyst further displays its high catalytic efficiency in photodegradation of
the antibiotic, berberine hydrochloride (BH).

Boron nitride (BN) is another type of nonmetal photocatalysts due to good thermal stability. 3
Doping heteroatoms and building hierarchical structures are two promising strategies that could
enhance catalytic properties of BN-based materials.”® 37 Herein, Lee et al. revealed a
hierarchical BN-like flower catalyst with B—O active site that facilitates the photocatalysis of CO>
reduction.’® This as-prepared catalyst has 26.7 and 7.3 times of CO production rate more than
the bulk BN and bulk CN for the CO; reduction reaction.

Synthetic dyes like methylene blue are major water pollutants, resulting in the degradation of
methylene blue to be widely studied.’®® TiO, and ZnO have been studied to remove dyes and
other pollutants.'® Majority of their light absorption falls in UV light region.'#* 142 Doping
tungsten into ZnO makes the light absorption extend to visible light region and improves the
photocatalytic efficiency.’*® Ibupoto et al. developed a low temperature method for the
synthesis of tungsten-doped ZnO photocatalysts that perform highly efficient methylene blue
degradation.** These tungsten-doped ZnO can catalyze the complete degradation of
methylene blue to a weakly acid aqueous solution within an hour.

As previously mentioned, hydrogen production from water splitting catalyzed by photocatalysts
has become attractive in the past few decades.'*>'*® ZnS, ZnCdS, MoS;, and their composite
materials have been studied for the photocatalytic hydrogen production.™®15" MOS,/ZnS,5?
MoS,/Zn,Cd1S,"*® and Zn«Cd1xS/ZnS'™* generally performed better than the single component
materials in photocatalytic hydrogen evolution. Few layers of MOS; cocatalysts loaded on the
surface of CdS photocatalysts have been found to drastically enhance photocatalytic hydrogen
generation.'® Similarly, Shangguan et al. reported few-layered MoS»/Zn,Cd1xS/ZnS
heterostructures with high efficiency for photocatalytic hydrogen evolution.'® A supernatant
MoS:; colloidal solution was used to react with Zn,Cd1.xS/ZnS(en)2 to form the catalyst. This
kind of heterostructures possess superior performance in photocatalytic hydrogen production
over other ZnCdS@MoS; catalysts.
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Homogeneous Catalysts

Platinum group metals (PGMs) are predominant in homogeneous catalysis because of their
high activity, stability, and versatility. They can activate various bonds and form stable
complexes with different ligands. They can also catalyze a wide range of reactions such as
hydrogenation, oxidation, coupling, cyclization, polymerization and asymmetric synthesis.®’
They can also exhibit multiple oxidation states and redox behavior that can facilitate catalytic
cycles. Table 2 highlights some of the significant reactions that PGMs are used as catalysts.

Table 2. Examples of PGM-based homogeneous catalysts.

Metal Applications
Platinum(l) hydrosilylation of alkenes and alkynes, silane etherification, Wacker oxidation of alkenes and
Heck coupling of aryl halides.
Palladium(ll) Suzuki cross-coupling of aryl halides, Sonogashira coupling of alkynes, carbonylation of aryl
halides and allylic alkylation.
Rhodium(l) hydroformylation of alkenes, hydroboration of alkenes, asymmetric hydrogenation of ketones
and olefin metathesis.
Iridium() asymmetric hydrogenation of imines, transfer hydrogenation of ketones, water oxidation and C-
H borylation.
Ruthenium(l) olefin metathesis, ring-closing metathesis, Grubbs-Hoveyda cross-metathesis and Noyori
asymmetric hydrogenation of ketones.
. dihydroxylation of alkenes, Sharpless asymmetric dihydroxylation and Jacobsen-Katsuki
Osmium(VIlI) epg’xi daﬁ{m P y yaroxy

As an expert-curated resource, the CAS content is utilized here for the quantitative analysis of
publications against variables including time, country/region, research area, and substance
details. Homogeneous catalysts query (see Sl for more details) was used to retrieve documents
that are specific to reports discussing using sustainable catalysts for homogeneous catalysis
and/or the studies for the replacement of noble-metal catalysts. A total of 7865 documents were
used for the analysis described below.

Figure 26 provides the annual publication trend in this area with a breakdown of journal and
patent publications. Like the general search described above there has been significant growth
in the area since 2012 where there were less than 400 total publications and more than 1000 in

2023.
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Figure 26. Annual number of publications in homogeneous catalysts among journals and
patents.

Coupling Reaction Concepts

Table 3. The top 10 coupling reaction concepts from the publications analyzed.

Reaction concept Number of publications
Cross-coupling reaction 292
Coupling reaction 247
Suzuki coupling reaction 148
Sonogashira coupling reaction 88
Heck reaction 54
Oxidative cross-coupling reaction 38
Cross-coupling reaction, regioselective 21
Cross-coupling reaction, stereoselective 19
Buchwald-Hartwig reaction 15
Stille coupling reaction 10
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Coupling and cross-coupling ranks among the most studied reactions from our search and
among the hetero-coupling reactions Suzuki coupling is the most studied (Table 3). This is
sensible as Suzuki coupling is a widely used method for making carbon-carbon bonds between
organoboron compounds and organic halides or triflates, using a palladium catalyst and a base.
It has many advantages over other coupling methods, such as easy availability and stability of
organoboron compounds, mild reaction conditions, high functional group tolerance, and low
toxicity and environmental impact. Suzuki coupling plays a prominent role in medicinal
chemistry.'®® For these reasons Suzuki coupling has been a prime target in the search for more
sustainable catalysts. Famously, there have been examples of reports where authors claimed to
demonstrate palladium-free Suzuki coupling that were later shown to be catalyzed from
palladium contamination.

Leadbeater et. al. reported the first example of transition-metal free Suzuki coupling reactions in
2003.%° The group later discovered that the Na,COs used for the reaction contained palladium
contamination. The group subsequently published an updated procedure for the reaction to
include parts-per-billion levels of palladium as a catalyst.?®° In 2021 Xu et al. claimed that bis(o-
tolyl)amine organocatalysts!!-164 However, several groups independently reinvestigated their
claims and found that the amine catalysts were contaminated with palladium complexes that
were entrained during the chromatographic purification of the amine.'%21¢4 The paper was
retracted by the authors in 2021.

Given these instances, it is crucial to employ rigorous methods to rule out palladium
contamination in new catalysts. Ensuring the purity and identity of the catalyst involves
performing rigorous purification and characterization, which may include recrystallization,
distillation, sublimation, chromatography, mass spectrometry, nuclear magnetic resonance
spectroscopy, infrared spectroscopy, X-ray crystallography, and elemental analysis. Sensitive
and accurate analysis of the catalyst and the reaction mixture for trace amounts of palladium
can be achieved using techniques such as inductively coupled plasma mass spectrometry (ICP-
MS), X-ray fluorescence spectroscopy (XRF), energy-dispersive X-ray spectroscopy (EDX), or
electrochemical deposition. Additionally, performing control experiments using different sources
of the catalyst, solvents, bases, substrates, reaction conditions, and palladium scavengers helps
rule out any possible sources of palladium contamination or interference. Finally, mechanistic
studies using isotopic labeling, kinetic analysis, intermediate trapping, or spectroscopic
monitoring are essential to elucidate the reaction pathway and identify the active species.
Employing these methods ensures that the reported catalyst performance is not compromised
by unnoticed palladium contamination.

The Most Used Substances

We further analyzed the frequency of the substance use in the field of homogeneous catalysts
(Figure 27). lodine is the most frequently used catalyst substance. Various studies suggest that
iodine catalysis primarily happens by activation of reactant through halogen bonding.1% 1%  For
example, iodine is used for oxidative cyclization and oxo-acyloxylation of alkenes and enol
ethers.167 168 Nickel,!6% 170 cobalt,'* 172 iron,*® and copper!®® usually catalyze coupling
reactions, C—H functionalization, asymmetric hydrogenation, and direct arylation with their
metal-complex forms. Eosin,*"*1"* iron,'®® and copper!®® usually catalyze coupling reactions, C—
H functionalization, asymmetric hydrogenation, and direct arylation with their metal-complex
forms. Eosin,!"® 174 tetrabutylammonium iodide,*"® ¢ and 2,4,5,6-tetra(9H-carbazol-9-
yl)isophthalonitrile?’” 178 perform like iodine by creating radical species to initiate the reaction.
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Tris(pentaflurophenyl)borane play the role as a Lewis acid catalyst to promote hydroarylation*”
and hydrosilylation.'® p-toluenesulfonic acid (pTSA)" 178.181.182 nharform like iodine by creating
radical species to initiate the reaction. Tris(pentaflurophenyl)borane play the role as a Lewis
acid catalyst to promote hydroarylation'’® and hydrosilylation.*®° p-toluenesulfonic acid
(pTSA)*L 182 and 1,8-diazabicyclo[5.4.0Jundec-7-ene (DBU)83 184 also perform catalytic
reactions as metal-free catalysts.
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Figure 27. Top 35 substance mostly used as homogeneous catalysts.

In Figure 28, the emerging trend of homogeneous catalysts are shown. Transition metal based
catalysts, zinc, nickel, copper, cobalt, manganese, and molybdenum emerge in the period of
2013-2022.185187 2 4 6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) is a visible light driven
homogeneous photocatalyst capable of functioning under visible light for organic
transformations?* 185187 2 4 6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) is a visible light
driven homogeneous photocatalyst capable of functioning under visible light for organic
transformations*?* such as difunctionalization of alkenes and alkynes,'?> and cyanoalkylation.'?
Acridinium, 10-methyl-9-(2,4,6-trimethylphenyl)-, perchlorate (9-Mesityl-10-methylacridinium
perchlorate) is another visible light active organic photocatalyst!® known for its high efficiency in
generating radical initiators due to its long lived electron transfer state.'® Boron trifluoride
etherate is a metal-free Lewis acid catalyst for various reactions such as reductive aldol
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reaction, ! vinylation of carbonyl oxygen,®! and electrophilic addition/cyclization of 1,3-
enynes.%?
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Figure 28. Sustainable homogeneous catalysts which grew significantly between 2013-2022.

In addition to individual catalyst substances, we analyzed the data for substance classes used
as homogeneous catalysts (Figure 29). The top substance groups to which the homogeneous
catalysts belonged to are transition metals, Lewis acids, N-heterocyclic carbenes, transition
metal complexes, and Bronsted acids. Most common Lewis acids catalysts are organoboron
catalysts,' which can form frustrated Lewis pairs (FLP) capable of catalyzing a range of
organic reactions including hydrogenation, dehydrogenation and cycloisomerization.'®* Metals,
noble-metals, and bases have high patent to journal ratio indicating high commercial interest in
these substances.
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Figure 29. Substance classes reported as homogeneous catalysts.

Figure 30 shows the types of reactions reported using sustainable homogeneous catalysts and
their patent to journal ratio. Reactions to synthesize a specific isomer are the most reported
reaction types. The other most reported reactions include tandem reaction, cyclization, and
oxidation reactions. Reaction types with high patent to journal ratio are hydrogenation,
heterocyclization, reduction, oxidation, and condensation reactions.

Non-metal substances such as iodine, eosin, tetrabutyl iodide, and 2,4,5,6-tetra(9H-carbazol-9-
yl)isophthalonitrile, which are radical initiators in homogeneous catalysis, possess high
frequency of co-occurrence with regioselective synthesis, diastereoselective synthesis, and
cross-coupling reactions (Figure 31). Metal substances like cobalt, iron, nickel, and copper
mainly co-occurred with cross-coupling reactions, oxidation, reduction, hydrogenation, and
electrochemical reactions.
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Figure 30. Reactions in high numbers within the homogeneous catalysts publications
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Figure 31. Co-occurrence between catalyst substances and reactions in homogeneous catalyst
publication.

Figure 32 lists the most reported uses in the homogeneous catalysis dataset. In addition to the
general use cases such photocatalysts and organocatalysts, cyclization, cross-coupling, and
oxidation catalysts are among the most reported uses. Polymerization, ring-opening,
hydrosilylation, and oxidation in particular have a high patent to journal ration indicating
commercial interest.

Co-occurrence between the catalyst substances and their uses is presented in Figure 33.
Trends such as the use of palladium diacetate as coupling catalysts, eosin in photocatalysts,
cobalt, nickel, and iron in hydrogen and oxidation catalysts, are evident from this map. Other
notable uses are 2,4,5,6-Tetra(9H-carbazol-9-yl)isophthalonitrile in alkylation and bond
formation catalysts, p-toluenesulfonicacid in polymerization catalysts, and copper in oxidative
cyclization catalysts.
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Figure 32. Most prevalent usage in homogeneous catalyst publications
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Figure 33. Co-occurrence between most reported usage and the catalyst substances in
homogeneous catalyst publications

Biocatalysts / enzymes

Biocatalysts are based on natural proteins, enzymes, which can catalyze specific chemical
reactions outside the living cells. Enzymatic biocatalysts are true green and sustainable
catalysts. Produced from available renewable feedstocks (plants, animal tissues, bacteria,
yeast, and fungi), they are organic, biodegradable, non-toxic and can function under mild
reaction conditions (aqueous medium, pH ~7, normal temperature and pressure).®® Other
advantages of biocatalysts include reduced number of byproducts and toxic waste. They also
provide shorter and more selective synthetic pathways. All these benefits give a boost to the
global biocatalyst market which is expected to reach 170 kilotons by 2026 if it continues to grow
at a projected rate of 6.4%.%

In Figure 34, between 2012 and 2023, the number of journal publications on biocatalysts almost
doubled. The rapid growth of biocatalyst patents from 2012 to 2014 was replaced by a slow climb
up to 2021 with downs in 2018 and 2020. Although the fraction of patent documents makes up
only a tenth of the total publication volume, the number of patents increased overall.
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Figure 34. Annual publication trend of biocatalysts from 2012 to 2024.
Enzyme Class

Enzymes can be classified into 6 main classes according to the type of reaction they catalyze:
oxidoreductases (peroxidase, laccase, tyrosinase, glucose oxidase), transferases
(phosphorylase, glycosyltransferase, acyltransferase), hydrolases (cellulase, amylase,
xylanase, lipase, protease), lyases (decarboxylase, aldolase, dehydratase), isomerases
(racemase, epimerase, isomerase), and ligases (ligase, synthase, acyl CoA synthase). Among
them the three classes, oxidoreductases, transferases, and hydrolases, are the most abundant
types of enzymes.'%’
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Hydrolases occupy more than 50% of the total biocatalysts market followed by
oxidoreductases and transferases.!°® The major application of these three enzymes is

shown in Table 4.

Table 4. Three major enzyme classes and their applications.

synthesis?’

Enzymes Hydrolases Oxidoreductases Transferases
Synthesis of .
pharmaceutical B'Of‘ﬂe' ?e”S’
: m— compounds!9-200 oxidation Transferring
Major application oo polymerization of . o
polymer synthesis aromatic functional groups
198-200
dloeb el compoundst®’

Top Substances Used in Biocatalysts

The combination of metal-based catalysts and enzymes represents an inexpensive and
environmentally attractive research area?®?. Also, combining transition metal catalysts with
engineered or artificial metalloenzymes expands the range of catalyzed reactions and improves
their reactivities.?’® The use of olefin metathesis catalyst (Ru complex) in combination with a
cytochrome P450 enzyme greatly improved the epoxidation selectivity.2* Transition metal
complexes biocompatible with living organisms were reported to be efficient biocatalysts. For
example, iron(lll) phthalocyanine facilitates olefin cyclopropanation in the presence of E. coli
living microorganisms.?%®

Enzymes that attracted the most attention as potential biocatalysts are shown in Figure 35.
Among them are triacylglycerol lipase and lipase CaLB. The hydrolases and oxireductases
such as peroxidase, laccase, glucose oxidase, alcohol/glucose dehydrogenase, and carbonyl
reductase contribute to this field significantly. Carbon-based materials and transition metals (Ni,
Fe, Pt, Cu, Co) are widely used to optimize enzymatic systems which makes them attractive.?>
206 Nickel and cobalt coordinated covalent organic frameworks were found to exhibit oxidase like
properties. Nickel and iron containing metal organic framework nanozymes showed peroxidase
like activity for biosensing applications.?°” NiFe hydrogenase catalysts which are immune to
inhibition by oxygen were studied recently for hydrogen oxidation reactions, which are
traditionally catalyzed by expensive Pt catalysts.?’® This trend shows that the hydrolases and
oxireductases are two primary types of biocatalysts and the combination between biocatalysts
and metal catalysts is another approach in this field. 2°° Nickel and iron metal organic
frameworks containing nanozymes showed peroxidase like activity for biosensing
applications.?°” Successful application of NiFe hydrogenase enzymes for hydrogen oxidation
reaction traditionally catalyzed by expensive Pt had been reported.?%®

The substance classes used in biocatalysis are presented in Figure 36. Enzymes dominate
other classes of compounds in both journal and patent publications. Immobilized enzymes are
in second place. Immobilizing enzymes provide several benefits such as minimizing enzymes
inhibition by the products, reusing the catalysts without the need for separation of the used
biocatalysts, and enables establishing continuous flow biocatalysis.?% 21! Most of the patents
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involve the application of enzymes and encapsulated enzymes for the synthesis of organic and
biomolecules?'? 213 Most of the patents involve the application of enzymes and encapsulated
enzymes for the synthesis of organic and biomolecules?*? 222 and conversion of biomass.?!4

The other substances broadly used as biocatalysts are porphyrins, enzyme mimics,
hemoglobins, and co-enzymes. Porphyrins including metalloporphyrins, their analogues and
derivatives exhibit enzyme like properties.?!>21® Porphyrins are commonly used in
electrocatalytic applications.?*” The visible light absorption ability of porphyrin-based
compounds enables their application in photocatalytic and photosensitizer applications.?!# 21°
Vitreoscilla hemoglobin has been reported as an efficient biocatalyst for organic synthesis.??% 221
The class of coenzymes represents a special case. Coenzyme includes an organic molecule
that binds to the active sites of certain enzymes assisting catalytic reactions. The patent to
journal ratio for coenzymes is the highest among the substance classes, showing high
commercial interest towards these biocatalysts.
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Figure 35. Most reported catalyst substances in biocatalyst publications
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Figure 36. Most reported substance classes used as catalysts in the biocatalysis dataset.

The most reported reactions in the biocatalyst publications and their patent-to-journal ratio are
shown in Figure 37. The top reported biocatalyzed reactions are enantioselective synthesis,
transesterification, and oxidation. Enantioselective reactions plays a crucial role in synthesis of
specific organic molecules, whereas transesterfication has applications in biodiesel and food
industry. Biomass hydrolysis and electrochemical reduction are also top reactions catalyzed by
enzymes.

The cooccurrence between catalysts and reactions in biocatalysts publications is presented in
Figure 38. Triacylglycerol lipase, lipase CalLB (Candida antarctica), and alcohol dehydrogenase
have high cooccurrence with enantioselective synthesis, hydrolysis, reduction, and
hydrogenation. Laccase, peroxide, glucose oxidase, NADH, NAD, and NADPH frequently
appeared with oxidation and reduction.
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Figure 37. Most reported reactions in biocatalyst publications
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Figure 38. Co-occurrence between the reactions and catalyst substances in the publications
reporting biocatalysis.

Figure 39 list the most reported uses in biocatalyst publications. Photocatalysts and
electrochemical reaction catalysts are the major uses as a wide variety of applications which
involve light and electrochemical studies respectively are ascribed to these two categories.
Figure 40 maps the co-occurrence of usage with catalyst substances providing further insights.

Triacylglycerol lipase and lipase CaLB (Candida antarctica) cooccurred with immobilized
enzymes, transesterification catalyst, esterification catalysts, and nanocatalysts. Alcohol
dehydrogenase, laccase, peroxidase, glucose oxidase, NADH and NAD co-occurred with
photocatalysts and electrochemical reaction catalysts. Alcohol dehydrogenase, NADH, NAD,
and NADPH showed up with coenzymes, as they are either coenzymes themselves (ex. NADH,
NAD and NADPH) or enzymes which benefit from these coenzymes.
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Figure 39. Most reported uses in biocatalyst publications
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Figure 40. Co-occurrence of the uses and catalyst substances in biocatalyst publications

Biochemical fuel cells, biosensors, bioreactors, and their individual components such as
electrodes are the most reported apparatuses within the biocatalysis publications (Figure 41).
The high patent to journal ratio of bioelectrodes and electrodes for the biochemical fuel cells
shows commercial interest in these devices. The cooccurrence of the catalysts and
apparatuses is showing in Figure 42. Due to its ability to facilitate oxygen reduction reaction,
laccase is the most used substance in biochemical fuel cells.??% 223 Triacylglycerol lipase and
carbon are the most used catalysts in bioreactors and fuel cell cathodes respectively. Glucose
oxidase is the most used substance in biosensors due to the need for glucose monitoring in
healthcare.
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Figure 41. Most reported apparatuses in the biocatalyst publications
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Biosensors

Selected Journals in Biocatalysts from the Dataset

Herein research articles in biocatalysts that elucidate the types of enzymes, their combinations,
advanced modifications, and formation of biocomposites with artificial materials are described.

. .. Fuel cell electrodes

... Packed-bed reactors

DU ——

. Enzyme electrodes

Synthesis of a-chiral amines with high stereoselectivity and efficiency challenging.??

Biocatalysis have become one of the major approaches to obtain optically pure chiral amines.?*
Many bioactive compounds such as alkaloids have more than one stereocenter and a
biocatalytic cascade helps to achieve stereoselectivity throughout the synthesis of alkaloids and
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synthesis of alkaloids and chiral amines.??* 226227 Herein, Multti et al. revealed a one-pot
biocatalytic system composed of ene-reductases (EReds) and imine reductases (IReds) to
facilitate the stereoselective synthesis of amines with two stereocenters from a,B-unsaturated
ketones (conversion rate: >99%; diastereomeric ratio: up to 99.0:1.0; enantiomeric ratio: up to
>09:<1).228

Catalytic conversion of cyclic compounds into expanded/shrunk cyclic compounds is of great
importance for pharmaceutical research.??® 23° Transition metal-catalyzed ring expansion via
carbon-carbon bond activation has been well-studied.?*-2®3* N-heterocycles, especially the
azetidines, are very important moieties/building blocks of biologically active compounds, which
have limited synthetic options.?** Arnold et al. reported a novel synthesis of azetidine via one-
carbon ring expansion of aziridines using engineered cytochrome P450, called P411-AzetS.%3®
P411-AzetS enables highly enantioselective [1,2]-Stevens rearrangement resulting in highly
enantiopure azetidine derivatives (enantiomeric ratio, 99:1).

Regulation of carbon dioxide has been a paramount topic in relation to control of global
warming. Carbon capture, utilization, and storage (CCUS) technologies are rapidly emerging
and attract considerable research interest.?*® Conversion of CO; into bicarbonate or carbonate
is one of the methods to store CO; in aqueous solution. Carbonic anhydrases (CA) can catalyze
CO: hydration and bicarbonate dehydration.?®” Amao et al. developed a bienzymatic system
composed of CA and formate dehydrogenase(CbFDH) that catalyzes CO, conversion at a wide
range of pH.2*® Addition of CA promotes the CbFDH catalyzed CO; reduction to formate in
higher pH region (>9.5) conditions. At lower pH (6.3—6.5), CA primarily converts CO; into
bicarbonate. This CA/CbFDH system facilitates CO- storage at a wide range of pH by
alternatively using one of the enzymes.

The obstacles of the application enzymes in industry are stability, long term storage, reusability,
and recovery.?3® 240 Immobilization of enzymes removes these disadvantages and enables the
application.?*! 242 Dos Santos et al. utilized Taguchi method to optimize the immobilization of
lipase A from Candida antartica(CALA) onto halloysite nanotubes (Hal) for p-nitrophenyl
butyrate hydrolysis.?*® In this study, CALA-Hal displays better stability at 50—90 °C and higher
catalytic activity at pH 9 compared to original lipase A.

As mentioned in the previous paragraph, enzyme immaobilization can also be carried out using
porous organic frameworks such as metal-organic frameworks (MOFs) and hydrogen-bonded
organic frameworks (HOFs) to form biocomposites with high activity, stability, reusability, and
recyclability.?*424¢ Nidetzky et al. reported a D-amino acid oxidase (DAAO)-immobilized on
tetraamidine/tetracarboxylate-based HOFs (BioHOF-1). They applied polypeptide chain to
functionalize DAAO (Z-DAAO) and enhance the immobilization of DAAO on BioHOF-1 (Z-
DAAO@BioHOF-1).24" This functionalized biocomposite, Z-DAAO@BioHOF-1 displayed higher
enzyme loading (2.5 fold) and activity (6.5 fold) compared to non-functionalized DAAO
biocomposite (DAAO@BioHOF-1). Z-DAAO@BIioHOF-1 demonstrates better activity than other
carriers such as zeolite-based frameworks biocomposite, Z-DAAO@ZIF-8, and it retains the
activity after 10 cycles of D-methionine oxidation.

These selected journals reveal the broad interests that researchers have in biocatalyst. Using
single or various enzymes and supporting materials, like porous materials to form stable
biocomposites, facilitates organic reactions.
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Conclusions

Sustainable catalysts using non-noble metal catalysts to replace noble metals has advanced a
lot in the last 11 years. The general publication trends show a steady growth of novel ideas in
this field. With subject-specific search queries, we further analyzed the publications of
electrocatalysts, photocatalysts, homogeneous catalysts, and biocatalysts. Detailed analysis in
these subfields of catalysts include publication trends; most prevalent catalysts, reactions, uses,
and apparatuses; cooccurrence of catalysts with reactions, uses, and apparatuses; extent of
commercial interest in substances and applications.

In electrocatalysts, the primary contributors to non-noble metal alternative catalysts are
transition metals, metal oxides, metal phosphides, metal chalcogenides, layered double
hydroxides, alloys, and mXenes. Water splitting, oxygen evolution reaction, hydrogen evolution,
oxygen reduction reaction which have applications in fuel cells, hydrogen generation, batteries,
and solar cells are the major drivers of research in electrocatalysts. Driven primarily by the need
for energy and its storage, a widely variety of catalysts continue to emerge in electrocatalysts.

Research publications in photocatalysis continues to increase over the years and the focus is on
finding a suitable photocatalyst with enough efficiency for commercial solar hydrogen production
from water and for pollutant degradation rather than on replacing any noble metal. Due to its
visible light absorption capability, carbon nitride has replaced TiO; as the most studied
photocatalyst and continues to grow rapidly. Though the reactions and uses in photocatalysts
are mostly related to hydrogen production and pollutant degradation, a small but considerable
number of them are related to light driven organic reactions and organic photocatalysts.

Homogeneous catalysts analysis demonstrates that publications distributed to various organic
reactions, such as cyclization, cross-coupling reaction, arylation, etc. Suzuki coupling reaction is
the top named reaction focused by researchers. Transition metals, acids, bases, metal
complexes, are some of the major classes of substances used as homogeneous catalysts.
These catalysts, some of which are photoactive, are used for a range of reactions used in
organic synthesis with emphasis on stereoselectivity.

Our analysis of biocatalysts shows that there is considerable interest in using biocatalysts as a
sustainable way of catalyzing various reactions. The consistent increase in the number of
publications shows growing interest in this area. The combination of biocatalysts and metal
catalysts is also an emerging approach to achieve the sustainability of valuable molecule
production. In addition to the highly prevalent enzymes, organometallic substances which mimic
enzymes, and other bioderived molecules are also studied as biocatalysts. Biocatalysts have
wide variety of applications such as organic synthesis, fuel cells, and sensors.

Overall, non-noble metal-based catalysts made of organic, inorganic, and bio-based substances
continues to attract interest in the efforts to achieve the same catalytic performance as the noble
metals and to replace them. The continued increase in such publications is an indication of the
progress made in these efforts.
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