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Abstract

Process optimization in heterogeneous catalysis relies on the control of

competing reactions. The reaction mechanisms based on chemical knowl-

edge can be evaluated via density functional theory unveiling experimental

catalytic trends. However, this approach finds its limits when applied

to complex reaction networks or large molecules, disregarding alternative

paths and rare events. Here we present CARE, a foundational model for

catalysis on metal surfaces with a rule-based reaction network generator for

CxHyOz species built with GAME-Net-UQ, a graph neural network with

uncertainty quantification targeting thermodynamic and kinetic parame-

ters, coupled to microkinetic modeling. CARE reproduces experimental

activity trends in methanol decomposition, selectivity to C3 products in

electrochemical reduction processes, and models the Fischer-Tropsch syn-

thesis to C6 products, including 370k reactions, breaking the current limits

of network exploration. This comprehensive model opens the path towards

the exploration of thermal and electrocatalytic surface processes previously

not amenable to atomistic simulations.
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1 Introduction

Catalytic processes rely on the control of complex competing multi-step

chemical reactions networks (CRNs) [1, 2]. The core of a CRN consists of

a set of species S linked by a set of reactions R defined by properties P,

usually including, but not limited to their reaction and activation energy [3,

4]. For processes where the list of elementary steps can be hand-generated,

density functional theory (DFT) can provide linear reaction profiles. But

as network complexity grows [5], this approach finds its limits and it is

necessary to leverage the CRNs abstract mathematical foundations [6–11].

CRN algorithms fall into two categories. CRN-PES (Potential Energy

Surface) models require the on-the-fly ab initio energy evaluation of the

species S involved along the reaction paths [12–17]. As such, they are only

amenable to chemical spaces of the order of 102 intermediates. Alterna-

tively, rule-based CRN models employ templates to define the attainable

chemical space via a list of possible transformations [18]. These algo-

rithms can decouple the network generation from the energy evaluation.

Therefore, they lead to larger networks compared to CRN-PES, including

multiple paths which could contribute to the catalytic activity or expand

rare events responsible for catalyst degradation, thus getting closer than

CRN-PES to achieve the completeness of the chemical space. However, the

combinatorial explosion of the chemical space requires strategies to reduce

the CRN complexity and/or substitute DFT with fast energy estimators.

The energy evaluation of the species S can be accelerated by employing

group additivity (GA) methods [19–21], while linear scaling (LSR) [22, 23]
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and Brønsted-Evans-Polanyi (BEP) relationships [24–26] can be used for

characterizing the reaction properties P. An example of this approach is

the Reaction Mechanism Generator (RMG) [27], that was applied to the

CO2 methanation, and hydrocarbon (CH4, C2Hx) oxidation on Pt(111) and

Ni(111) surfaces [28]. Upon iterative species generation with graph-based

approaches characterized with the aforementioned energy estimators (GA-

LSR-BEP), a filtering is applied after every network expansion through

microkinetics to quench the chemical space. Although the approach is

self-consistent and obtains general reactivity trends, the accuracy of the

species energy is low (about 0.5 eV) compared to DFT [29], and cannot

tackle selectivity issues, limiting its applicability.

The competition and correlation between network completeness and the

associated computational burden when addressing characterization of the

chemical space is key to advance the field. Expanding the boundaries of

the investigated chemical spaces requires more robust, accurate, and effi-

cient energy regressors, which can be obtained via Machine Learning (ML)

acceleration strategies [30–32]. Ulissi et al. [33] built a surrogate model

with GA fingerprints fed to a Gaussian process and combined it with BEP

relationships to obtain the rate-limiting steps for the conversion of syngas

to C2 products on Rh catalysts. This model was employed within an active

learning strategy while keeping track of uncertainty to predict the most

relevant steps to be refined with DFT. An alternative approach involved

employing ML potentials from the Open Catalyst Project (OCP) [30] for

refining initial guesses of the adsorption geometries subsequently relaxed

with DFT [29], reducing the total computational time. Although speeding-
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up DFT simulations, these models are still too computationally demanding

for high-throughput in-silico exploration. As for the transition state (TS)

and corresponding activation energy, going beyond the use of BEPs has

been demonstrated via multiple ML regressors on dispersed datasets for

CxHyOz species on metals, achieving MAEs in the order of 0.2 eV [34, 35].

A promising recent strategy [36] employs OCP models, explicitly trained

for predicting adsorption energies, for targeting TS structures, achieving

an MAE of 0.1 eV. Additional strategies involving ML potentials [37–39],

graph-based approaches [40] and diffusion models [41] can reduce the pre-

diction error, but have yet to be merged with CRN algorithms.

In this context, we present the Catalytic Automated Reaction Evalua-

tor (CARE), a foundational model for heterogeneous catalysis consisting of

(i) a rule-based CRN generator for processes involving CxHyOz species, (ii)

GAME-Net-UQ, a robust and accurate graph neural network with uncer-

tainty quantification for evaluating the thermodynamic and kinetic reaction

parameters on 42 metal surfaces, and (iii) microkinetic modeling functional-

ities to analyze the reactivity. CARE is benchmarked against experimental

data to rank catalytic activity in methanol decomposition, employed to

study selectivity to C3 products in electrochemical reduction on Cu, and in

the Fischer-Tropsch process to C6 products by evaluating 370k elementary

reactions, demonstrating the wide impact of the methodology.
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2 Results

CARE (Catalytic Automated Reaction Evaluator) is a foundational model

able to construct reaction networks and to fast scan the activity and selec-

tivity in heterogeneous and electrocatalysis for reactions involving CxHyOz

species on transition metal surfaces. CARE consists of three independent

modules: A template-based network generator, a fast evaluator of the ther-

modynamic and kinetic reaction parameters, and a robust microkinetic

solver (Fig. 1).

Building the CRN in CARE proceeds in three steps, (i) the creation of a

general network scheme, the CRN blueprint, composed of a list of species

S and reactions R, (ii) the evaluation of the properties P, consisting of

adsorbate placement and energy evaluation and (iii) the analysis of the

CRN with microkinetic modeling (MKM).
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Fig. 1: CARE workflow from network construction to reactivity quan-
tification CARE starts from a Chemical Space (CS) defined by the maximum
number of C and O atoms and a molecular template defining how to build the car-
bon backbone. The bond-breaking template returns the extended Chemical Space
(eCS) and all potential reactions. Species in the eCS are placed on the metal sur-
face and their energy and those of the linking transition states are evaluated with
GAME-Net-UQ, a graph neural network with uncertainty quantification. The re-
activity of the network can be characterized with microkinetic modeling (MKM)
under realistic reaction conditions.
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2.1 Network blueprint generation

The first step for generating the CRN blueprint in CARE is the definition of

the chemical space (CS). The size of the CS is determined by the backbone

of the largest molecule obtained by establishing the maximum number

of C and O atoms for the species, defined by the carbon and oxygen

cutoffs, NC and NO respectively. The CS and the set of templates are

implemented using RDKit [42] operations on SMILES [43]. To set up the

CS, a pool of alkanes with up to NC carbon atoms is generated. These

are then oxygenated and new saturated molecules with up to NO oxygen

atoms are obtained (e.g., ethers, alcohols, epoxides). This pool of species

is complemented by a gas-phase reservoir of molecules usually encountered

in CxHyOz networks, consisting of H2, H2O, CO, CO2 and O2, composing

the CS.

In a second step, the algorithm expands the CS by applying a series of

bond-breaking templates generating simultaneously a set of reactions R,

open-shell fragments, and unsaturated closed-shell molecules (e.g., alkenes,

ketones, acids). The newly obtained species plus the CS define the ex-

tended chemical space (eCS). In contrast to homogeneous catalysis, the

number of possible reaction templates in heterogeneous catalysis is rel-

atively small but the number of events can be very large, as in poly-

merization/depolymerization processes involving long-chain hydrocarbons.

Therefore, the main reaction templates in CARE describe X-Y (X,Y=C, H,

O) bond-breaking reactions, and adsorption/desorption of closed-shell and

other key molecules. Additional reaction templates account for intramolec-
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ular rearrangements such as 1,2-hydrogen shift, and a specific template

for proton-coupled electron transfer (PCET) steps enabling modeling re-

action networks under electrochemical conditions. The modularity of the

network generator allows the inclusion of more reaction classes if required,

for instance reactivity in solution at the interfaces of electrodes.

The ensemble of the eCS and the set of reactions R constitute the

reaction network blueprint. It is catalyst agnostic and needs to be generated

only once to model the same network on multiple catalysts and conditions.

Extended details on the CRN blueprint generation algorithm are discussed

in Supplementary Note 1.

2.2 Thermodynamic and kinetic parameters estima-

tion

To estimate the thermodynamic and kinetic properties (P) of the obtained

CRN blueprint, a fast energy regressor algorithm is needed. In CARE, this

task is done by GAME-Net-UQ, a graph neural network (GNN) targeting

the DFT energy of adsorbed species S and the transitions states linking

them. Originally, GAME-Net [31] was designed to predict the energy of

closed-shell molecules in gas phase and adsorbed on the closed-packed sur-

face of 14 transition metal surfaces. The upgraded GAME-Net-UQ model

includes three crucial advancements: (i) the extension to open-shell species,

(ii) the estimation of transition state (TS) energy and (iii) the implementa-

tion of uncertainty quantification (UQ) for the predictions. Including these

features keeps GAME-Net-UQ lightweight (558k parameters, roughly twice
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the original GAME-Net), accurate, and robust, enabling extensive direct

energy evaluations at minimal computational cost compared to state-of-

the-art ML potentials containing up to 107−8 parameters [44].

The graph dataset used to train and evaluate the model includes 12,608

entries, 80% of them are intermediates (2% in gas phase) and the re-

maining 20% are TSs representing bond-breaking events of species up to

C2H6O2 (Supplementary Fig. 4). To distinguish the TS graphs from

intermediates, a boolean feature is added to the graph edges to label the

bond involved in the reaction, following a similar approach to the virtual

bond described by Wang et al. [40] (Fig. 2a). Consequently, the GNN

architecture includes a topology-adaptive convolutional layer [45] utilizing

the encoded edge attribute. The GNN is trained with graphs representing

the DFT-optimized geometries (Methods Section 4.1) and a streamlined

version of DockOnSurf [46] is employed as a pre-processing step to place

adsorbates, replacing the need of DFT-optimized input geometries during

inference. Adsorbate atoms with coordination lower than their valence are

defined as anchoring points, while the surface adsorption sites are identified

with ACAT [47].

The representation of the surface has been expanded to allow the study

of structure sensitive processes. Surface effects are taken into account by

including (i) species adsorbed on the 2nd and 3rd most stable surface facets

of the metals in the training dataset (Supplementary Fig. 5), (ii) the

generalized coordination number [23] of surface atoms as node feature and

(iii) the 2-hop adsorbate nearest surface neighbors to distinguish hollow

adsorption sites.
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Fig. 2: GAME-Net-UQ performance. a Graph representation of intermedi-
ates and transition states (TS), and energy prediction as normal distribution. b
Parity plot of the predicted vs. DFT adsorption energy for the test intermediates
(brown) and TS (orange) data. c Mean absolute error (MAE) and predicted mean
standard deviation grouped by metal and adsorbate size. Error bars represent
the 95 % confidence interval, ‘g’ refers to gas-phase graphs. RMSE=Root Mean
Squared Error. MAD=Median Absolute Deviation. Sha=Sharpness, cv=Variation
coefficient (dimensionless). Statistic metrics refer to the whole test set (n = 2521),
which has been randomly sampled from the original data distribution.
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As GAME-Net-UQ has been redefined as a mean-variance estimator

[48], it returns DFT energy predictions as normal distributions E ∼ N (µ, σ2)

with the standard deviation σ representing the uncertainty (Fig. 2a). De-

tails about training data, model architecture, UQ and training procedure

can be found in Supplementary Notes 3-6.

In terms of accuracy, GAME-Net-UQ yields an MAE of 0.24 eV on a

test set of 2521 data points randomly sampled from the initial dataset,

0.23 eV for intermediates and 0.26 eV for transition states (Fig. 2b). The

performed ablation study (Supplementary Note 7) shows that labeling

the edge involved in the TS improves the test MAE by 0.14 eV, while

encoding the generalized coordination number in the graph nodes yields

an overall MAE reduction of 0.10 eV. Data with small (high) error are

reflected in small (high) uncertainty, resulting in a robust model with a

0.9% miscalibration area (Supplementary Fig. 11c). Small adsorbates,

ferromagnetic metals, and Cd and Zn show higher error (Fig. 2c), but the

model uncertainty for these systems is positively correlated. The sharpness

of the model, representing the magnitude of its uncertainty on the test set,

is 0.29 eV, while the variation coefficient, which quantifies the dispersion of

the uncertainty estimates, is 0.4 (Supplementary Fig. 11d).

GAME-Net-UQ propagates the uncertainty to the reactions energy ∆E

and activation barrier Eact, also defined as normal distributions (Supplementary

Note 8). Since the GNN is trained on single adsorbates on the surface,

bimolecular surface reactions A∗+B∗ → C∗+∗ are energetically evaluated in

the bond-breaking direction (C∗+∗→A∗+B∗) to construct the TS from the

reactant graph by labelling the corresponding broken bond. The products
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are then evaluated separately, assuming absence of lateral interactions. As

fallback strategy, CARE automatically treats steps as barrierless if GAME-

Net-UQ predicts TS energies between the initial and final states. For elec-

trochemical processes, the computational hydrogen electrode (CHE) [49]

approach is used to include the effect of applied potential and electrolyte

pH to the energies. Reactions involving species not bonded to the surface,

such as adsorption/desorption and PCET steps involving -OH removal and

the formation of water, can be evaluated with GAME-Net-UQ as it has

been trained with closed-shell gas phase molecules.

UQ can be exploited within an active learning strategy to refine with

DFT the intermediates with the highest number of participated elementary

reactions, the so-called ‘hubs’ [11], and to propagate the uncertainty to mi-

crokinetic simulations. The energy estimator interface in CARE can be

connected to databases to avoid the estimation of the energy intermediates

already evaluated at the DFT level. While this strategy leads to mini-

mal computational savings, the actual gain is a reduced uncertainty and

improved accuracy for the reactions involving the intermediates evaluated

with DFT. As an example, employing the DFT energy of the adsorbed

H∗, the main hub in the C1O2 CRN, positively affects the evaluation of

48% of the reactions in the network by reducing their error and associated

uncertainty.
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2.3 CRN analysis via microkinetic modeling

Having a fully characterized reaction network is insufficient to directly map

the results to the experimental reactivity of materials. Inferring the reac-

tivity from linear reaction profiles involving hundreds of intermediates and

reactions is not straightforward since the CRNs in CARE (i) have unde-

fined directionality at the global level as this depends on the definition of

the initial reactants, (ii) are unconstrained to specific source and target

species, and (iii) the catalytic activity depends on the applied operating

conditions. Therefore, mean-field microkinetic modeling (MKM) function-

alities [50] for both thermal and electrochemical processes are included in

CARE.

Microkinetic modeling relies on the numerical steady-state solution of

the ordinary differential equations (ODEs) systems defining the material

balance for the species in the CRN. The default reactor model in CARE is a

zero-conversion differential plug-flow reactor, which enables the extraction

of macroscopic reaction rates and selectivity directly comparable to ex-

periments, steady-state surface coverages, and rate-determining steps and

species. The kinetic coefficients of the elementary reactions in the network

are evaluated via transition state theory for all forward reactions except the

adsorption steps, the coefficients of which are given by the Hertz-Knudsen

equation [51]. The coefficients of the reverse reactions are obtained by

imposing thermodynamic consistency (see Supplementary Note 8 for

implementation details).

Elementary reactions possess characteristic times ranging multiple or-
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ders of magnitude, resulting into a stiff ODE system requiring special-

ized solvers. Popular Python libraries such as Scipy [52] lead to an in-

tractable computational cost for kinetic simulations on huge CRNs and/or

stiff ODEs. Therefore, CARE additionally implements the Julia solvers

DifferentialEquations.jl and DiffEqGPU.jl [53, 54]. These outperform

Scipy solvers and are prepared to be run on GPUs, providing a speed-up of

×20-100 compared to their CPU counterparts. CARE employs the back-

ward differentiation formula (BDF) as default ODE solver (BDF in Scipy,

FBDF in Julia). 64-bit floating-point arithmetic is implemented for microki-

netic simulations on both CPU and GPU (although the latter is typically

optimized for 32-bit floating-point).

Two fundamental aspects to consider in MKM simulations are the ab-

solute and relative tolerances (atol and rtol) applied at each integration

step, and the definition of the steady-state termination event. Initial atol

and rtol are conservatively set to 10−16 and 10−8. These values are it-

eratively increased by the solver in case it fails to converge. Steady-state

is reached when the sum of the absolute derivatives of the species surface

coverage is less than 10−10 (Supplementary Fig. 13). Fallback strategies

are additionally available to facilitate the convergence of microkinetic sim-

ulations showing high stiffness and to reduce the total computational time.

These include (i) removal of surface reactions with energy barriers higher

than a specified threshold, (ii) considering all the reactions as barrierless

(Supplementary Fig. 14), and (iii) steering the model towards specified

target products by removing from the CRN species which are unlikely to be

formed based on the user intuition. Details about the code implementation
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can be found in Methods Section 4.2.

2.4 Application to industrially relevant problems

To highlight CARE capabilities, we have selected three applications of in-

dustrial relevance and increasing complexity. We start by benchmarking

activity against an open experimental dataset. Obtaining systematic stud-

ies of experimentally measured reactivity is not straightforward but the

CatTestHub [55] database presents a good example, changing the metal

on the same carrier and under the same conditions for methanol decom-

position. The second example illustrates a chemical reaction network in

electrochemical environments. Selectivity is key to processes and typically

depends on a set of two competing steps with small energy differences, in

the range of few meV, thus being challenging in terms of accuracy, even

more for data-driven estimators. To check the validity of CARE in pre-

dicting selectivity patterns in electrochemical applications, we analyzed the

steps towards C3 products on Cu(100) [56] in the C3O2 (NC = 3, NO = 2)

CRN. Finally, we try to assess the capacity of the methods by analyzing a

reaction network that cannot be addressed with DFT due to the number of

species and steps involved, the Fischer-Tropsch process for producing fuels.

For this case study, we generated and evaluated the C6O1 CRN on four

typically employed metals (Co, Fe, Ni, and Ru) for this process, resulting

in networks of 40k intermediates and 370k elementary reactions.
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2.4.1 Methanol decomposition

First, a benchmark against experimental reactivity is established by study-

ing the methanol decomposition to CO on different metal catalysts. This

example focuses on a small CS (NC=1, NO=2) but covers a high-throughput

investigation spanning multiple metal catalysts, predicting reactivity on

different materials [55].

Methanol (MeOH) has gained importance for sustainable energy ap-

plications as hydrogen vector [57, 58]. Developing efficient catalysts for

its controlled decomposition is therefore crucial. The public experimental

database CatTestHub [55] contains 104 kinetic experiments for this reaction

on 9 transition metal catalysts, covering multiple supports and operating

conditions. Here we choose a smaller set with the same inert carrier and

experimental conditions (Supplementary Table 6).

To benchmark our results, we first built the C1O2 CRN for all the

metals on the (111), (110), and (100) surface facets for the face-centered

cubic (fcc) metals, and (0001), (101̄0), (101̄1) for Ru. These CRNs include

28 surface species, 10 gas phase molecules, and 62 elementary reactions.

We evaluate the network energetics with GAME-Net-UQ and run multiple

microkinetic simulations at 473 K and 1 atm, as reported in the database.

Details about the CRNs and MKM runs can be found in Supplementary

Note 9.
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Fig. 3: Methanol decomposition on metal catalysts. a C1O2 CRN vi-
sualization. Species with same node label represent constitutional isomers. b
Parity plot of the activation (triangles) and reaction (circles) energies obtained
with GAME-Net-UQ and those from DFT simulations as reported in Ref. [59].
The highlighted region represents the parity line ±0.2 eV. n=88. c CO log-
arithmic normalized formation rate from microkinetic simulations (circles) and
experiments (triangles) as function of the DFT CO adsorption energy, consider-
ing the contribution from all the available surface orientations weighted by their
fractional area obtained from Ref. [60]. Experimental values are retrieved from
CatTestHub [55]. T=473 K, P=1 bar, yMeOH=10%. Nickel is depicted in white
as experimental characterization reveals low dispersion compared to other metals
(Supplementary Table 6).

Fig. 3a provides an overview of a C1O2 CRN. CARE represents CRNs

and microkinetic simulations outputs as bipartite graphs with nodes repre-
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senting species and elementary reactions, with edges e(s, r) embedding the

consumption/formation rate of species s due to reaction r.

Comparing GAME-Net-UQ predictions to available DFT data [59] on

a subset of the studied metal surfaces, CARE shows an accuracy in terms

of MAE of 0.27 eV for the reaction energy, and 0.55 eV for the activation

energy (Fig. 3b). DFT studies typically focus on modeling reactive pro-

cesses on the most stable surface facet. However, the observed catalytic

activity in metal nanoparticles is attributed to the contributions from mul-

tiple exposed surfaces. The ability of GAME-Net-UQ to target multiple

surfaces allows for predicting activity on different surfaces in a systematic

way. Defining the overall reaction rate as a weighted sum of the rates on

multiple surface facets leads to a general agreement with the experimental

trend (Fig. 3c), while focusing on the most stable facet (e.g., (111) facet

for fcc metals) would underestimate these predictions (Supplementary

Fig. 16).

Generating the 27 CRNs (3 surfaces for each of the 9 metals) and run-

ning the microkinetic simulations for all the metals and surface orientations

took only 8 minutes on a 24-core CPU (3.2 CPU hours). Simulating all

species and transition states in the network, adsorbed on diamagnetic (all

except Ni) surfaces, with DFT would require at least 11000 CPU hours and

91 kWh (see Supplementary Note 10).

Our fast data-driven energy estimator yields a trend in agreement with

experimental data. As for the absolute values, the predicted rates dif-

fer by 4-6 orders of magnitude from the experiments (Supplementary

Fig. S17). This discrepancy, often encountered in mean-field kinetics
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based on DFT data [61], stems from the infinite dilution in DFT simu-

lations which minimizes the effect of lateral interactions, and the missing

entropy contributions, factors that, if included, would likely increase the

global reaction rates by destabilizing the reaction path.

2.4.2 Electrochemical reduction to C3 products

The second example focuses on the electrochemical formation of C3 prod-

ucts. Electrochemical reduction to C3 products on Cu(100) has been stud-

ied with CARE by generating a C3O2 CRN. Compared to thermal pro-

cesses, electrochemical reactions require the inclusion of the potential and

pH contributions, which CARE implements via the computational hydro-

gen electrode (CHE) approach, allowing the definition of a set of specific

electrochemical reactions between adsorbed species, charged particles as

protons and electrons, and the solvent. The CRN has been modeled in

neutral (pH=7) and alkaline (pH=13) conditions, at applied potentials of

–0.4 and –1.0 VSHE, and at ambient temperature and pressure (298 K,

1 bar). The network contains 893 surface species, 93 gas-phase molecules

and 7709 elementary reactions, classified in five main types: Proton-coupled

electron transfer (PCET), C-O, C-C and C-H bond-breaking/forming re-

actions, and [1,2]-H shifts (Fig. 4a). Further characterization of the C3O2

network can be found in Supplementary Fig. 18. The generation and

energy evaluation of the CRNs took less than 5 minutes on a 24-cores CPU

(2 CPU hours), making use of multiprocessing to evaluate the energy of

the intermediates.

The global analysis of all reactions in the CRN (Supplementary
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Fig. 19) shows that PCET steps cluster into two distinct groups according

to their uncertainty. The cluster with higher uncertainty corresponds to

-OH protonation leading to water formation and elimination, likely related

to different orientations in the GNNs representing the three-dimensional

structure.

As for pH effects, shifting towards a more alkaline pH (from pH 7 to

pH 13) leads to an increase of the reaction energy for all PCET reactions.

This behaviour is expected since increasing the pH implies a lower concen-

tration of protons, thermodynamically disfavoring the protonation of the

intermediates. As expected, lowering the applied potential (from –1.0 to

–1.5 VSHE) leads to a favorable thermodynamic shift of the energies for all

PCET reactions.

A key problem in CO2 reduction on Cu is fine-tuning its selectivity to-

wards long-chain valuable products. CARE is able to reproduce selectivity

trends, for instance, for C2 products, ethylene and ethanol are typically

observed but in the C3 fraction only 1-propanol is observed and the route

of propylene is blocked. CARE was used to reproduce the paths start-

ing from two key intermediates, allyl alcohol and propionaldehyde. The

selected paths leading to 1-propanol (Fig. 4b) and its competition with

propylene (Fig. 4c), previously evaluated at the DFT level in Ref. [56]

have been taken to analyze selectivity. The results obtained with CARE

are comparable with those obtained with DFT, demonstrating the capacity

of CARE to identify trends. When subjected to alkaline pH (Fig. 4b) and

reductive conditions (Fig. 4c), thermodynamically favorable pathways to-

wards the formation of 1-propanol are identified. These findings align with
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previous DFT studies [56] and highlight the preferential formation of 1-

propanol over propylene.

Fig. 4: Electrochemical C3O2 reaction network on Cu(100). a CRN
visualization with intermediates (left) and elementary reactions (right) colored
by phase and reaction type, respectively. Ads/Des=Adsorption/Desorption,
PCET=Proton-Coupled Electron Transfer. Reaction profiles reproduced with
CARE from Ref. [56] (dashed lines) for the electrocatalytic paths from b pro-
pionaldehyde to 1-propanol and c allyl alcohol to propylene and 1-propanol.

As for the selected paths at zero applied potential (U=0 VSHE) (Supplementary

Fig. 20) a shift in trend occurs, being in this case the path from allyl

alcohol to propylene more thermodynamically favourable than that to 1-

propanol, in line with DFT studies [56].
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Therefore, CARE can deal with electrochemical systems by integrating

a specific template and evaluating the energies taking into account pH and

applied potential effects. In this way, selectivity trends comparable to DFT

and experimental observations can be extracted.

2.4.3 Fischer-Tropsch process

This case study shows how CARE can construct huge CRNs, by focusing

on the Fischer-Tropsch process [62], which converts syngas to a wide distri-

bution of long-chain hydrocarbons (alkanes and olefins) used as synthetic

clean fuels. To this end, a C6O1 (NC = 6, NO = 1) CRN has been gen-

erated and evaluated for Co(0001), Fe(110), Ru(0001) and Ni(111). The

obtained CRNs include 38,913 surface species, 985 gas-phase molecules and

369,365 elementary reactions. Considering that simulating an intermediate

adsorbed on ferromagnetic surfaces with DFT on average required 307 CPU

hours and about 2.5 kWh on supercomputing facilities (Supplementary

Note 10), simulating the extended chemical space of this CRN with DFT

would have taken at least 106 kWh and 1360 CPU years, assuming sam-

pling one configuration per adsorbate-surface pair. With CARE, each CRN

blueprint generation plus the energy evaluation of its intermediates and

transition states took 4 hours on a 24-core CPU (96 CPU hours), resulting

in a speed up of ×106 and a substantial reduction of the energy footprint.
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Fig. 5: Energy trends obtained from the C6O1 CRN for the Fischer-
Tropsch process. a Bar-plot of the mean activation energy obtained with
GAME-Net-UQ grouped by bond-forming type and metal surface. b Scatter-
plot of the activation energy and related uncertainty (standard deviation) for all
the surface reactions in the bond-forming direction of the C6O1 CRN on Co(0001)
(n = 357, 222). c Mean and d standard deviation of the predicted activation en-
ergy as function of the reaction energy for the C-C coupling reactions on Co(0001).
nC-C = 11370.

Fig. 5a provides energy trends in agreement with experimental ev-

idence. Ru is the most active metal catalyst as it provides the lowest

activation barriers among the four studied metals, and possesses a high
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hydrogenation activity (C-H > C-C > C-O), however its cost limits its

industrial application. Nickel is the least active catalyst and prefers C-H

over C-C bond-forming reactions, while Cobalt, known for its selectivity

towards long-chain products, is the only metal whose mean energy barrier

for C-C coupling events is smaller than the competitive C-H and C-O bond-

forming reactions, explaining its higher chain growth probability compared

to the other metals.

In terms of uncertainty, a standard deviation between 0.4-0.6 eV (Fig. 5b)

for the energy barriers is obtained with GAME-Net-UQ for Co. The greater

uncertainty in the activation energy, compared to values for intermediate

or transition state structures, arises from the propagation of uncertainty

(i.e., standard deviation σ) when deriving reaction properties from species,

which involves performing addition and subtraction operations on nor-

mal distributions. The smallest uncertainty is obtained for C-C coupling

events, with a minimum standard deviation of 0.4 eV, while hydrogenation

reactions show an uniform uncertainty distribution around 0.6 eV. Similar

trends are observed for the other metals (Supplementary Fig. 21).

A relevant consequence of GAME-Net-UQ targeting both intermediates

and TSs is the perfect correlation between the uncertainty found for the

reaction energy ∆E and activation barrier Eact, as observed in the C-C

coupling events on Co(0001) (Fig. 5d). This feature originates from the

similar performance of GAME-Net-UQ for intermediates and TS (0.24 vs.

0.26 eV).

Although the presented CRNs require prohibitive resources to be simu-

lated at the microkinetic level, the case study highlights the capability of
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CARE to generate and evaluate huge networks cheaply including all the

possible bond-breaking reactions that could eventually take place on the

catalyst surface.

3 Discussion

CARE presents a fast and robust software tool for evaluating the catalytic

activity of metal catalysts via a reaction network generator powered by a

data-driven energy estimator plugged into a simple reactor model. Being

the first of this kind, we have identified several potential challenges in the

field.

We have approached the reaction network completeness with a set of

templates including all potential bond-breaking reactions leading to all the

available intermediate fragments, even those that might be discarded ini-

tially based on chemical intuition. CARE is modular in nature, allowing the

user to implement new templates for increasing the granularity in the defini-

tion of the explored chemical space. This systematic approach reduces bias

in CRNs, but leads to larger reaction lists that can be a bottleneck when

analyzing and manipulating the constructed networks. However, there are

three definitive advantages in the methodology. The first is the modular-

ity of the algorithm, allowing the implementation of additional molecular

and reaction templates, thus getting as close to network completeness as

desired, for instance, by including competing reactions on surfaces and so-

lution. CARE can consider rare events easily, providing the possibility for

studying their implication for the origin of catalyst deactivation [63], an
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aspect typically overlooked by traditional DFT simulations but crucial for

improving the long-term stability of the catalyst. The third element is the

substantial reduction of the computational cost by accelerating the energy

evaluation of the reaction networks with GAME-Net-UQ.

Our data-driven energy estimator is fast and relatively cheap due to its

small size and direct approach for predicting the DFT energy of relaxed

structures, differently than machine learning potentials, which have two

orders of magnitude more parameters and require multiple iterations to

converge. The uncertainty quantification of the predictions provides an

additional feature which can be propagated to reaction properties and mi-

crokinetic modeling, or exploited for active learning purposes and Bayesian

optimization. The relatively low computational cost of our approach and

the balance in the uncertainty quantification between intermediates and

transition states removes the need for empirical rules like linear-scaling

relationships, with GAME-Net-UQ covering a wider diversity in terms of

metals, surfaces, and species, and being more accurate. The implemented

interface of CARE for this model allows the energy estimation of thousands

of intermediates/transition states in less than 1 CPU hour, representing a

viable ML strategy for fast property prediction. Again, challenges in this

area are linked to the introduction of lateral interactions (like solvents or

high coverage), more detailed configurational analysis for adsorbates and

expanding the structural diversity of metal surfaces. These aspects could be

addressed by implementing lateral interactions via GNN [64], active learn-

ing and ∆-ML schemes [65]. As for the energy estimator, this could be

first-principles or data-driven, allowing the study of processes on catalysts
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different from the ones presented here such as alloys or metal oxides.

As for the challenges in the microkinetic part, our implementation with

Julia allows to go beyond limitations in capacity as number of interme-

diates and reactions. Future improvements would require a strategy to

include entropic contributions and a more detailed representation of the

electrochemical events could be introduced. Clever CRN pruning strate-

gies are needed particularly for very stiff ODEs to improve the predictive

power and detailed rate and selectivity control tools can also be beneficial

in unveiling important catalytic pathways. Finally, more complex reactor

models able to capture relevant phenomena at the nanoparticle scale could

be implemented.

In summary, CARE opens the path to the exploration and characteriza-

tion of catalytic processes on metals with improved network completeness

and reduced bias in an automated and robust and accurate manner. Our

work paves the way towards the study of processes involving complex com-

pounds such as plastics and biomass at a reasonable computational cost.

4 Methods

4.1 Density Functional Theory

The DFT simulations for developing GAME-Net-UQ have been performed

with the Vienna Ab-initio Simulation Package, VASP 5.4.4 [66]. The

Perdew–Burke–Ernzerhof (PBE) [67] functional with reparameterized D2

[68] dispersion correction for metals was used [69]. Core electrons were rep-
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resented by projector-augmented wave pseudopotentials [70] and valence

electrons were represented by plane waves with a kinetic energy cutoff of

450 eV. Electronic convergence was set to 10−5 eV and atomic positions

were converged until residual forces fell below 0.03 eV ·Å−1.

The metals provided with CARE include 8 face-centered cubic (fcc), 1

body-centered cubic (bcc), and 5 hexagonal close-packed (hcp) structures

on the three most stable hkl surface facets for each one, (Supplementary

Fig. 2). Metal surfaces were modeled by four to ten layer slabs (Supplementary

Table 1), where the half uppermost layers were fully relaxed and the bot-

tom ones were fixed to the bulk distances. A surface coverage concentration

of 0.02molecules ·Å−2 was defined for all the adsorption structures, a rea-

sonable value to neglect lateral interactions. The vacuum between the slabs

was set between 13 and 16 Å and the dipole correction was applied in z

direction [71]. The Brillouin zone was sampled by a Γ-centered 3 × 3 × 1

k-points mesh generated through the Monkhorst–Pack method [72]. Tran-

sition states were obtained with the improved dimer method [73].

4.2 Microkinetic modeling

Once the CRNs are constructed, three ingredients are required for running

microkinetic simulations:

1. Stoichiometric matrix ν ∈ ZnS,nR representing the reaction network

with nS species (including the surface active site "*") and nR ele-

mentary reactions. νi,j is the stoichiometric coefficient of species i

in reaction j. As elementary reactions are mono- or bi-molecular,
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stoichiometric coefficients lie in the interval [-2;+2]. This matrix is

intrinsically sparse, and assuming that the reactions in the CRN are

of the kind A + B → C +D, its sparsity sν (i.e., percentage of zero

values) follows the relationship (Supplementary Fig. 12d):

sν =

(
1− 4

nS

)
× 100% (1)

Compressed sparse row/column (CSR/CSC) formats and integer data

type (Int8) have to be preferred to optimize matrix multiplications

for CRNs with more than 400 intermediates (sν = 99%).

2. Operating conditions, such as temperature, pressure, and applied po-

tential and electrolyte pH for electrochemical systems. These values

define the thermodynamic and kinetic constants of the elementary

reactions (Supplementary Note 4).

3. Reactor model. The default in CARE is a zero-conversion differential

plug-flow reactor (DifferentialPFR), defined by the ODE:


dθi
dt

=

nR∑
j=1

νi,jrj adsorbed species

dPi

dt
= 0 gas species

(2)

where θi is the fractional surface coverage of species i, νi,j the sto-

ichiometric coefficient of species i in the reaction j, Pi the partial

pressure of the gas-phase reactant i. rj is the net rate of reaction j,
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defined as:

rj =
→
rf,j −

→
rr,j =

→
kf,j

nS∏
i=1

y
|min(νi,j ,0)|
i −

←
kr,j

nS∏
i=1

y
|max(νi,j ,0)|
i (3)

where rf,j and rr,j are the rates of reaction j in the forward and reverse

direction,
→
kf,j and

←
kr,j the respective kinetic constants, and yi refers

to θi or Pi, depending on the phase of species i. The initial conditions

assume an empty surface exposed to the gas mixture defined by the

user: 

θ∗(t = 0) = 1 active site

θk(t = 0) = 0 surface species

Pi(t = 0) = P 0
i i ∈ gas reactants

Pj(t = 0) = 0 j ∈ gas products

(4)

4.3 Computational Tools

CARE is written in Python 3.11, the CRN algorithm mainly depends

on RDKit 2023.09.5, the Atomic Simulation Environment (ASE) 3.22.1

[74], and NetworkX 3.2.1 [75]. GAME-Net-UQ has been developed with

Pytorch Geometric 2.4.0 [76] and Pytorch 2.0.1 [77], and its training has

been performed on a NVIDIA RTX A2000 12GB GPU with CUDA 12.3.

Microkinetic modeling functionalities are implemented with Scipy 1.12.0

[52] and DifferentialEquations.jl [53] (Julia 1.10.2). Visualizations have

been created with Matplotlib 3.8.0 [78], Seaborn 0.12.2 [79], and Inkscape

1.3.2.
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5 Code availability

CARE implementation has been publicly released under the MIT license

and is available on github.com/LopezGroup-ICIQ/care. The code for

training and evaluating GAME-Net-UQ is also available on GitHub at

github.com/LopezGroup-ICIQ/gamenet_uq. To improve the reproducibil-

ity of this work, the version of the codes will be frozen and uploaded in

Zenodo as static repository.

6 Data availability

The DFT data used to develop GAME-Net-UQ will be available as ASE

database in Zenodo when published and in ioChem-BD at 10.19061/iochem-

bd-1-257 (FG-dataset, already accessible) and 10.19061/iochem-bd-1-257

(new data, under embargo until publication).
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