
Modelling ligand exchange in metal complexes

with machine learning potentials

Veronika Juraskova,†,¶ Gers Tusha,‡,¶ Hanwen Zhang,† Lars V. Schäfer,∗,‡ and
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Abstract

Metal ions are irreplaceable in many areas of chemistry, including (bio)catalysis,

self-assembly and charge transfer processes. Yet, modelling their structural and dy-

namic properties in diverse chemical environments remains challenging for both force

fields and ab initio methods. Here, we introduce a strategy to train machine learning

potentials (MLPs) using MACE, an equivariant message-passing neural network, for

metal-ligand complexes in explicit solvents. We explore the structure and ligand ex-

change dynamics of Mg2+ in water and Pd2+ in acetonitrile as two illustrative model

systems. The trained potentials accurately reproduce equilibrium structures of the

complexes in solution, including different coordination numbers and geometries. Fur-

thermore, the MLPs can model structural changes between metal ions and ligands in

the first coordination shell, and reproduce the free energy barriers for the correspond-

ing ligand exchange. The strategy presented here provides a computationally efficient

approach to model metal ions in solution, paving the way for modelling larger and

more diverse metal complexes relevant to biomolecules and supramolecular assemblies.
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Introduction

Metal ions have a central structural and functional role in many molecular systems, including

catalysts, supramolecular assemblies, and biomolecules. Due to their relevance, much work

has been done to investigate the structure, kinetics, and thermodynamic stability of metal

complexes in solution, including the dynamics of metal-ligand exchange reactions.1

Using a variety of experimental techniques, including X-ray absorption spectroscopy,

neutron scattering and nuclear magnetic resonance (NMR) spectroscopy, several mecha-

nisms have been proposed to describe ligand exchange in the first coordination shell of the

metal ion. These mechanisms range from dissociative (D), involving an intermediate of lower

coordination number, to associative (A), proceeding through an intermediate of higher co-

ordination number. However, these are extreme cases – in most instances, no such idealised

intermediate exists, and instead, a concerted interchange mechanism with dissociative (Id)

or associate (Ia) characteristics occurs.
2,3

Of particular interest is ligand exchange with solvent, with metal aqua complexes being

the most extensively studied.4 The rate of this exchange depends on the nature of the metal

ion, particularly ionic radii, charge, and coordination environment, ranging from 200 ps for

Cs+ to 300 years for Ir3+.4 Coordination with nonaqueous solvents such as alcohols, dimethyl

sulfoxide (DMSO), acetonitrile (MeCN), and amides, has also been explored.5

Among the cations investigated, significant efforts have been made to study Mg2+ com-

plexes due to their prominent role in biology, including RNA folding, ATP hydrolysis, cellular

signalling, and photosynthesis.6 In aqueous solution, Mg2+ forms octahedral [Mg(H2O)6]
2+

complexes with a Mg-O distance of 2.10 Å, surrounded by a second solvation shell of 12 wa-

ter molecules.7–9 Water molecules in the first solvation shell are tightly bound to the cation

and undergo exchange with the bulk solvent molecules on the microsecond timescale (k =

5.3 ×105 s−1 at 298 K) via a dissociative or interchange-dissociative mechanism.10,11

Another important example is Pd2+, which although less prevalent in biology has an ir-

replaceable role in organocatalysis12–14 and supramolecular chemistry.15–20 Pd2+ complexes
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have a square planar geometry defined by four coordinate bonds in equatorial positions. The

complex can additionally interact with two more loosely bound ligands at the axial positions.

In water, the [Pd(H2O)4]
2+ complex has a Pd-O equatorial bond distance of 2.00-2.05 Å,

with a second solvation shell of 10 waters located between 4.02-4.40 Å.21,22 The Pd-O axial

distance has been investigated by neutron diffraction23 and extended X-ray absorption fine

structure experiments24 and with different computational methods.21,25,26 The axial interac-

tion distance is reported to range from 2.5 to 3.0 Å. Ligand exchange in Pd2+ square planar

complexes is suggested to occur via an associative mechanism involving a pentacoordinated

trigonal bipyramidal transition state (TS), as suggested by Ligand Field Theory27,28 and

supported by DFT calculations.29

While Mg2+ has a prominent role in biology, Pd2+ is a key building block in supramolec-

ular chemistry, giving rise to a wide range of metallocages of various sizes and shapes.30–33

The interplay between the metal, organic ligands, and solvents determines the final as-

sembled structure.34–36 Notably, the labile nature of Pd2+ -ligand axial interactions is key

for self-correction and optimal self-assembly.37,38 Pd2+ -based metal-organic cages are com-

monly formed in MeCN solvent,34,37,38 although water and DMSO are also widely-used.

[Pd(MeCN)4]
2+ has been characterised using single crystal X-ray diffraction, revealing a Pd-

N bond length of 1.956 ± 0.008 Å.39 NMR studies have explored MeCN ligand exchange,

reporting reaction rates of k = 4.0 s−1 and k = 3.5 s−1 at 322 K.40,41

Computational modelling of Mg2+ and Pd2+ cations has received significant attention,

in particular for the former. Approaches employed for their modelling include molecular dy-

namics (MD) simulations with classical force fields (FFs),21,42 quantum mechanics/molecular

mechanics (QM/MM) methods,25,43–45 and ab initio MD (AIMD).9,22,26,46–48 MD simulations

with non-polarizable FFs are the most widely applied option since they balance the cost and

accuracy of the resulting dynamics. Here, the metal ions are modelled as single or a small set

of point charges with the electrostatic, dispersion, and excluded volume interactions taken

into account by a pairwise interaction potential. The Lennard-Jones (LJ) parameters, and
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charges if a dummy model is used, are typically adjusted to reproduce experimental solu-

tion properties such as solvation free energy, coordination number, and water-metal distance

of the first hydration shell, and, in some cases, the rate of water exchange.49–51 A 12–6–4

LJ potential has been developed to partially account for charge-induced dipole interactions

via the r−4 term.52,53 However, none of the available Mg2+ FF parameters can simultane-

ously reproduce all properties with sufficient accuracy. Moreover, given the focus on metal-

water properties alone, these models cannot describe orbital-specific and anisotropic features

important in many metal-containing protein or synthetic catalyst active sites, or even the

properties of simple electrolytes.54 Polarizable FFs are in principle able to remediate the lim-

itations of non-polarizable FFs, but they are less frequently used due to their time-consuming

parameterization and increased computational cost, especially for exploring long-timescale

processes.42,50 MacKerell et al.55 modified Mg2+ parameters to describe its interaction with

water, Cl– ions, and nucleic acids using a polarizable FF based on the Drude oscillator model.

This approach uses QM-computed interaction energies and geometries of hydrated complexes

as reference as well as condensed-phase osmotic pressure calculations. Mg2+ parameters for

the AMOEBA force field were reported by Jiao et al.56 and further refined by Piquemal et

al.57 However, both implementations experienced rapid water dissociation. This issue was

addressed by Kurnikov and Kurnikova,58 who introduced a distance-dependent polarization

response for water.

The effect of various FFs on the ligand exchange mechanism in Mg[(H2O)6]
2+ complex

was extensively studied by Schwierz et al., using transition path sampling.59,60 They demon-

strated that while the commonly used non-polarizable FFs correctly predict the dissociative

characteristics of the mechanism of the water exchange (Id), they tend to overestimate the

free energy barrier, leading to a significantly slower reaction rate.59 In comparison, the po-

larizable FF Amoeba and specialized non-polarizable FF microMg lead to a preference for

an associative mechanism (Ia) with a reaction barrier too low, leading to significantly faster

reaction rates, further illustrating the complexity of the ligand exchange process.60
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The interactions of Pd2+ with water molecules have also been studied computationally

with classical FF approaches. Sanchez Marcos et al.21 investigated the [Pd(H2O)4]
2+ complex

in water using MD simulations. They developed two intermolecular potentials to describe

the interactions between Pd2+ and the water molecules, one for the first solvation shell, fitted

to interaction energies computed at the MP2 level on the gas-phase complex, and another

for the hydrated ion-bulk water interactions by incorporating a continuum polarizable model

to account for solvation effects.21 They suggested the presence of solvent molecules in the

axial position located between 2.5 and 3.0 Å, referred to as a ’mesoshell’. The concept of the

mesoshell has sparked debate within the scientific community, with recent studies suggesting

that the structure of Pd2+ aqua complexes in water should be interpreted under the ‘ex-

tended first shell’ paradigm.25,44 For example, utilising QM/MM methods, Adnan Ali Shah

et al.25,44 identified a weakly bound axial ligand (Pd-O distance of 2.8 Å), resulting in a

broad peak in the RDF between the first and second solvation shells. Contrasting findings

were reported by Chen et al.26 using subsystem DFT AIMD simulations of the same com-

plex. Their results indicated that water molecules rarely occupied the axial region. Instead,

solvent molecules formed a protective “dome” on both sides of the square planar complex

via strong hydrogen bonds, preventing the penetration of single water molecules from the

axial directions. These studies provide alternative interpretations of the experimental data,

underscoring the complex nature of axial interactions in Pd2+ aqua complexes.

AIMD simulations of explicitly solvated metal cations could, in principle, provide un-

biased insights into the structural properties of the solvation shells and mechanisms of the

ligand exchange by describing the entire system at the QM level, thus overcoming the limi-

tations of classical FFs and QM/MM methods.22,26,46,61–63 However, its high computational

cost limits its use to small systems and picosecond timescale processes, often insufficient to

obtain converged free energies and model ligand-exchange processes.

Machine learning potentials (MLPs) have emerged as promising alternatives to AIMD,

reproducing accurate energies and forces from electronic structure reference calculations at
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a much lower cost.64 MLPs have been extensively used in modelling materials,65,66 organic

molecules,67,68 and more recently in chemical reactivity.69,70 However, their extension to

model metal ions in solution remains less explored. Only a handful of examples have been

recently reported, including the work of Liu et al.71 who employed DeepMD72,73 to model

Mg2+ and Ca2+ in water in the presence of hydroxide. Mondal et al., used DeepMD to study

different formation and dissociation reactions in alkali carbonate–hydroxide electrolytes.74

Additionally, Michaelides et al.utilised the Behler-Parrinello NNPs75 to model Na-Cl ion-

paring in aqueous solution76 and in electrolytes confined to nanoscale pores.77

Traditionally, MLPs are trained using AIMD reference data under periodic boundary

conditions (PBC). This approach inherently captures long-range interactions but incurs a

high computational cost due to the large size of the system, primarily consisting of solvents.

Consequently, this also limits the use of high levels of theory and restricts the achievable

sampling. Previous works by our group78,79 and others80,81 have demonstrated the efficiency

and accuracy achievable using cluster data for training. When combined with active learn-

ing (AL), which iteratively builds the training set based on a preliminary version of the

trained MLP, this approach yields accurate and data-efficient MLPs at a low computational

cost. In this study, we expand this protocol to model metal complexes in solution, using

clusters of solvated metal ions for training. Specifically, we apply Atomic Cluster Expan-

sion (ACE)82 and its message-passing neural network-based variant (MACE)83 to two model

systems, Mg2+ complexes in aqueous solution, representing a strongly interacting and bio-

logically relevant metal ion, and Pd2+ complexes in acetonitrile (MeCN), a transition metal

relevant for supramolecular chemistry in non-aqueous solvents.34,37,38 Ligand exchange in

these complexes proceeds via different mechanisms, allowing us to investigate the capability

of the MACE potentials to model structural and energetic features characteristic of both

processes.
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Methods

ACE and MACE machine-learning potentials

In this work, MLPs were trained using linear regression with the ACE84 descriptor and its

variant MACE, in which ACE is combined with an equivariant message-passing neural net-

work architecture.83

The ACE descriptor85 builds on a traditional many-body expansion, where the Potential

Energy Surface (PES) of the system is expressed as a sum of different body-order interactions,

including two-body, three-body, and higher-order interactions depending on the truncation.

Although this approach is physically motivated, it is limited to modestly-sized molecular

systems, as the computational cost of evaluating the energy scales exponentially with sys-

tem size, making it impractical to consider interactions beyond the three-body order. ACE

overcomes this limitation by introducing the concept of atomic neighbour density, where the

energy of each atom depends on the many-body interactions with its N neighbours within

a defined cut-off radius. The validity of this concept is based on the assumption that the

energy of each atom only depends on its local environment.75,86 Second, it projects these

densities onto physically invariant basis functions. This procedure ensures that the evalua-

tion cost of many-body terms scales linearly, rather than exponentially, with the number of

neighbours, regardless of the body order. A detailed description of the method is provided

in Ref. 85. The capability of the ACE descriptor to accurately map the PES enables the use

of simple linear regression for fitting, resulting in an accurate and data-efficient approach to

train MLPs.84

MACE combines the ACE descriptor with an equivariant message-passing neural net-

work architecture,83 incorporating body-order contributions as node features. Using graph

neural networks (GNNs), the body-order term and cluster region implicitly expand with

the number of message-passing layers, resulting in a more accurate representation of atomic

environments.83
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Both ACE and MACE have been shown to reliably predict the energies and forces of

molecules and condensed phase systems.84,87–89 Linear ACE provides high accuracy in low-

data regimes, making it particularly suitable for use in the early stages of AL, where typically

small data sets are used.78,79 In this work, we use linear ACE to build the training data sets

using the AL loop, while MACE is used to expand the data sets and fine-tune the final

potentials used for production MD simulations.

Workflow

The workflow presented here builds on our previous work on automated AL strategy for

modelling chemical reactions in explicit solvents (Fig. 1).79 The AL cycle is initiated from a

small training set of approximately 10 structures. These data consist of gas-phase molecules

generated by random displacement from a QM-optimized structure or solvated clusters,

obtained from MD simulations or random placement of molecules in a box. The structures

are labelled with energies and forces computed at the reference level of theory. The initial

training data set is extended using AL as follows: A first version of the MLP is generated

and used to propagate several independent MD simulations, typically ten, for n3+2 fs, where

n is the index of the MD run in the AL loop, starting from 0. From these trajectories, new

structures are selected using a similarity selector,79 which identifies new structures to be

included in the training based on the similarity between a global Smooth Overlap of Atomic

Positions (SOAP) representation of data point p and configurations p
′
in the existing training

set.90 The similarity vector, K, is defined as follows:

K = (|k(p0 · pi)|ζ , |k(p0 · pj)|ζ , · · · )T (1)

where the components of the vector k(p · p′
) correspond to the SOAP kernel functions

computed between the SOAP representation of new structure p0 and the i-th configuration in

the existing training data pi. Parameter ζ is a positive integer that increases the sensitivity
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of the kernel to changes in atomic position.90 The selector adds structures to the training set

if the maximum value of their similarity vector, K, is smaller than the given threshold kT ,

i.e., max(K) < kT . The new structures are then labelled by the reference energy and forces,

added to the training set and potential is retrained. If no structures are selected from the

trajectories, the index n increases by one and a longer MD simulation is performed with the

same potential. The AL procedure is repeated until it either reaches the maximum number

of AL cycles or when no new structure is selected within the maximum AL time. Details on

electronic structure and MD protocols are provided in the Computational Details section.

Training 
dataset

Train MLP

Selector 
evaluation

Final 
Potential

New 
configuration?

MLP-MD

Yes

No

Active 
learning

Initial
configurations

c) Active learning workflow

a) Training subsets for Mg2+ b) Training subsets for Pd2+

[Mg(H2O)6]2+ in gas phase (30 structures)

Mg2+ in 45 to 53 H2O (165 structures)

45 to 49 H2O cluster (149 structures)

[Pd(MeCN)5]2+ in gas phase (25 structures)

[Pd(MeCN)4]2+ in 60 MeCN (305 structures)

[Pd(MeCN)5]2+ in 20-30 MeCN (251 structures)

Similarity selector

!!"#$ ", "′ = " & "′
" & "	"′ & "′

%

p p’

Figure 1: Training data and active learning workflow: a) Training subsets for Mg2+ in
aqueous solution, b) training subset for Pd2+ in acetonitrile (MeCN), c) Scheme of the
active learning workflow used to train the machine-learning potentials (MLPs).
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Data set preparation

Mg2+ in water

The training data set for Mg2+ consists of 344 structures. To increase the accuracy of the

resulting potentials across systems with different sizes, the final dataset combines several

subsets with different compositions, corresponding to three subsets: (i) [Mg(H2O)6]
2+ com-

plex in the gas phase (30 structures), (ii) Mg2+ solvated in 45 to 53 water molecules in a

spherical cluster with radius 7 Å (165 structures), and (iii) water clusters containing 45 to 49

water molecules placed in a spherical cluster with radius 7 Å (149 structures). The schematic

representations of the structures are depicted in Fig. 1a. The cluster size was selected to be

larger than the distance cut-off of the descriptors used in MLP, i.e., 6 Å, needed to cover the

Mg-O distance range sampled in the dissociative mechanism. All datasets were trained using

the energies and forces computed at ωB97X-D3BJ/def2-TZVP91,92 level of theory as ground

truth, which provides accurate estimation for structural and thermodynamic properties of

large systems. The ACE MLP was used to generate the structures during AL unless specified

otherwise.

[Mg(H2O)6]
2+ complex in the gas phase AL was initiated from 10 structures obtained

by a random displacement of [Mg(H2O)6]
2+ complex in the gas-phase. The new structures

were selected using the similarity selector with a SOAP cut-off of 5 Å and threshold of 0.999,

with the maximum time in the active training loop set to 3 ps. This procedure led to the

selection of 30 structures.

Water cluster subset The initial structures of the bulk water system were prepared

by classical MD simulation using TIP4P-Ew FF.93 A cubic box (L= 15 Å) was solvated

with 112 water molecules, minimized and equilibrated in an NPT ensemble (300 K and

1.0 bar) for 1 ns using Langevin dynamics and Berendsen barostat as implemented in the

sander module of Ambertools23.94 For the initial training set, 10 clusters of 7 Å radius
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containing 45 to 49 water molecules were cut from the equilibrated trajectory and labelled

with the reference energies and forces (vide infra). The training set was then enhanced by

AL using the similarity selector with a threshold of 0.9998 to avoid selection of too distorted

structures, and a maximum time set to 10 ps to accommodate for water relaxation. This

approach yielded an overall 149 structures.

Mg2+ complex in a water cluster The initial structures for the training were generated

using classical MD simulations including a Mg2+ ion solvated by 325 water molecules in a box

of 21.5 Å. The box was minimized and equilibrated to experimental water density using the

same procedure as pure water. The system was modelled using the TIP4P-Ew water model

combined with Li/Merz ion parameters in TIP4P-Ew water (12-6 HFE set).52 10 structures

were randomly extracted from the equilibration trajectory and cut into a 7 Å sphere with

a centre in the Mg2+ cation.

The three subsets were combined to form the full data set used to initiate AL, which was

performed in four phases. In the first phase, the ACE potential was trained on the full data

set and used in AL with MLP-MD initiated from Mg2+ -water cluster (structure selected

from a subset (ii)). During the MLP-MD dynamics step, the cluster was constrained in its

spherical shape by a flat-bottom spherical bias potential set at a distance of 8 Å from the

Mg2+ cation, applying a harmonic restraint of 500 kcal/mol Å−2. MD simulations during

AL were performed in an NVT ensemble at 400 K. New structures were selected using the

similarity selector with a threshold of 0.999, with maximum time in AL set to 7 ps. This

longer AL time compared to the gas phase complex was used to account for the higher

flexibility of water molecules outside the first solvation shell. The first phase collected 11

structures, which were added to the data set.

In the second phase, the AL was initiated using one of the clusters generated during the

previous phase, with the radius reduced by placing the harmonic bias at a distance of 7.5 Å

to increase the density of the solvent around Mg2+ and enhance the sampling of the repulsive
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region of the potential. To avoid selecting overly distorted structures resulting from poten-

tially unstable dynamics, the selector threshold was tightened to 0.9999. Simultaneously,

the AL time was increased to 20 ps to further capture longer water dynamics. The second

phase resulted in generating an additional 55 structures.

After these two phases of training, we tested the accuracy and stability of the resulting

potential by comparing the MLP energies and forces with the ground truth data (for de-

tails see SI §S2) and conservation of the total energy in NVE dynamics. Despite the high

accuracy of the trained ACE potential, as evidenced by a mean absolute deviation (MAD)

of 0.79 meV/atom for energy and 46 meV Å−1 for forces (Fig. S1), the NVE and NVT MD

simulations using PBC with the ACE potential were unstable. This included the forma-

tion of bubbles, followed by the system’s collapse. These instabilities could be alleviated by

introducing more radial functions into the descriptor and tuning the hyperparameters. How-

ever, we decided to change the model in the following phases from ACE to MACE, which is

computationally more efficient. Indeed, the MACE potential provided stable NVE dynamics

under PBC using the same training data set. Interestingly, the long NVE dynamics with the

MACE potential promoted proton transfer of a water molecule in the first solvation shell,

leading to the formation of [Mg(H2O)5(OH)]+ and H3O
+ species. As these structures were

underrepresented in the previous AL loops, resulting in larger prediction errors (see Fig. S2),

we manually selected 35 structures along the NVE trajectory, cut them into 7 Å clusters,

which contained the species, and added them to the training set for the third training phase.

Apart from adding these data, we further repeated the AL loop to account for possible dif-

ferences between the conformational space sampled by ACE and MACE potentials. The

re-trained MACE potential was again found to provide an accurate estimate of energies and

forces, 0.69 meV/atom and 29 meVÅ−1 (see Fig. S3). The preliminary NVT dynamics with

this potential, however, led to fast dissociation of one H2O molecules from the first solvation

shell, without no exchange with the bulk solvent. To correct for this behaviour and to ensure

accurate exchange of the water molecules around the Mg2+, we completed the training set
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by adding 23 structures with H2O molecule dissociated to a distance above 3.0 Å (see Fig.

S4) from Mg2+ within the fourth training phase.

Pd2+ in MeCN

MLP for Pd2+ complex was trained using a total of 581 data points from the following subsets

(Fig. 1b). (i) Data obtained by a relaxed 2D scan of the [Pd(MeCN)4]
2+·MeCN complex

in the gas phase along the two Pd-N bonds describing the ligand exchange process (25

structures). (ii) [Pd(MeCN)4]
2+ complex solvated by 60 MeCN molecules (305 structures).

(iii) The [Pd(MeCN)4]
2+·MeCN complex solvated by 20 to 30 MeCN molecules to describe

interactions between Pd and MeCN (251 structures). As in the Mg2+ case, the size of

all clusters was selected in a way that the resulting cluster radius exceeds the 6 Å cut-off

used in ACE and MACE descriptors. Unless specified otherwise, ACE was used as the

ML model in all training phases, employing the ground truth potential TPSS0-D3BJ/def2-

TZVP,92,95,96 since this functional has shown good performance in reactions involving late-

transition metals.95 MD simulations in the AL loops were performed in an NVT ensemble at

300 K. MD simulations longer than 1 ps used a flat-bottom spherical harmonic bias potential

set at a distance from the Pd2+ cation, applying a harmonic restraint of 100 kcal/mol Å−2.

The value of the harmonic restraint has been chosen to maintain the integrity of the cluster

without creating artefacts from the pulling force. The onset distance of the flat-bottom

potential was varied according to the size of the clusters so that the density of the cluster

was close to the experimental density of the (bulk) liquid.

[Pd(MeCN)4]
2+·MeCN complex in the gas phase The transition state (TS) struc-

ture corresponding to pentacoordinated trigonal bipyramid was obtained at the TPSS0-

D3BJ/def2-TZVP level of theory (Fig. 1b) and was used as a starting point for a 2D relaxed

PES scan along the two Pd-N bonds involved in the ligand exchange. These bonds are of

equal length in the TS (2.28 Å); while the length of the remaining three Pd-N bonds is equal
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to 1.95 Å. The PES scan resulted in a total of 25 structures (5x5 grid). In the following para-

graphs, TS refers to the transition state structure of [Pd(MeCN)4]
2+·MeCN obtained from

the PES scan mentioned above, while reactant state (RS) refers to the structure obtained

from the geometry optimization of TS in gas-phase with TPSS0-D3BJ/def2-TZVP.

[Pd(MeCN)4]
2+ complex solvated in clusters of 60 MeCN molecules The initial

structure for the subset was generated with the Quantum Cluster Growth (QCG) method97

(as implemented in xTB (version 6.5.0)98 and the lowest energy conformer was selected

with CREST..99 Then, the conformational space was explored via metadynamics simulations

with xTB.98,100 Three simulations of 25 ps each were run in the NVT ensemble at 600 K,

using the Cartesian root-mean-square-deviation (RMSD), with respect to a list of reference

structures updated every 2 ps, as a collective variable.100 During the simulations, a flat-

bottom spherical bias potential was applied to keep the cluster at the experimental density

of liquid acetonitrile at room temperature.100 For each of the three trajectories, the first 600

fs were excluded and the remaining frames were merged in a single trajectory. From this,

frames have been extracted every 240 fs resulting in 305 structures.

[Pd(MeCN)4]
2+·MeCN complex in clusters of 20 - 30 MeCN molecules The

structures used as starting conformations in the multi-step AL approach described in this

section have been generated with CREST. The TS and RS structures obtained in the gas

phase (from the dataset (i)) were solvated by 20 to 30 MeCN molecules using the QCG

method97 and the lowest energy conformation of the cluster was selected with CREST,99

as mentioned above. Different conformations were generated for the different AL training

phases as follows. Firstly, the data set (i) was used as an initial data set in the AL loop,

starting from TS solvated by 20 MeCN molecules; new structures were selected using the

similarity selector with a threshold of 0.9999, with a maximum MD simulation time set to

750 fs, the time found to be required for transitioning from trigonal bipyramidal to square-

pyramidal coordination geometries, observed from previous trials. This AL phase yielded 56

14

https://doi.org/10.26434/chemrxiv-2024-6lvk7 ORCID: https://orcid.org/0000-0002-2869-461X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-6lvk7
https://orcid.org/0000-0002-2869-461X
https://creativecommons.org/licenses/by/4.0/


structures.

In the second phase, dataset (i) and the 56 structures obtained from the first phase were

employed as the starting training set. The TS solvated by 30 MeCN molecules was used as

a starting conformation for the new AL loop, with an MD simulation time of 1.5 ps and a

SOAP selector threshold of 0.999. The choices to extend the MD simulation time and the

number of solvating MeCN molecules were made to capture how the relaxation from the

transition state would evolve on longer timescales and in the context of a larger solvation

environment. The selector threshold was relaxed to avoid the selection of conformations too

similar to the starting one since the fluctuations along the TS relaxation have been explored

in the previous training phase. In this phase, 36 new structures were generated, expanding

the dataset to 117 structures.

In the following phase, the RS solvated by 20 MeCN molecules was used as a starting

structure, with the AL MD time extended to 5 ps to allow sampling of more distant regions

of the PES. Therefore, the number of solvent molecules was decreased to lower the computa-

tional cost. 30 new structures were generated and added to the previous data, yielding a total

of 147 data points. Preliminary validation in the NVT ensemble under PBC showed artefacts

in the description of the average structure of the system, in particular, the formation of void

regions in the axial positions of the complex (Fig. S5).

In line with the Mg2+ case, we, therefore, decided to adopt the MACE for AL due to

its computational efficiency and accuracy.89 Furthermore, to enhance the stability of the

potential during AL, we selected 150 structures from the dataset (ii) and merged them with

the previous 147 structures, obtaining an extended starting dataset. A final AL loop was

started from RS solvated by 20 MeCN molecules, using a similarity selector threshold of

0.9999 and simulation time set to 20 ps to ensure the stability of the potential on longer

timescales. This training phase resulted in 129 new structures. Eventually, not considering

the 25 structures from dataset (i), the multi-step AL approach described above yielded a

total of 251 structures (147 + 129 - 25).
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Results and Discussion

Validation of the MLP

As a first step, we validated the accuracy and stability of the generated MACE potentials

for both Mg2+ in aqueous solution and Pd2+ in MeCN. To evaluate the prediction error on

unseen data, we generated an ensemble of testing structures by an MLP-MD simulation of

the metal ion in a spherical cluster of solvent molecules. We then selected frames along

the trajectory and performed a point-to-point comparison between the energies and forces

computed at the ground truth DFT level of theory and MACE.

The testing data set for Mg2+ cation in aqueous solution consisted of 51 structures col-

lected over 50 ps NVT dynamics of Mg2+ solvated in a cluster of 51 water molecules. The

spherical shape of the cluster was kept by a harmonic spherical potential placed at 7.5 Å

from Mg2+. Validation results are depicted in Fig. 2a. MACE demonstrates excellent per-

formance in energies and forces, with MAD of 0.31 meV/atom and 18 meV Å−1 for energies

and forces, respectively.

For Pd2+ in acetonitrile, the MACE potential was tested on structures generated from

100 ps NVT dynamics using a cluster containing Pd2+ and 30 MeCN molecules. The solvent

molecules in the cluster were confined by a flat-bottom spherical bias potential with a radius

of 10.0 Å, centred on Pd2+. From the trajectory, 51 structures were extracted. The MAD

is 1.04 meV/atom and 8 meV Å−1 for energy and forces respectively. The good correlation

with respect to the ground truth energies and the accuracy in forces suggest that the MACE

potential closely reproduces the shape of the reference PES, with the higher energy MAD

likely arising from a systematic shift in the absolute values, which has been previously

reported in some instances with MACE.89 Overall, the MACE potentials provide a reliable

prediction of energies and forces for both tested systems.

To further assess the performance of the MACE potentials in larger systems, we performed

100 ps MD simulations under PBC in the NVE ensemble for a system consisting of Mg2+ with
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a) Validation for Mg2+ in water

b) Validation for Pd2+ in MeCN

Energy Forces

Energy Forces

Figure 2: Comparison of the ground-truth and MACE prediction of energies and forces
for cluster systems at 300 K: a) Mg2+ solvated in 51 water molecules modelled at ωB97X-
D3BJ/def2-TZVP level of theory, b) Pd2+ solvated in 30 MeCN molecules modelled at
TPSS0-D3BJ/def2-TZVP level of theory.

145 water molecules in a 16.3 Å box and Pd2+ with 159 MeCN molecules in a 24.0 Å box. In

both cases, the MACE potential conserved energy, confirming the stability of the dynamics

under PBC and on simulation times longer than the active learning time (Figs. S7 and S8).

Structural properties of the metal solvation shells

We evaluated the structural properties of the metal environment by computing the radial

distribution functions (RDFs) between the metal ions and the coordinating solvent atom. For
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[Mg(H2O)6]
2+, the computed Mg-O RDF from 500 ps MD simulations (Fig. 3a) shows a first

peak at 2.08 Å, in agreement with the 2.10 Å reported from X-ray diffraction and neutron

scattering experiments.7,101 Integration of this curve results in a coordination number of 6,

confirming the octahedral arrangement of this complex. A second, less well-defined peak is

evident around r = 4.15 Å, corresponding to the second solvation shell. Integration of this

peak results in a coordination number of 12, in agreement with experiments7 and reported

ab initio computations.9 In line with the known lifetime of the first solvation shell, the

octahedral complex remained stable during the simulation time and no ligand exchange

with the bulk solvent was observed.

rMACE(Pd – N) = 1.97 Å

rMACE(Mg – O) = 2.08 Å

a)

b)

Figure 3: Simulation boxes, radial distribution functions g(r) and coordination numbers N(r)
of the metal complexes in solution. a) Mg2+ in aqueous solution, b) Pd2+ in MeCN.

As expected from the ligand field theory,27 Pd2+ forms a square planar complex with 4

MeCN molecules, with a Pd−N distance of 1.97 Å (Fig. 3b). This is in excellent agreement

with the value obtained from the single crystal X-ray diffraction (SC-XRD) of the complex
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(Pd-N bond 1.96±0.01 Å).39 Two peaks around 3.3 Å, with a shoulder starting from 2.5 Å,

and around 4.6 Å, are also observed. The latter peak is associated with the second solvation

shell, with a coordination number of 8. The former peak corresponds to the interactions of

acetonitrile molecules in the axial position, with a coordination number increasing from 4 to

6. The previous studies on Pd2+ aqua complexes provided a foundation for understanding the

axial interactions of Pd2+ with MeCN. As mentioned in the introduction, two paradigms exist

in the literature. In the mesoshell paradigm, the two axial ligands are symmetrically bound,

resulting in a sharp peak between the first and second solvation shells.21,23,24 Conversely, the

”extended first solvation shell” concept suggests more weakly bound axial ligands, leading

to a presence of broad peak.25,44 The structural features observed in the RDF in Fig. 3b

indicate that for Pd2+ in acetonitrile, axial ligands interact according to the ”extended

first solvation shell” paradigm. This notion is further supported by the asymmetry in the

average distance of the two axial MeCN ligands with respect to Pd2+ (Fig. S9 and S10).

Additionally, a detailed analysis of the axial coordination pattern (see section §S3) suggests

that the preferred average structure of the complex is not octahedral but square pyramidal,

with the ratio between the latter and the former being 7:4.

Free energy barrier of ligand exchange

The ability of the MACE potentials to describe ligand exchange around the metal centre relies

on accurately describing the different coordination states and their exchange mechanisms,

ideally leading to accurate kinetics. The latter has been difficult to achieve with classical

force fields.59,60

As discussed previously, ligand exchange in Mg2+ complexes is suggested to follow a

dissociative or interchange-dissociative mechanism, which proceeds through an intermediate

or transient structure with a lower coordination number. Solvent dissociation from the first

solvation shell of the [Mg(H2O)6]
2+ thus represents the rate-limiting step of the process. The

free energy barrier associated with the dissociation of one solvent molecule was obtained from

19

https://doi.org/10.26434/chemrxiv-2024-6lvk7 ORCID: https://orcid.org/0000-0002-2869-461X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-6lvk7
https://orcid.org/0000-0002-2869-461X
https://creativecommons.org/licenses/by/4.0/


a) b)

Figure 4: Potential of mean force (PMF) profiles of the two ligand exchange processes for
a) [Mg(H2O)6]

2+ (the solvent molecule exchanged is coloured blue) and (b) [Pd(MeCN)4]
2+,

where the black dot indicates the energy at the TS.

the potential of mean force (PMF) using US with 48 windows (Fig. 4a). The PMF shows

a minimum at 2.1 Å, in agreement with the value obtained from the RDF (Fig. 3a). A

second shallow minimum is located around 4.25 Å, corresponding to the position of the

second solvation shell, which is approx. 2 kcal/mol higher than the first minimum. This

indicates that the sampling of the region where water leaves the first solvation shell is not

fully converged. However, the two repetitions of the US confirm that the free energy barrier is

not affected (see Fig. S13). The representative structures of both minima and the associated

transition region are depicted in Fig. 4. Analysis of the trajectories confirms that the MACE

potential correctly restores the octahedral geometry of the complex. The barrier of pulling

the water molecule away from the first solvation shell is 7.6 ± 0.15 kcal/mol, with the peak

located at a distance around 3.1 Å. The predicted barrier is 1.9 kcal/mol lower than the

experimental value, 9.5 kcal/mol,4,11 implying a higher rate of water exchange around the

Mg2+ .

For Pd2+ complex with MeCN, an associative mechanism has been suggested from NMR

experiments and static electronic structure calculations.27–29,40,41 To determine the coordi-

nation number that corresponds to the TS, the fluctuations of the coordination number and

the Pd−N bond lengths were analysed in the umbrella sampling trajectory that corresponds

to the TS region in the PMF (Fig. S16). The coordination number fluctuates around a mean
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value of 4.96, which yields a barrier of 15.7 kcal/mol in the PMF (black dot in Fig. 4b).

This value is in very good agreement with the experimental values from two independent

NMR studies, 15.3 ± 0.4 kcal/mol40 and 15.2 ± 0.2 kcal/mol.41

The reaction mechanism of the ligand exchange is illustrated in detail by the represen-

tative snapshots in Fig. 4b. The solvent association proceeds via the formation of a square

pyramid, where the axial Pd−N bond shortens as the system approaches the TS region,

while one of the equatorial Pd−N bonds progressively elongates. This process leads to the

formation of a trigonal bipyramidal TS, with an equal length of two Pd−N bonds involved

in the ligand exchange. Taken together, the PMF from the US simulations confirms the

associative nature of the ligand exchange mechanism. Furthermore, the activation barrier is

in excellent agreement with the experimental values, supporting the notion that the MACE

potential fitted to the hybrid DFT reference accurately describes the PES of the system and

allows for a realistic description of the dynamics of the ligand exchange process.

Conclusions

In this work, we present computational strategies to build training data sets for modelling

ligand exchange processes of divalent metal cations in explicit solvents with MLPs. Using

Mg2+ in aqueous solution and Pd2+ in MeCN as model systems and illustrative examples,

we demonstrate the capability of the MACE potentials to reproduce the total energies and

forces of the solvated metal cations. Furthermore, the MLPs trained on cluster data can

be used in the condensed phase simulations with periodic boundary conditions. The MACE

potentials yield metal ion–solvent RDFs in excellent agreement with experimental data, con-

firming the capacity of MACE to capture the structure of the polarised solvent shells around

the cations. Moreover, we demonstrate the ability of the MACE potentials to model changes

in the coordination shells of the metal cations, allowing for a structurally and energetically

realistic description of different ligand exchange mechanisms in complex liquid environments.
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More generally, we show that the active learning strategy combined with MACE potentials

allows the generation of accurate and data-efficient MLPs that are suitable to model changes

in the coordination chemistry of charged species in solution. While further work is needed

to automate the selection of accurate parameters suitable across different metals, this study

provides a robust computational framework for preparing data-efficient models that accu-

rately describe metal-ligand interactions, paving the way to modelling increasingly complex

systems, such as metallocages and catalysts.

Computational Details

Model parameters and training

ACE and MACEmodels were trained with ACE.jl82 wrapped by pyjulip and mace v0.3.483,102

using in-house mlp-train package.103 The model hyperparameters and parameters used for

the active learning (AL) cycles are listed in SI §S1. The QM computations were performed in

ORCA v5.0.4104 wrapped with autodE.105 The reference energies and forces were computed

at ωB97X-D3BJ/def2-TZVP91,92 and TPSS0-D3BJ/def2-TZVP92,95,96 levels of theory for

the Mg2+ and Pd2+ systems, respectively.

Production MD

Mg2+ cation in water was simulated in a periodic cubic box of 16.3 Å containing 1 cation and

145 water molecules. The initial structure for the dynamics was obtained by classical dynam-

ics (see SI §). The Pd2+ system was simulated in a periodic cubic box of 24.0 Å containing

1 metal atom and 159 acetonitrile molecules. The starting configuration of the system was

built in three steps. Firstly, an NPT-equilibrated box of acetonitrile was obtained with the

force field parameters from Caleman et al.106 Secondly, the xTB-optimized structure of the

[Pd(MeCN)4]
2+ complex was solvated with the acetonitrile box. Lastly, the whole system

was energy-minimized with Gromacs (v2019.1).107 The radial distribution functions for both
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the Mg2+ and Pd2+ systems were computed from 500 ps NVT simulations with the MACE

potentials, with the first 50 ps used for equilibration and skipped from the analysis. The

equations of motion were integrated by the i-PI driver,108 with MACE potential evaluated

by the MACE-Atomic Simulation Environment (ASE) calculator using ASE v3.23.0b1.109

All MD simulations were propagated with an integration time step of 0.5 fs. MD in the NVT

ensemble was thermostatted at 300 K by a stochastic velocity rescaling thermostat with a

coupling time constant of 100 fs.110

Free energy computations

The free energy profiles of the metal-ligand exchange reactions were evaluated by um-

brella sampling (US) simulations using the i-PI driver combined with the Plumed v2.9.0

library.111,112 The PMFs were constructed using the Weighted Histogram Analysis Method

(WHAM) code v2.0.11.113

For Mg2+ in water, the Mg···O distance was chosen as a reaction coordinate (RC). The

starting structures for each window were generated by a steered MD, pulling a water molecule

from the first solvation shell to a distance ranging from 1.5 to 7 Å. The US covered the

distance from 1.5 to 6.0 Å, split into 48 windows with a spacing of 0.075 Å. In each win-

dow, the trajectory was propagated for 1 ns, with the first 50 ps used for equilibration and

skipped from the analysis, corresponding to 45.6 ns of sampling time. The US windows

were propagated independently at 300 K. A harmonic umbrella restraint with force constant

500 kcal/(mol·Å2) was employed in the windows from 1.5 to 3.00 Å, while the force constant

was lowered to 250 kcal/(mol·Å2) in the region from 3.00 to 6.00 Å. The PMF was computed

as an average from 2 US runs with random seeds for generating the initial velocity distribu-

tions, with an uncertainty estimated as a standard deviation. The final PMF was corrected

by the entropy term 2kBT ln(r/r0) that accounts for the increasing volume of configuration

space with increasing distance r.114,115

For Pd2+ in acetonitrile, the coordination number was chosen as a collective variable
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for the US (further details in section SI §S4.2). The starting structures for the US runs

were generated by steered MD, during which one of the two MeCN axial ligands was pushed

towards the Pd centre, guiding the system towards the ligand exchange event through the

formation of the pentacoordinated TS. In the US, the coordination number was varied from

4 (square planar reactant state) to 5 (pentacoordinated TS, further details in SI §S4). For

each window, the simulation was run for 57.5 ps with a harmonic restraint with force con-

stant 2400 kcal/(mol·Å2), using the last 50 ps for the analysis. To estimate the statistical

uncertainty, the US simulations were repeated three times (using different random seeds for

generating the initial velocity distributions), and the standard deviation from these three

repeats is plotted in Fig. 4.
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