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Abstract

The investigation of inhomogeneous surfaces, where various local structures co-

exist, is crucial for understanding interfaces of technological interest, yet it presents

significant challenges. Here, we study the atomic configurations of the (2×m) Ti-rich

surfaces at (110)-oriented SrTiO3 by bringing together scanning tunneling microscopy

and transferable neural-network force fields combined with evolutionary exploration.

We leverage an active learning methodology to iteratively extend the training data as

needed for different configurations. Training on only small well-known reconstructions

we are able to extrapolate to the complicated and diverse overlayers encountered in dif-

ferent regions of the heterogeneous SrTiO3(110)-(2×m) surface. Our machine-learning-

backed approach generates several new candidate structures, in good agreement with

experiment and verified using density functional theory.
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Introduction

In recent years, the application of machine-learned force fields (MLFFs) to materials dis-

covery and structure exploration has markedly increased. Method development and their

applications have been advancing in parallel, with innovative and powerful models syner-

gizing with established and proven methods. For example, moving from neural-network

force fields that utilize precomputed invariant descriptors1–3 to adopting equivariant mes-

sage passing networks4–6 has enabled more data-efficient and transferable MLFFs. Modern

applications include foundation models trained on a wide range of materials,7 transferable

water potentials,8 and condensed phase chemistry.9

Here, we utilize MLFFs to explore the surface reconstructions of strontium titanate

(SrTiO3). This material exemplifies the richness of bulk, surface, and interface proper-

ties that can be accessed within a single perovskite material: Donor doping by chemical

impurities,10,11 oxygen vacancies,10,12,13 or field effects11,14 can turn it into an insulator, a

metal, a superconductor or even induce confined metallic behaviour in the form of 2D elec-

tron gases. The diversity extends to the atomistic details of the surface,15 where a variety of

composition-related, polarity-compensating reconstructions have been found for the (001),

(110) and (111) orientations.16–23 It is known that specific SrTiO3 surface reconstructions

are difficult to reproduce and can depend on sample history and preparation conditions.15

Notably, scanning tunneling microscopy (STM) studies of SrTiO3 surfaces frequently reveal

the coexistence and even intermixing of multiple surface structures,17,22,24 a feature common

to the surfaces of other complex perovskites such as BaTiO3 and (La,Sr)MnO3.
25,26 The

variety of coexisting surface reconstructions and their dependence on sample history under-

lines the necessity of changing the framing from identifying a single specific reconstruction

to mapping out the range of possible reconstructions. This diversity can serve as an ideal

showcase of the power of MLFF-supported stochastic searches.

In particular, the enhanced accuracy and reliability of MLFFs facilitate the application

of stochastic algorithms for structural exploration of materials.27–32 Stochastic approaches
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require a substantial volume of calculations and are impracticable with ab-initio methods

such as density functional theory (DFT) as the backend. This holds especially true for

large and complex systems, such as surface reconstructions of multi-element compounds.

Such systems usually feature a complex energy surface with too many degrees of freedom

to explore exhaustively, as well as many local minima, where local searches for an optimal

structure largely depend on the initial geometry of the search. Given that stochastic searches

produce more diverse structures than, e.g., molecular dynamics, a transferable, robust, and

generalizable force field trained on a diverse dataset is key to their success.

An accurate MLFF is, however, just one part of the toolbox necessary to build a robust

and efficient workflow for structure searches. The design of an MLFF can enhance or restrict

its transferability and any MLFF has the potential to emit infinitely diverse mispredictions.

This is especially significant for stochastic searches, which, by design, tend to move into

regions that the model was not trained on. Extrapolation happens almost surely in high-

dimensional models,33 and therefore is not, by itself, an indicator of poor performance.

Research has hence focused on estimates of uncertainty as proxies for the error incurred by

using a given MLFF.34–38 When that error is suspected to exceed tolerable margins, retraining

with an expanded training set can help extend the applicability of the MLFF. In such

scenarios, an efficient algorithm must aim toward issuing only as many ab-initio calculations

as required, while preventing waste of resources on redundant or irrelevant configurations.39,40

Thus, the need for an uncertainty metric to evaluate the quality of the results dovetails with

the usefulness of such metrics for identifying or even generating optimally informative new

configurations.29 This makes stochastic structure searches naturally part of the domain of

application of active learning (AL) workflows, where an informed data selection is achieved

through uncertainty estimation.41

This work focuses on the less well-understood Ti-rich surface reconstructions at the (110)

orientation of SrTiO3. Literature describes numerous composition-related surface reconstruc-

tions that can be broadly grouped into two families, characterized by Ti-poor (n × 1) and
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Ti-rich (2 × m) overlayers on an otherwise unchanged bulk.22 Here, n and m denote the

number of (1× 1) bulk unit cells covered in the [001] and [1̄10] directions, respectively. Fig-

ure 1 shows examples of both variations. Ti-rich overlayers pose the particular challenge

that, even when the Ti-to-Sr ratio is controlled,22 numerous reconstructions lacking corre-

sponding DFT models can coexist. Here, we again observe pronounced heterogeneity in new

STM measurements and are able to identify varied reconstructions (see Fig. S1 of the SI).

We mitigate the lack of suitable atomistic models of such heterogeneous surfaces by combin-

ing an evolutionary search algorithm with a transferable MLFF to identify valid candidate

structures. Transferability, in particular, is an important prerequisite for minimizing the

computational cost associated with generating training data. We demonstrate that by uti-

lizing small, well-known reconstructions and implementing a careful data selection routine

built on structural and spatially-resolved local uncertainties, we can arrive at an MLFF ca-

pable of extrapolating to larger, more complex structures. In the following, we first discuss

the active learning approach. We then proceed to show how structural models reproducing

the STM images can be systematically obtained for all the coexisting surface structures.

Results and discussion

Active learning workflow for initial dataset

We set out to iteratively construct a versatile MLFF, which can subsequently be used in com-

bination with an evolutionary search, specifically the covariance matrix adaptation evolution

strategy (CMA-ES),42 to explore different unit cells of the Ti-rich SrTiO3(110) surface. Due

to the complex nature of the various surface reconstructions, the MLFF must be capable of

resolving a wide range of local environments. Additionally, given the nature of the ES, which

produces more diverse and possibly unphysical structures than, e.g., molecular dynamics, in-

termediate configurations are likely to exhibit unusual properties, such as unphysical bond

lengths. For that reason, the MLFF needs to be robust and the underlying training data
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diverse, making the construction of a suitable training set containing ab-initio energies and

forces far from trivial. Furthermore, we aim to explore (2× 5) surface reconstructions with

up to 450 atoms per unit cell where the computational costs associated with DFT evaluation

is prohibitive for constructing diverse training databases. The MLFF must therefore also be

able to generalize from smaller training structures to the larger unit cells explored.

Figure 1: Top view of SrTiO3(110)-(n × m) surface reconstructions: previously explored
(4× 1),18 (2× 2) and (2× 3)b,21 and newly identified (2× 3)c and c(2× 6) from this work.
O atoms are shown in red, Sr in green and Ti in blue. The blue polyhedra depict TiO4

tetrahedra in the first subplot (panel a) and, predominantly, TiO6 octahedra in the others.
Each unit cell is marked by colored lines. (n×1) overlayers exclusively contain tetrahedrally
coordinated TiO4 units, while SrTiO3(110)-(2×m) surface reconstructions are predominantly
composed of octahedrally coordinated TiO6 units and in experimental observations include
at least one Sr atom per unit cell.15,21

We started from the basis of our previous results on a Ti-poor reconstruction of SrTiO3(110),

namely the (4×1) (see Fig. 1a).31 We constructed a database of 495 structures, re-evaluated

using VASP43 with the r2SCAN functional44 and trained a ten-member committee based

on the descriptor-based NeuralIL architecture.3,35 In committees the uncertainty is approx-

imated by training a set of models that vary by initialization seed, hyperparameters, archi-

tecture, or training data, and monitoring their disagreement on a prediction to obtain the

model variance. The majority of computational cost incurred when training a descriptor-

based model can be attributed to the calculation of the descriptors and the associated vector-

Jacobian product operator. NeuralIL enables a particularly efficient committee implemen-

tation by reusing these elements for all members, so that committees needed for uncertainty

estimation can be trained with a negligible performance penalty.35

We then generated CMA-ES trajectories for the (2 × 2), (2 × 3)a and (2 × 3)b recon-
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structions. The CMA-ES samples a population of λ individuals xg
k, k = 1, .., λ, for every

generation g from the multivariate normal distribution

x
(g)
k ∼ N

(
m(g−1),

[
σ(g−1)

]2
C(g−1)

)
, (1)

with distribution mean m, step size σ and covariance matrix C. The population size and

initial mean, m(0), and step size, σ(0), are user-defined. We refer to the initial mean as the

founder structure. Starting from founders that were variations of published structures,21 we

iteratively added data using the committee uncertainty estimate aggregated structure-wise35

s =
1

3N

N∑
j

∑
k∈x,y,z

skj , (2)

to identify structures that should be added to the training data. Here, N is the number

of atoms and skj the committee standard deviation of the k-th component of the force on

atom j. In total, 519 (2 × 2) and 775 (2 × 3) training structures were generated during

this process. The dataset was then refined by incorporating 141 (5 × 1) and a further 272

(4 × 1) structures from Ref. 31 into the training data in order to reinforce performance on

SrTiO3(110)-(n× 1) structures.

To illustrate the variation in the training data, Fig. 2 displays a 2D projection of the

spherical Bessel descriptors of the local environments of Sr atoms using the uniform mani-

fold approximation and projection for dimension reduction (UMAP) method for dimension

reduction.45 The background shows the distribution of all SrTiO3(110) data from the final

dataset through hexagonal binning. The foreground of subplots (a)-(c) depicts the local Sr

environments of the individual (n × 1), (2 × 2) and (2 × 3) data sets, with the colors indi-

cating the distance of each Sr atom from the center of the surface slab. It can be seen how

the data from each reconstruction used for the initial dataset contributes their own distinct

environments. Not surprisingly, the Sr in the (2× 3) overlayer reconstructions, depicted as

green points in the top left of Fig. 2(c), is particularly distinctive, since it did not occur in
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Figure 2: A two-dimensional UMAP representation of the spherical Bessel descriptors of the
local environments of Sr atoms. The background of all plots displays the training data as
fitted utilizing a log-log hexbin approach, with darker shading indicating higher data density
per bin (right color bar). In the foreground of the first four columns, colored dots depict the
local environments of Sr atoms corresponding to the structures labeled (n×1), (2×2), (2×3)
and “(2 × 3) (explore)”, respectively. Here, the colors indicate each atom’s distance from
the center of the surface slab (left color bar). Column (e) features the local Sr descriptors of
geometry-optimized (2×m) results (including c(2× 6), (2× 4)c, c(2× 8), (2× 4)d, (2× 4)f,
(2 × 5)b and (2 × 5)c projected on the same 2D UMAP background as black crosses. The
red crosses in the same subplot depict the same for randomly chosen individuals from earlier
generations of (2× 4)f evolution runs, including generations 10, 25, and 50.

the (n× 1), (2× 2)training data.

Exploration-based active learning

Using the 2226 structures in the initial training database, we trained a five-member com-

mittee using the equivariant message-passing neural network framework MACE.4 MACE

provides significantly improved accuracy and transferability and is more data-efficient than

NeuralIL due to its equivariant architecture and custom-learned atomic representations. The

mean absolute error in the force components, fMAE, for the (4× 1), (2× 2) and (2× 3) sets

decreased by a factor of 2.5 when moving from NeuralIL to MACE with the same training

data. Notably, the force uncertainty estimates obtained from MACE and NeuralIL com-

mittees, Eq. (2), exhibit a strong correlations for all highly uncertain configurations (see

Fig. S3 of the SI). This underscores the efficiency of constructing the initial database using

uncertainties derived from the NeuralIL committee. The initial MACE model demonstrated

strong performance on test data and could reliably be applied to investigate (n × 1) and

(2 × 2) structures using the CMA-ES with relative large population sizes, λ = 100, and
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initial step sizes, σ(0) ∈ [0.1, 0.35].

Figure 3: Spatially resolved uncertainty of a CMA-ES trajectory of a mirror-symmetric
SrTiO3(110)-(2× 3) structure. The gray lines show the locally aggregated uncertainty slocalj

of each atom. The mean of all local uncertainties, i.e. the global structure uncertainty s,
is depicted as a dashed red line, with three times their standard deviation σs shaded in
blue. The local uncertainty associated with the overlayer Sr atom is highlighted in black.
The inset shows a structure at generation 160 with the atoms colored according to the local
uncertainty estimate. The color scale ranges from dark-blue (lowest) to yellow (highest local
uncertainty).

We then performed exploratory CMA-ES searches on the (2×3) surface with population

size λ = 100, and varying the initial step size in the range of σ(0) ∈ [0.1, 0.5]. To expand

the search space, we developed a more generic founder structure (pictured in Fig. S7 of

the SI), rather than relying on published findings. From these searches, we identified the

new SrTiO3(110)-(2 × 3)c reconstruction, Fig. 1(c). A key feature of this structure is the

alignment of the overlayer Sr atoms relative to the topmost TiOx rows. A comparison

between the geometry-optimized (2 × 3)b and (2 × 3)c systems reveals that (2 × 3)c has

a lower energy, with a difference of ∆E=160meV per (1 × 1) unit cell, using VASP for

geometry optimization.

While two of the 35 initial CMA-ES searches produced the new stable configuration, a

majority of these evolutionary searches were found to be prone to instability, specifically to

the expulsion of an Sr atom. Although problematic structures could be identified manually,

an active learning procedure needs to be able to identify and incorporate such structures
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into the training data based on computed quantities such as model uncertainties. Since this

behaviour was not reflected in the aggregated structure uncertainty as defined in Eq. (2),

we utilized spatially resolved atomic uncertainties.38 These are obtained by aggregating over

neighboring atoms within a cutoff radius (in the following set to 4 Å) instead of over the

entire structure

slocalj =
1

3Nj

Nj∑
n

∑
k∈x,y,z

skn, (3)

for atom j with Nj neighbors, and have been shown to exhibit a clear correlation with the

local prediction error.38

The local uncertainties, Eq. (3), clearly identified the misinterpretation of unphysical

local structures which led to escalating errors during the evolution and are thus a reliable

indicator for atoms being expelled from the surface. A visual representation of the evolution

of local and global uncertainty within a CMA-ES run is given in Fig. 3. The solid black line

tracks the local uncertainty associated with the single Sr atom in the overlayer. Notably,

slocalSr begins to increase after generation 70 and exceeds three times the standard deviation

of the local uncertainties (3 σs) after generation 90, while the global structure uncertainty

s, Eq. (2), indicated by a dashed red line, does not reflect this increase. This behavior is

further illustrated by the atomic structure shown in the inset: at generation 160 even the

configuration with the lowest energy features a bright yellow sphere, indicating the high local

uncertainty in the force estimate for the Sr atom. In an additional AL step we then identified

trajectories where the local uncertainty associated with at least one atom j exceeded three

standard deviations of all local uncertainties (slocalj > 3σs). The rise in local uncertainty

corresponds to environments that the model is increasingly uncertain about but which are

localized enough for them to have a low weight in the globally aggregated uncertainty, Eq. (2).

Once an atom is separated from the rest by more than the cutoff radius of the underlying

MLFF model, its contribution to the energy and forces, and thus also to the local and global

uncertainty, becomes zero.

We randomly sampled structures from 40 CMA-ES evolution trajectories, with 32 of these
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structures exhibiting similar local uncertainty behaviour as shown in Fig. 3. The sampling

was performed uniformly but was restricted to intact surface slabs, meaning that generations

following Sr expulsion were excluded. The 2D UMAP of the local Sr descriptors within these

structures is shown in Fig. 2(d), highlighting the added diversity that was achieved. With

these additional 392 structures, the full training set consisted of 2618 configurations. This

was used to train the final MACE model which was utilized for all further CMA-ES runs.

The complete database and trained model are made available on Zenodo.46

Figure 4: Top view of SrTiO3(110) overlayer candidates with (2 × 4) and (2 × 5) bulk
periodicity. The orange and white rectangles and blue rhombus indicate (parts of) the
respective unit cells.

Structure search

The model described above enabled us to perform a large number of structure searches for

SrTiO3(110)-(2 × m), m ∈ {3, 4, 5}, with initial step sizes in the range of σ(0) ∈ [0.1, 0.5].

The choice of population size λ strongly influences the stability of the evolution trajectories,

especially for such rough loss landscapes. Moreover, a larger population size increases the

likelihood of identifying the most stable structure, rather than other stable structures nearby

on the loss surface. Because of this trade-off, we performed the same searches with population
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sizes between 25 and 100, as detailed in the Methods section.

The UMAP in Fig. 2(e) illustrates the variety of local Sr environments encountered in

randomly selected structures chosen from early generations (10, 25 and 50) along these trajec-

tories (red crosses). In comparison, the local environments in geometry-optimized structures

of different unit cell sizes are clearly more uniform (black crosses). Throughout all CMA-ES

searches, spatially resolved local uncertainty, along with the loss, served as an indicator for

structure stability. Importantly, after adding the structures from the exploration-based ac-

tive learning in the (2 × 3)cell, Fig. 2(d) ,to the training data, the MLFF learned to avoid

regions leading to the previously observed overlayer instability. Fig. S4 of the SI shows un-

certainty trajectories for (2×3), (2×4), and (2×5) runs, where no local uncertainty exceeds

3σs. Of particular interest is the (2×3) trajectory, which still illustrates that the Sr environ-

ment is the most uncertain, but does not escalate anymore (compare to Fig. 3). Importantly,

this demonstrates the transferability of the model when extrapolating to reconstruction with

larger unit cells.

With this approach, we were able to discover the new candidate structures shown in

Fig. 4, namely c(2 × 8) (blue), (2 × 4)d (yellow), (2 × 4)e (orange), and (2 × 5)c (white),

which we compare to experiment in the following. All of these structures are available on

Zenodo.46

Comparison to experiment

Figure 5 depicts a high-resolution STM image that illustrates how the preparation of Ti-rich

surfaces results in a mixture of various surface structures. In this image, local symmetries

with (2 × 4) (orange and yellow), (2 × 5) (white), and c(2 × 8) (blue) unit cells can be

observed. In the STM images of the Ti-rich SrTiO3(110) surfaces, the Sr and O atoms are

visible as bright spots. In the cells shown in Fig. 5, the topmost TiOx rows (henceforth

referred to as “TiO ridges” and experimentally imaged as bright spots) tend to be aligned

with the Sr atoms. This feature is incompatible with the STM image obtained from the
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Figure 5: Different regions of the same STM measurement of Ti-rich SrTiO3(110), showing
(2 × 4) (orange and yellow) c(2 × 8) (blue) and (2 × 5) (white) unit cells. The colored
dashed lines mark the border of simulated images, overlayed with 50% transparency, colored
solid lines represent the unit cells. The same figure without overlay and also with fully
opaque simulation images, as well as the full experimental image are part of the SI. Imaging
parameters: Vsample bias = +1.8V, I = 0.04 nA. Simulated images were created using the
Tersoff-Hamann approximation.47

published (2× 5)b structure,21 where the TiO ridges are offset with respect to the Sr atoms.

Founder structures for investigating SrTiO3(110)-(2 × 4) and (2 × 5) cells were created

as described in Section S3 of the SI. In short, they were generated by varying initial atom

positions and adjusting the stoichiometry (addition or removal of TiO2 units). Details re-

garding the evolutionary searches, including the number of runs, population sizes λ, and

step sizes σ are summarized in the Methods section. All newly proposed structures were

tested by comparing the corresponding simulated STM images with the experimental data

in Fig. 5. Important criteria for matching were the position of the Sr adatoms and their

relative alignment to the TiO ridges.

For (2×5) systems, the initial placement of “TiO2 vacancies” resulted in distinct founders,

with the vacancies positioned either in-line or out-of-line relative to the overlayer Sr in the

[1̄10] direction. All sensible configurations resulting from these founders yielded significantly

higher energies than the SrTiO3(110)-(2× 5)b from Ref. 21. However, an alternative candi-
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date structure, (2 × 5)c (see Fig. 4), could be identified due to its distinct features. There,

in contrast to (2× 5)b, the overlayer Sr atom is aligned with a TiO ridge rather than being

offset. While the energy difference between the two is ∆E=208meV per (1× 1) unit cell in

favor of (2× 5)b, the new (2× 5)c clearly fits regions of the heterogeneous surface as shown

in Fig. 5.

The investigation of SrTiO3(110)-(2× 4) identified two stable surface structures, labeled

(2×4)d and (2×4)e, both shown in Fig. 4. Although the difference in DFT energies between

them is vanishingly small - only 2meV per (1×1) unit cell in favor of (2×4)d - the arrange-

ment of the overlayer atoms is distinct. The most noticeable differences include the relative

position of the overlayer Sr atom with respect to the TiO ridges and the resulting positional

changes. Additionally, the centered unit cell c(2× 8) was found as a candidate structure for

explaining regions on the STM measurement showing a shift between Sr positions.

The newly proposed structures c(2 × 8), (2 × 4)d, (2 × 4)e, and (2 × 5)c thus provide

previously missing atomistic models for the different regions observed with STM on the

heterogeneous surface.

Summary and conclusions

We successfully integrated neural-network force fields with the covariance matrix adapta-

tion evolution strategy to develop an accurate and transferable machine-learned force field

suitable for the exploration of Ti-rich SrTiO3(110) surface reconstructions. The required

training data were generated through an active learning workflow, which involved repeat-

edly performing CMA-ES runs on SrTiO3(110)-(2 × 2) and (2 × 3) founder structures to

gather uncertain and diverse data. During this process, NeuralIL committees were utilized

for energy evaluation and uncertainty estimation. The collected data was then used to train

a MACE model suitable for production runs.

To fine-tune the training data in a further AL step, and thereby enhance model perfor-
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mance, we employed spatially resolved uncertainty estimation to identify underrepresented

local environments which global uncertainty measures had failed to resolve. The result-

ing MLFF, MACEfull, was trained on 2618 structures spanning SrTiO3(110)-(n × m), n ∈

{4, 5}, m ∈ {2, 3}.

We successfully identified two not previously reported candidates for stable (2×3)reconstructions.

These structures were then used to extrapolate to (2× 4) and (2× 5) founder structures for

evolutionary exploration. With this approach, we found new stable candidate structures for

SrTiO3(110)-(2× 4) and (2× 5), explaining different experimentally observed regions of the

heterogeneous Ti-rich surface. This method could be extended to other multi-element ox-

ides featuring complex, composition-related, and possibly coexisting surface reconstructions

characterized by large unit cells.

Methods

CMA-ES

We applied clinamen2,48 a functional-style Python framework that interfaces to different

codes for loss evaluation in a straightforward manner, to perform the covariance matrix

adaptation evolution strategy (CMA-ES)42 for all structure searches in this study.

Surface slabs were set up as illustrated in Ref. 31, with the atomic positions in Cartesian

coordinates serving as the degrees of freedom, i.e., the variables adjustable by the CMA-ES.

For all system sizes an anchor region of fixed atom positions was defined at the center of each

slab, consisting of bulk-like layers that remained unchanged. Opposite sides of all slabs were

made symmetric, allowing for the manipulation of only the overlayer- and attachment-layer

atoms. Further symmetry elements (e.g. mirror planes) were leveraged where feasible to

drastically reduce the number of degrees of freedom in larger unit cells.
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DFT

We used vasp43 version 6.2.0 with the r2SCAN functional44 for all ab-initio calculations in

this study, including single-shot structure evaluations for training and test data and geometry

optimization of low-energy candidate structures. The energy cutoff was set to 440 eV and

the width of Gaussian smearing to 0.02 eV. To ensure compatibility of DFT energies and

forces calculated for different system sizes we utilized the optimized k-point grid generator

by Wang et al.49

Machine-learned force fields

All NeuralIL models in this work used rcut = 4.0 Å and nmax = 5, with ResNet core widths set

to [256, 128, 64, 32, 32, 32, 16]. Training on forces was run for only 101 epochs due to the

replacement of the standard Adam optimizer with the versatile learned optimizer VeLO,50

drastically reducing the number of epochs needed for convergence by orders of magnitude.35

With the majority of hyperparameters set to default values, MACE trainings were per-

formed with a cutoff radius rmax = 4.0 Å and two hidden layers set to 128 channels for scalar

and vector properties each. The maximum number of epochs was set to 1200 with an early

stopping patience of 50, and energy and force weights of 1 and 100, respectively. Afterwards,

training was run for an additional 300 epochs with an increased energy weight of 1000 and

an unchanged force weight.

Evolution details

In total, approximately 3000 exploratory CMA-ES runs were performed on various system

sizes and founder structures. For each founder, runs were started for different random

seeds to leverage the stochasticity of the method. Population sizes were varied between

λ ∈ {25, 35, 50, 100}, with the choice of step size σ depending on symmetry. Whenever mirror

symmetry was enforced, σ(0) was capped at 0.35 Å, while evolutionary searches without
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symmetry were performed for step sizes up to 0.5 Å. The lower limit for σ(0) was 0.1 Å for

all cases.

The computation of one CMA-ES trajectory starting from a founder containing 450

atoms and running for up to 1000 generations, with population size λ = 100, required only

between one and three hours on one NVIDIA A40 GPU with 46GiB memory when utilizing

MACEfull, depending on early stopping. For that reason, it was possible to freely explore

various founders to then select highlights for further investigation using DFT.

Experimental methods

SrTiO3(110) single crystals (CrysTec GmbH, 0.5 wt. % Nb2O5, 5×5×0.5 mm3, one-side pol-

ished, miscut less than 0.3◦) were prepared ex situ by sonication in heated neutral detergent

(3% Extran® MA02 diluted in ultrapure water, 2×20min) and ultrapure water (milli-Q™,

10min). Subsequent boiling for 10min in milli-Q™ water removed commonly observed CaO

contamination. The samples were then mounted on Omicron-style, HNO3-cleaned Nicrofer®

sample plates with Nicrofer® clips, and inserted in a UHV setup comprising three intercon-

nected chambers: (i) a preparation chamber (base pressure below 10−10mbar) equipped with

sputtering–annealing facilities and an evaporator for Sr deposition; (ii) an analysis chamber

(base pressure below 5 × 10−11mbar) equipped for STM (SPECS Aarhus STM 150), low-

energy electron diffraction (LEED) (Omicron), and x-ray photoelectron spectroscopy (XPS)

(nonmonochromatic dual-anode Mg/Al Kα source, SPECS Phoibos 100 analyzer, normal

emission); (iii) a pulsed-laser deposition (PLD) chamber (base pressure below 2×10−9mbar).

After a few cycles of sputtering–annealing (6 × 10−6mbar Ar, 1 keV, 5–10µA, 10min,

followed by 1 h at 1000 ◦C, 6 × 10−6mbar O2), the surface cleanliness was verified through

XPS and STM. The surface stoichiometry was then adjusted via submonolayer deposition

of Sr (via molecular-beam epitaxy)51 or TiO2 (via PLD).52 The resulting surface periodicity

was verified by LEED and STM. The surface presented in this work was obtained starting

from a mixed (4 − 5 × 1) reconstruction. 1.4ML Ti was deposited in PLD by keeping the
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sample at 580 ◦C in a background oxygen pressure of 6 × 10−6mbar O2, followed by ramp

down at 80 ◦Cmin−1.

STM images were acquired in constant-current mode with homemade, electrochemically

etched W tips. The tips were prepared in situ by Ar sputtering (1 µA, 30min). Voltage (up

to 10V) or current pulses (up to 10 nA) were applied while in tunneling contact to reshape

the tip and improve resolution. Positive bias voltages correspond to tunneling into the empty

states of the sample.

Data and Software Availability

The trained models, training and test data, and POSCAR files containing founders and

results are available on Zenodo.46
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