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Abstract 

Atomic radius is a fundamentally important quantity shaping multiple properties of 
atoms, molecules, and materials. Due to its fundamental importance, precise 
quantification and interpretation of atomic radii has been the subject of numerous studies 
for more than a century. It has resulted in a broad variety of estimations of atomic radii 
which so far  have not been amenable to extensive verification by experiment. The present 
study follows our recent work demonstrating that electron iso-density surfaces, contoured 
at a certain cut-off density, accurately represent molecular surfaces determined via 
thermodynamic phase change data. Here we provide thermodynamically consistent 
estimates of atomic radii for the main group elements. 

 

Atomic radii are fundamentally important quantities governing many properties of atoms such as 
electronegativity [1, 2], hardness [3], polarizability [4, 5], ionization potential [6, 7], and 
electrophilicity index [8, 9]. Precise quantification of atomic radii is crucial in numerous 
applications in physics and chemistry, including but not limited to theoretical studies of solvent 
effects via continuum solvation models [10-13], (supra-)molecular interactions [14-16], materials 
properties such as electrical conductivity [17], melting points [18], porosity [19] and magnetic 
behavior [20], strength of chemical bonds [21], non-covalent interactions [22-26], design of van 
der Waals (vdW) materials [27-30], and many other applications. Due to its fundamental 
importance, quantification of atomic radii has been a subject of numerous studies for more than a 
century, starting from the pioneering work of Meyer [31], followed by a wide variety of 
experimental [32-37]  and theoretical approaches [38-47] developed in the past decades.  

A review of the literature reveals a broad spread, and even some inconsistencies, among available 
estimations of atomic radii. For experimental methods, atomic radii are commonly determined via 
interatomic distances measured in the condensed phase. The radii estimated this way are therefore 
susceptible to be largely influenced by interatomic interactions, resulting in broad range of radii 
estimations heuristically classified as covalent, ionic, metallic, or vdW radii [48, 49]. Radii 
estimation from interatomic distances also commonly relies on the assumption of the additivity of 
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atomic radii and approximating the most probable value of each radius from a broad distribution 
of interatomic distances between a specific element and probe atom(s), which introduces some 
arbitrariness and uncertainty. The other sources of inaccuracy in conventional experimental 
methods are due to neglecting the dependence of atomic radii on the chemical environment [50-
52], electron distribution anisotropy and bond polarity [33, 53], and crystallographic direction [54]. 
In contrast, theoretical methods do typically not suffer from such issues. Nevertheless, the 
uncertainty in experimental reference data has hindered a fair comparison and extensive 
verification of the theoretical approaches. Among available theoretical methods, the Bader method 
which considers the atomic radii as the distance to iso-density surfaces for a certain cut-off density 
is probably the most widely-accepted approach [55-58]. However, extensive and broad application 
of this method has long been hindered by the ambiguity in defining the most appropriate value of 
the cut-off density due to lack of experimental verification [59], as discussed above.  

In our recent studies [59, 60], we shed light on the above-mentioned issues by exploiting a recent 
method allowing precise experimental evaluation of the surfaces of molecules via thermodynamic 
phase change data [11] and comparing them with iso-density surfaces evaluated for different cut-
off densities. We demonstrated that for a large dataset of studied compounds, adopting a cut-off 
density of 0.0016 a.u., which is roughly at the mid-point of the values suggested by Bader (0.002 
a.u.) [61] and Boyd (0.001 a.u.) [44], yields iso-density surfaces that almost perfectly match with 
the experimental estimates of molecular surfaces. As pointed out by Ashcroft and co-workers, 
outstanding advantages of this approach stems from linking atomic radii to electron density as an 
(in principle) experimentally observable quantity, and also because Pauli, exchange, or same-spin 
repulsions are mainly determined by electron density at the outermost regions of atoms [55]. 
Additionally, this approach also benefits from the possibility of highly precise estimation of 
electron density via modern quantum chemical methods, allowing to uniquely define atomic 
surfaces, taking into account atomic surface asymmetry and anisotropy, and being experimentally 
verified for a large dataset of compounds [59]. Therefore, in the present study we exploit this 
approach to provide an estimation of atomic radii for the main group elements. Because the 
employed value of the cut-off density (0.0016 a.u.) is obtained with reference to experimental 
thermodynamic phase change data, the atomic radii estimated by this approach are coined 
thermodynamically consistent.  

To estimate atomic radii via electron iso-density surfaces, we computed electron densities of 
elements in the isolated state (isolated atoms) at coupled cluster CCSD(T) level of theory, which 
is conventionally considered to be the gold standard in quantum chemistry. We used the large 
Def2-QZVPPD quadruple-zeta basis set, which was previously shown by us to be highly accurate 
in reproduction of experimental estimations of molecular resurfaces [59]. Additionally, to study 
the importance of relativistic corrections which might be important for heavy elements, we also 
used the ANO-RCC basis set and the Douglas–Kroll–Hess second-order scalar relativistic 
Hamiltonian [62] which have been commonly used to evaluation of atomic radii [42, 55]. In 
comparison to single reference computations, the much more computationally demanding 
multireference methods are more robust, especially for open shell elements where multiple spin 
configurations might contribute to the expectation values of atomic properties. Nevertheless, for 
evaluation of electron density and radii approximation, less demanding single reference 
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computations, even at DFT level of theory, can closely reproduce the results obtained via 
multireference computations, as demonstrated by Rahm et al [55]. Therefore, in this study, we 
considered the Complete Active Space Self-Consistent Field (CASSCF) multireference 
computations only for the first 36 elements, to investigate the accuracy of various applied methods. 
To approximate atomic radii from electron density distributions, we spherically averaged the 
electron density for shells with 0.0001 Å radii intervals and took the mid-point of the shell with 
closest value to the required cut-off density as the atomic radius. All electronic structure 
computations were carried out in Orca 5.0.3. [63] and post-processed by Multiwfn software [64]. 
For all studied levels of theory, details of the estimated atomic radii based on different cut-off 
densities from 0.001 a.u. to 0.002 a.u. with 0.0001 a.u. intervals are provided as supplementary 
information. Our results show that the radii estimated with the Def2-QZVPPD basis set closely 
agree with those obtained with the ANO-RCC basis set and based on relativistic correction as well 
as via CASSCF, with average unsigned deviation of only 0.020 Å and 0.015 Å, respectively. 
Accordingly, for sake of consistency among elements and also with our previously reported results 
[59, 60], we report the atomic radii based on computations with the Def2-QZVPPD basis set. 
According to the results reported in Table 1, our estimated atomic radii are on average 6.8% 
smaller than those reported by Rahm et al., which are based on a cut-off density of 0.001 a.u. 
Furthermore, the atomic radii estimated from electron density distribution of isolated atoms are in 
good agreement with the values reported by us for H, C, N, O, and F elements in our previous 
study obtained from a different approach. In that work, we found the atomic radii of isolated 
elements via optimization and in a way that the radii of atoms in molecules evaluated through free 
and effective volumes reproduce most accurately the overall molecular surfaces [60]. Accordingly, 
for the effective volumes calculated via iterative Hirshfeld partitioning, we obtained atomic radii 
of 1.47, 1.87, 1.65, 1.49, and 2.06 Å for H, C, N, O, and F elements, respectively, which are in 
good agreement with results reported here.  

 

Table 1- Comparison of different estimations of atomic radii (Å) 

 Present 
study 

 Bondi [34, 
65] 

Equilibrium 
vdW radius 
[41] 

Rahm et al., 
[55] 

Alvarez 
[32] 

MM3 
[26] 

 COSMO-
RS [66] 
 

H 1.41  1.20  1.54 1.20 1.62  1.30 
He 1.24  1.40  1.34 1.43 1.53   
Li 1.90  1.81 2.63 2.20 2.12 2.55   
Be 2.03   2.23 2.19 1.98 2.23   
B 1.92   2.05 2.05 1.91 2.15   
C 1.79  1.70 1.96 1.90 1.77 2.04  2.00 
N 1.67  1.55 1.79 1.79 1.66 1.93  1.83 
O 1.59  1.52 1.71 1.71 1.50 1.82  1.72 
F 1.52  1.47 1.65 1.63 1.46 1.71   
Ne 1.45  1.54  1.56 1.58 1.60   
Na 1.88  2.27 2.77 2.25 2.50 2.70   
Mg 2.22  1.73 2.42 2.40 2.51 2.43   
Al 2.24   2.40 2.39 2.25 2.36   
Si 2.19  2.10 2.26 2.32 2.19 2.29   
P 2.10  1.80 2.14 2.23 1.90 2.22   
S 2.02  1.80 2.06 2.14 1.89 2.15   
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Cl 1.94  1.75 2.05 2.06 1.82 2.07  2.05 
Ar 1.87  1.88  1.97 1.83 1.99   
K 1.94  2.75 3.02 2.34 2.73 3.09   
Ca 2.45   2.78 2.70 2.62 2.81   
Sc 2.42   2.62 2.63 2.58 2.61   
Ti 2.38   2.44 2.57 2.46 2.39   
V 2.34   2.27 2.52 2.42 2.29   
Cr 2.12   2.23 2.33 2.45 2.25   
Mn 2.27   2.25 2.42 2.45 2.24   
Fe 2.23   2.27 2.26 2.44 2.23   
Co 2.20   2.25 2.22 2.40 2.23   
Ni 2.01  1.63 2.23 2.19 2.40 2.22   
Cu 1.99  1.40 2.27 2.17 2.38 2.26   
Zn 2.11  1.39 2.24 2.22 2.39 2.29   
Ga 2.20  1.87 2.41 2.33 2.32 2.46   
Ge 2.28   2.32 2.34 2.29 2.44   
As 2.17  1.85 2.25 2.31 1.88 2.36   
Se 2.13  1.90 2.18 2.24 1.82 2.29   
Br 2.08  1.83 2.10 2.19 1.86 2.22   
Kr 2.01  2.02  2.12 2.25 2.15   
Rb 2.05   3.15 2.40 3.21 3.25   
Sr 2.52   2.94 2.79 2.84 3.00   
Y 2.66   2.71 2.74 2.75 2.71   
Zr 2.49   2.57 2.68 2.52 2.54   
Nb 2.48   2.46 2.51 2.56 2.43   
Mo 2.26   2.39 2.44 2.45 2.39   
Tc 2.35   2.37 2.41 2.44 2.36   
Ru 2.18   2.37 2.37 2.46 2.34   
Rh 2.15   2.32 2.33 2.44 2.34   
Pd 1.97   2.35 2.15 2.15 2.37   
Ag 2.08   2.37 2.25 2.53 2.43   
Cd 2.20   2.37 2.38 2.49 2.50   
In 2.31  1.93 2.53 2.46 2.43 2.64   
Sn 2.35  2.17 2.46 2.48 2.42 2.59   
Sb 2.32   2.41 2.46 2.47 2.52   
Te 2.30  2.06 2.36 2.42 1.99 2.44   
I 2.26  1.98 2.22 2.38 2.04 2.36   
Xe 2.21  2.16  2.32 2.06 2.28   

 

For the challenging case of hydrogen atom for which large discrepancies of predicting atomic 
radius has been reported in several studies [33, 67, 68], our previously reported and current 
estimations seem quite consistent and are also in better agreement with those parameterized in the 
COSMO-RS solvation model and reported by Bondi and Alvarez, in comparison to other methods 
(Table 1). Accordingly, we propose a radius of 1.41 Å for hydrogen.  

In summary, we provide quantum chemistry-based estimates of atomic radii for main group 
elements. The radii are computed as the distance to the nucleus of spherically averaged iso-density 
surfaces contoured at 0.0016 a.u. The radii obtained from this approach are grounded on 
experimental phase change thermodynamic data related to molecular surfaces, and are thus 
thermodynamically consistent. 
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