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ABSTRACT 

Imaging mass spectrometry enables untargeted spatial profiling of compounds in animal 

tissues. Data preprocessing and mining are central to comprehensively unravel the complexity of 

hyperspectral imaging mass spectrometry experiments. Herein, we describe a user-friendly, 

partially GPU- or compiler-accelerated software pipeline that enables multi-ROI, multi-condition, 

and multi-replicate preprocessing and mining of larger-than-memory imaging mass spectrometry 

datasets in Python. The package, termed iMSminer, streamlines computational imaging mass 

spectrometry workflows, from spectral preprocessing to unsupervised exploratory analysis to 

univariate fold-change statistical analysis. These capabilities enable mining of ions for molecular 

co-localization, characteristic molecular profiles, and differential expression. Functions include 

raw imzML import, peak picking, baseline subtraction, mass alignment, peak integration, 

normalization, ROI selection, calibration, chemical database search, analyte filtering, image 

processing, box plot visualization, volcano plot and heatmap visualizations, dimensionality 

reduction, image clustering, and in situ segmentation. Furthermore, data processed by iMSminer 

can be easily interfaced to standard deep learning packages and other special-purpose modelling 

tasks in Python for more advanced use cases. 
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INTRODUCTION 

Imaging mass spectrometry enables spatially-resolved, label-free measurements of animal 

tissue samples.1, 2 Each imaging mass spectrometry experiment generates a dataset of molecular 

images hyperdimensional over the number of mass spectral peaks and x, y coordinate values. 

Computational preprocessing and data mining are thus crucial to unravel useful biochemical 

patterns and facilitate interpretation of global molecular interactions.3, 4 Despite the capacity for 

hyperspectral data acquisition, the majority of published imaging mass spectrometry studies 

manually analyze a small targeted set of analytes of interest.5 Several vendor-based software 

(e.g., SCiLS Lab by Bruker Daltonics) and proprietary packages (e.g., MSiReader6) provide 

access to a limited set of machine learning algorithms, though these typically require license 

purchases to access a larger set of machine learning tools. Open-source freeware is also 

available for computational workflows spanning data preprocessing and mining. For instance, 

software such as rMSI,7  MSIQuant,8 Ion-to-Image (i2i),9 mzMine,10 and BASIS11 provides spectral 

and image processing capabilities, but often have limited downstream data analysis 

functionalities. Cardinal,12-14 built in the programming language R,15 is the most comprehensive 

open-source freeware that streamlines robust capabilities from data import to machine learning. 

However, some experience in programming and statistical modeling is advisable, introducing a 

barrier for widespread adoption by the imaging mass spectrometry community. Additionally, R 

traditionally limits accelerated computing to central processing unit (CPU)-based multi-

processing, which is more inefficient than graphics processing (GPU)-based processing, and 

hinders access to standard machine learning packages (e.g., Tensorflow16 and PyTorch17).  

With the rise of deep neural networks (DNNs) for computer vision tasks,18 open-source 

imaging mass spectrometry databases (e.g., Metespace19) have emerged to provide increasingly 

larger annotated training datasets. However, a user-friendly data processing package that can be 

easily interfaced to deep learning packages is lacking. Python20 is increasingly recognized as a 

https://doi.org/10.26434/chemrxiv-2024-kxjgg ORCID: https://orcid.org/0000-0002-1927-9457 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-kxjgg
https://orcid.org/0000-0002-1927-9457
https://creativecommons.org/licenses/by-nc-nd/4.0/


versatile and hardware-accelerated programming language for machine learning in imaging mass 

spectrometry.21-25 Python supports Nvidia CUDA-based26 GPU acceleration with an established 

set of accelerated packages, such as RAPIDS,27 Numba,28 and standard deep learning packages. 

Herein, we have produced an open-source data processing and machine learning package for 

imaging mass spectrometry, termed iMSminer. iMSminer provides accelerated data processing 

and exploratory analysis functionalities to streamline data processing and mining of imaging mass 

spectrometry datasets. Furthermore, this package can be easily interfaced to standard deep 

learning packages by providing inputs to deep learning, which simplifies computational workflow 

for advanced use cases. A demonstration of interfacing iMSminer as inputs to a standard deep 

learning package is provided (https://github.com/Prentice-lab-UF/iMSminer). Moreover, iMSminer 

can be easily implemented on cloud computing platforms, (e.g., Google Colaboratory;29 see 

https://github.com/Prentice-lab-UF/iMSminer), for accessing powerful computational resources. 

As a modularized open-source package, iMSminer provides a useful baseline for experienced 

programmers to refactor for special-purpose modelling tasks. With partial GPU- and compiler-

based acceleration, the package presented here provides high-performance data preprocessing 

and mining, though further acceleration is underway with more comprehensive parallelization and 

optimization in future releases. 

 

METHODS 

Case study 1: multi-ROI, multi-condition, and multi-replicate metabolite MALDI imaging of mouse 

heart and pancreas  

Mouse heart and pancreas tissues for imaging mass spectrometry were removed from 

animal organs, frozen on dry ice, and then stored at −80°C until analysis. 12-µm mouse heart 

tissues were sectioned using a Leica CM 3050S Research Cryostat (Leica Biosystems, Wetzlar, 

Germany) using −25°C chamber temperature and −23°C object temperature, prior to thaw 

mounting onto indium tin oxide-coated microscope slides (Delta Technologies, Loveland, CO, 
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USA). A 10 mg/mL solution of 1,5-diaminonaphthalene (DAN) MALDI matrix layer was applied to 

the microscope slide using an HTX M5 TM Sprayer (HTX Technologies, LLC, Chapel Hill, NC, 

USA) with 0.1 mL/min flow rate over 4, 6, or 8 passes. MALDI imaging mass spectrometry was 

performed on a 7T solariX Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer 

equipped with a dynamically harmonized ParaCell XR (Bruker Daltonics, Bremen, Germany). 

Analysis was performed in negative ion mode from m/z 75 to 500 with a 1 megaword transient 

(~0.4 s ICR transient length). A 117 ± 75 m/z continuous accumulation of selected ions (CASI) 

window was used to perform gas-phase enrichment of low m/z metabolites. The MALDI source 

is equipped with a Smartbeam II Nd:YAG MALDI laser and was used to sample at a pixel spacing 

of 200 µm in the x and y dimensions using 200 laser shots per pixel (minimum laser focus, 2 kHz 

frequency) with Smart Walk enabled. Data preprocessing via iMSminer employed automatic peak 

picking with a z-score threshold of 3, a minimum number of data points of 6, and a limit of 

quantification of 10*noise. Image clustering was performed with 8 clusters and a perplexity of 5. 

In situ segmentation was performed with 6 clusters and a perplexity of 15. 

 

Case study 2: high mass resolution lipid MALDI imaging of rat brain  

Rat brain tissues for imaging mass spectrometry were removed from animal organs, frozen 

on dry ice, and then stored at −80°C until analysis. 10-µm rat brain tissues were sectioned using 

a Leica CM 3050S Research Cryostat (Leica Biosystems, Wetzlar, Germany), prior to thaw 

mounting onto indium tin oxide-coated microscope slides (Delta Technologies, Loveland, CO, 

USA). 1,5-diaminonaphthalene (DAN) MALDI matrix layer was sublimated to the microscope slide 

using an in-house sublimation apparatus. MALDI imaging mass spectrometry was performed on 

a 7T solariX Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped 

with a dynamically harmonized ParaCell XR (Bruker Daltonics, Bremen, Germany). Analysis was 

performed in negative ion mode from m/z 400 to 2000 with ~0.5 s time-domain transient length, 

resulting in a resolution of ~35,000 FWHM at m/z ~760. The MALDI source is equipped with a 
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Smartbeam II Nd:YAG MALDI laser and was used to sample at a pixel spacing of 100 µm in the 

x and y dimensions using 200 laser shots per pixel (large laser focus, 2 kHz frequency) with Smart 

Walk enabled. Data preprocessing via iMSminer employed automatic peak picking with a z-score 

threshold of 3, a minimum number of data points of 6, and a limit of quantification of 10*noise. 

Image clustering was performed with 8 clusters and a perplexity of 5. In situ segmentation was 

performed with 10 clusters and a perplexity of 15. 

 

Case study 3: high spatial resolution MALDI imaging of mouse urinary bladder  

A detailed description of experimental methods employed was described under case study 

1 in the Methods section by Vitek et al.13 Data preprocessing via iMSminer employed even binning 

with 30,000 FWHM at m/z 400 scaled by a factor of 2, peak picking with a z-score threshold of 

3, a minimum number of data points of 6, and a limit of quantification of 10*noise. Regression 

binning is advisable if a regression equation for mass resolving power vs. m/z is available. Image 

clustering was performed with 6 clusters and a perplexity of 3. In situ segmentation was performed 

with 7 clusters and a perplexity of 15. 

 

RESULTS 

 We set out to develop a software that is easily adoptable to non-programmers with 

interactive input prompting for user inputs. This package enables user-friendly and streamlined 

data preprocessing and mining capabilities to empower comprehensive analysis of hyperspectral 

molecular images. iMSminer is broadly composed of two classes: Preprocess() (Figure 1a) and 

DataAnalysis() (Figure 1b).  These functions are supported with CUDA-accelerated computing 

on GPU, just-in-time compiler, or vectorized Python packages. Preprocess() first imports imzML 

dataset by interactive input prompting for directory path. Preprocess() also performs chunking to 

enable processing of larger-than-memory imzML datasets on local machines. DataAnalysis() then 
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imports preprocessed intensity matrix and coordinate arrays by interactive input prompting for 

directory path. Region of interest (ROI) selection tools interactively receive user inputs. Structured 

data are analyzed with analyte-specific statistical tools or unsupervised in situ segmentation and 

image clustering.  

   

 

Figure 1. iMSminer is an open-source Python package composed of two classes: Preprocess() 
and DataAnalysis(). a, Preprocess() imports imzML datasets and performs peak picking, baseline 
subtraction, mass alignment, and peak integration with interactive input prompting. Raw imzML 
datasets are reduced to an intensity matrix and coordinate arrays. b, DataAnalysis() imports 
preprocessed data and supports interactive ROI selection, normalization, and calibration. Users 
may perform MS1 search and filter analytes of interest for downstream analysis. Unsupervised 
analysis, ion images, and ion statistics are generated based on input analytes. Users may 
visualize m/z or analyte labels corresponding to features in volcano plot or t-distributed stochastic 
neighbor embedding (t-SNE) of image clusters. * denotes optional functions. 
 

 The functionalities of iMSminer are illustrated using a multi-ROI (m=6), multi-condition 

(n=3), and multi-replicate (p=5) MALDI imaging mass spectrometry dataset of serially sectioned 

mouse heart and pancreas tissues (Figure 2a). Varying thicknesses of a MALDI matrix layer were 
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applied to serial tissue sections to simulate a multi-ROI and multi-condition sample cohort. 

iMSminer broadly enables untargeted univariate statistical analysis and global molecular pattern 

mining. For fold-change statistics, pairwise fold-change statistics across ROIs are summarized in 

volcano plots. Moreover, pairwise comparisons across ROIs are summarized in box plot 

visualizations, along with visualization of each corresponding ion images. A representative 

volcano plot shows differential molecular profiles between mouse hearts (MHs) and mouse 

pancreases (MPs) subjected to 6 passes of matrix spray (Figure 2b). This representative volcano 

plot revealed differences in metabolic expression between mouse heart and pancreas sections 

subjected to 6 matrix passes. A representative box plot analysis of m/z 133.015 shows pairwise 

ROI comparisons of mean ion intensity (Figure 2c). Box plots summarize mean ion statistics 

across pairs of ROIs, revealing differences between ROIs (e.g., mouse heart sections subjected 

to 4 matrix passes versus 8 matrix passes). Ion images reveal in situ molecular distribution and 

relative quantification (Figure 2d). Global molecular pattern mining is enabled using k-means 

clustering and visualizes clustering analysis either in t-SNE or in situ ion heatmaps. This 

unsupervised analysis is performed to either group pixels by similar molecular profiles via in situ 

segmentation or to group analytes by similar in situ distributions via image clustering. In situ 

segmentation via k-means clustering is visualized in t-SNE (Figure 2e), along with the 

corresponding ROI labels visualized in t-SNE (Figure 2f). In situ segmentation groups pixels by 

similarity in global molecular profiles. Pixel clusters from in situ segmentation are then mapped to 

in situ distributions to link molecular profiles to tissue locations (Figure 2g). Additionally, similar 

molecular co-localizations are mined by unsupervised image clustering. K-means clusters of ion 

images and their corresponding ion images are visualized in t-SNE (Figure 2h and Figure 2i, 

respectively). Image clustering groups analytes by spatial co-localization and enhances 

interpretation of untargeted analysis. A representative mean image from cluster 4 is shown as an 

example of molecular co-localization (Figure 2j). The mean intensities from mean images 
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corresponding to k-means clusters and pairwise ROI comparisons were visualized in box plot. A 

representative box plot analysis is shown for cluster 4 (Figure 2k). 

 

Figure 2. Data preprocessing, statistical analysis, and unsupervised exploratory analysis on 
multi-ROI (m=6), multi-condition (n=3), and multi-replicate (p=5) high-mass-resolution mouse 
heart and pancreas imaging. a, Five technical replicates of serially sectioned mouse heart and 
pancreas samples were subjected to three different amounts of 1,5-diaminonaphthalene matrix 
spray. b, Representative pairwise ROI fold-change analysis via volcano plot. c, Representative 
ion box plot of mean intensity vs. ROI with pairwise comparison summary statistics across 
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replicates. d, Representative ion image with ROI annotations. e, K-means clusters from in situ 
segmentation visualized in t-SNE. f, t-SNE of pixels annotated with ROI labels. g, In situ mapping 
of k-means clusters from in situ segmentation. h, t-SNE of k-means clusters of ion images. i, Ion 
images visualized in t-SNE. j, Representative in situ mapping of mean image from k-means 
clusters of images. k, Representative mean images of k-means cluster 4 across replicates 
summarized in box plot of mean intensity vs. ROI with pairwise comparison summary statistics.   
 

Case study 2 analyzed a high mass resolution lipid MALDI imaging study of one hemisphere 

of a rat brain. Representative ion images of oppositely co-localized ions are shown for m/z 

773.527 (Supplementary Figure 1a) and m/z 746.564 (Supplementary Figure 1b). In situ 

segmentation via k-means clustering separated pixels corresponding to brain regions displaying 

different co-localization patterns (Supplementary Figure 1c). This in situ segmentation analysis 

successfully separated brain regions in mouse brain section, including molecular layer, granular 

layer, white matter, cortex, corpus callosum, and hippocampus (Supplementary Figure 1d). For 

instance, cluster 8 captures the localization of m/z 773.527 to the molecular layer, while cluster 4 

captures the localization of m/z 746.564 to the white matter. Image clustering via k-means 

clustering visualized in t-SNE (Supplementary Figure 1e), along with in situ heatmaps 

(Supplementary Figure 1f), demonstrates sensitivity to separation based on molecular co-

localization. Herein, by grouping images by co-localization, hundreds of ion images can be 

compressed into 8 clusters to boost interpretation of tissue structures revealed by untargeted 

imaging mass spectrometry. 

Case study 3 analyzed a high spatial resolution MALDI imaging experiment of mouse 

urinary bladder. Representative ion images of oppositely co-localized ions are shown for m/z 

851.637 (Supplementary Figure 2a) and m/z 826.570 (Supplementary Figure 2b). For 

instance, cluster 2 captures the localization of m/z 826.570 to the urothelium, while cluster 4 

captures the lack of m/z 826.570 in the lumen (Supplementary Figure 2c). This unsupervised in 

situ segmentation analysis successfully separated lamina propria, urothelium, and lumen of 

mouse urinary bladder section (Supplementary Figure 2d), which is congruent with the analysis 

results by Cardinal.13 The segmentation results by iMSminer are more pixelated due to non-spatial 
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awareness of k-means clustering. However, fine-tuning weights using data-driven approaches 

such as deep learning may better capture spatial autocorrelation in ion images. Image clustering 

also demonstrated sensitivity to molecular co-localization (Supplementary Figure 2e, 2f), which 

enables grouping of ion images into similar co-localization patterns. 

To assess the processing speed of iMSminer, execution times of preprocessing and 

unsupervised analysis were recorded on a laptop system equipped with a 13th Gen Intel® Core™ 

i9-13900HK CPU, a NVIDIA GeForce RTX 4080 Laptop GPU, and 32 GB of random-access 

memory (RAM). Timed functions include preprocessing one dataset without mass alignment using 

iMSminer, preprocessing one dataset without mass alignment using Cardinal v3.4.3, mass 

alignment of 100 pixels on GPU, mass alignment of 100 pixels on CPU, in situ segmentation on 

GPU, and in situ segmentation on CPU (Supplementary Figure 3). For case study 1 (i.e., ~3000 

pixels and ~1,800,000 m/z bins per dataset, 219 analytes), the execution times recorded in 

seconds of these functions were 82.7 ± 10.5, NA, 1.6 ± 0.1, 27.0 ± 0.2, 1.7 ± 0.3, and 32.2 ± 1.3, 

respectively. For case study 2 (i.e., 21,510 pixels, 419,094 m/z bins, 207 analytes), the execution 

times recorded in seconds were 198.1 ± 3.8, NA, 1.3 ± 0.7, 20.5 ± 0.2, 1.3 ± 0.1, and 34.0 ± 1.1, 

respectively. For case study 3 (i.e., 34,840 pixels, 90,000 m/z bins, 152 analytes), the execution 

times recorded in seconds were 20.4 ± 1.1, 316.3 ± 8.2, 1.5 ± 0.1, 40.3 ± 0.5, 2.2 ± 0.1, and 82.0 ±

7.4, respectively. For case studies 1 and 2, Cardinal failed to perform preprocessing without mass 

alignment due to R session crashing upon calling summarizeFeatures(). For case study 3, 

iMSminer enabled faster (~15.5 fold) preprocessing without mass alignment than Cardinal v3.4.3, 

which is expected given the relative speeds of the programming and processing foundations.  

 

CONCLUSIONS 

Computational processing and data mining are important workflows for comprehensive 

and interpretable unravelling of label-free imaging mass spectrometry datasets. Herein we have 

developed a software package, termed iMSminer, that enables user-friendly, accelerated 
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extraction of molecular co-localization, characteristic molecular profile assessment, and fold-

change statistics. The utility of this package is illustrated using multi-ROI, multi-condition, and 

multi-replicate imaging mass spectrometry datasets. Furthermore, this package can be easily 

interfaced to standard deep learning packages in Python for more advanced use cases. The 

performance, functionalities, and user-friendliness of iMSminer make the package a strong 

candidate for application in routine and advanced imaging mass spectrometry data analytics. 
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CODE AVAILABILITY 

 The iMSminer package is open-sourced on GitHub (https://github.com/Prentice-lab-

UF/iMSminer) and available on PyPI (https://pypi.org/project/iMSminer/). Tutorials and 

documentation are provided on GitHub. Herein, python v3.11.7 was used with packages bokeh 

v3.3.4, cudf v24.04.01, cuml v24.04.00, cupy v13.1.0, iMSminer v1.0.0, matplotlib v3.8.0, msalign 

v0.2.0, numba v0.59.1, numpy v1.26.4, opencv v4.9.0, pandas v1.5.3, pyimzml v1.5.4, ray 

v2.21.0, scikit-learn v1.2.2, scipy v1.11.4, seaborn v0.11.2, statannotations v0.6.0, and 

statsmodeles v0.14.0. Mouse heart and pancreas datasets are available on MassIVE 

(MSV000095123). 

 

 

https://doi.org/10.26434/chemrxiv-2024-kxjgg ORCID: https://orcid.org/0000-0002-1927-9457 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmassive.ucsd.edu%2FProteoSAFe%2Fdataset.jsp%3Ftask%3Df03ace32c11e417fac2029e26ab413ca&data=05%7C02%7Cbooneprentice%40chem.ufl.edu%7Caad120f4974f47f3f3a908dc946a2220%7C0d4da0f84a314d76ace60a62331e1b84%7C0%7C0%7C638548430792893915%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=OuYoiKFzdRHnPg%2FKVfZ9h6ZL%2BWF7pcLK22cS2n4yr5Q%3D&reserved=0
https://massive.ucsd.edu/ProteoSAFe/QueryMSV?id=MSV000086099
https://github.com/Prentice-lab-UF/iMSminer
https://github.com/Prentice-lab-UF/iMSminer
https://pypi.org/project/iMSminer/
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmassive.ucsd.edu%2FProteoSAFe%2Fdataset.jsp%3Ftask%3D332dca24fe4b4fbdb8e1f3ae73c9544e&data=05%7C02%7Cbooneprentice%40chem.ufl.edu%7Caad120f4974f47f3f3a908dc946a2220%7C0d4da0f84a314d76ace60a62331e1b84%7C0%7C0%7C638548430792871219%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=15dfKpux68B3JoQ0pbD7v%2BGn735CpCbUJyQYG4ynixo%3D&reserved=0
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmassive.ucsd.edu%2FProteoSAFe%2Fdataset.jsp%3Ftask%3D332dca24fe4b4fbdb8e1f3ae73c9544e&data=05%7C02%7Cbooneprentice%40chem.ufl.edu%7Caad120f4974f47f3f3a908dc946a2220%7C0d4da0f84a314d76ace60a62331e1b84%7C0%7C0%7C638548430792885784%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=0EOKiU66PEhKHmWkCw4Z3ZxzgDAr51TtZFWB46gYnaA%3D&reserved=0
https://doi.org/10.26434/chemrxiv-2024-kxjgg
https://orcid.org/0000-0002-1927-9457
https://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 

1. McDonnell, L. A.; Heeren, R. M. A., Imaging mass spectrometry. Mass Spectrometry 
Reviews 2007, 26 (4), 606-643. 
2. Norris, J. L.; Caprioli, R. M., Imaging mass spectrometry: A new tool for pathology in 
a molecular age. PROTEOMICS – Clinical Applications 2013, 7 (11), 733-738. 
3. Alexandrov, T., Spatial metabolomics and imaging mass spectrometry in the age of 
artificial intelligence. Annual review of biomedical data science 2020, 3, 61-87. 
4. Verbeeck, N.;  Caprioli, R. M.; Van de Plas, R., Unsupervised machine learning for 
exploratory data analysis in imaging mass spectrometry. Mass spectrometry reviews 2020, 
39 (3), 245-291. 
5. Hu, H.; Laskin, J., Emerging Computational Methods in Mass Spectrometry Imaging. 
Advanced Science 2022, 9 (34), 2203339. 
6. Robichaud, G.;  Garrard, K. P.;  Barry, J. A.; Muddiman, D. C., MSiReader: An Open-
Source Interface to View and Analyze High Resolving Power MS Imaging Files on Matlab 
Platform. Journal of the American Society for Mass Spectrometry 2013, 24 (5), 718-721. 
7. Ràfols, P.;  Torres, S.;  Ramírez, N.;  Del Castillo, E.;  Yanes, O.;  Brezmes, J.; Correig, 
X., rMSI: an R package for MS imaging data handling and visualization. Bioinformatics 2017, 
33 (15), 2427-2428. 
8. Källback, P.;  Shariatgorji, M.;  Nilsson, A.; Andrén, P. E., Novel mass spectrometry 
imaging software assisting labeled normalization and quantitation of drugs and 
neuropeptides directly in tissue sections. Journal of proteomics 2012, 75 (16), 4941-4951. 
9. Lillja, J.;  Duncan, K. D.; Lanekoi, I., Ion-to-image, i2i, a mass spectrometry imaging 
data analysis platform for continuous ionization techniques. Analytical Chemistry 2023, 95 
(31), 11589-11595. 
10. Schmid, R.;  Heuckeroth, S.;  Korf, A.;  Smirnov, A.;  Myers, O.;  Dyrlund, T. S.;  
Bushuiev, R.;  Murray, K. J.;  Hoimann, N.; Lu, M., Integrative analysis of multimodal mass 
spectrometry data in MZmine 3. Nature biotechnology 2023, 41 (4), 447-449. 
11. Veselkov, K.;  Sleeman, J.;  Claude, E.;  Vissers, J. P.;  Galea, D.;  Mroz, A.;  
Laponogov, I.;  Towers, M.;  Tonge, R.; Mirnezami, R., BASIS: High-performance 
bioinformatics platform for processing of large-scale mass spectrometry imaging data in 
chemically augmented histology. Scientific reports 2018, 8 (1), 4053. 
12. Bemis, K. D.;  Harry, A.;  Eberlin, L. S.;  Ferreira, C.;  Van De Ven, S. M.;  Mallick, P.;  
Stolowitz, M.; Vitek, O., Cardinal : an R package for statistical analysis of mass 
spectrometry-based imaging experiments. Bioinformatics 2015, 31 (14), 2418-2420. 
13. Bemis, K. A.;  Föll, M. C.;  Guo, D.;  Lakkimsetty, S. S.; Vitek, O., Cardinal v.3: a 
versatile open-source software for mass spectrometry imaging analysis. Nature Methods 
2023, 20 (12), 1883-1886. 
14. Luu, G. T.;  Condren, A. R.;  Kahl, L. J.;  Dietrich, L. E. P.; Sanchez, L. M., Evaluation of 
Data Analysis Platforms and Compatibility with MALDI-TOF Imaging Mass Spectrometry 
Data Sets. Journal of the American Society for Mass Spectrometry 2020, 31 (6), 1313-1320. 
15. Team, R. C., R: A Language and Environment for Statistical Computing. 2021. 
16. Martín, A.;  Ashish, A.;  Paul, B.;  Eugene, B.;  Zhifeng, C.;  Craig, C.;  Greg, S. C.;  
Andy, D.;  Jeirey, D.;  Matthieu, D.;  Sanjay, G.;  Ian, G.;  Andrew, H.;  Geoirey, I.;  Michael, I.;  

https://doi.org/10.26434/chemrxiv-2024-kxjgg ORCID: https://orcid.org/0000-0002-1927-9457 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-kxjgg
https://orcid.org/0000-0002-1927-9457
https://creativecommons.org/licenses/by-nc-nd/4.0/


Jia, Y.;  Rafal, J.;  Lukasz, K.;  Manjunath, K.;  Josh, L.;  Dan, M.;  Rajat, M.;  Sherry, M.;  Derek, 
M.;  Chris, O.;  Mike, S.;  Jonathon, S.;  Benoit, S.;  Ilya, S.;  Kunal, T.;  Paul, T.;  Vincent, V.;  
Vijay, V.;  Fernanda, V.;  Oriol, V.;  Pete, W.;  Martin, W.;  Martin, W.;  Yuan, Y.; Xiaoqiang, Z., 
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. 
17. Paszke, A.;  Gross, S.;  Massa, F.;  Lerer, A.;  Bradbury, J.;  Chanan, G.;  Killeen, T.;  Lin, 
Z.;  Gimelshein, N.;  Antiga, L.;  Desmaison, A.;  Köpf, A.;  Yang, E.;  DeVito, Z.;  Raison, M.;  
Tejani, A.;  Chilamkurthy, S.;  Steiner, B.;  Fang, L.;  Bai, J.; Chintala, S., PyTorch: An 
Imperative Style, High-Performance Deep Learning Library. arXiv [cs.LG] 2019. 
18. Krizhevsky, A.;  Sutskever, I.; Hinton, G. E., ImageNet Classification with Deep 
Convolutional Neural Networks. In Advances in Neural Information Processing Systems, 
Pereira, F.;  Burges, C. J.;  Bottou, L.; Weinberger, K. Q., Eds. Curran Associates, Inc.: 2012; 
Vol. 25. 
19. Palmer, A.;  Phapale, P.;  Chernyavsky, I.;  Lavigne, R.;  Fay, D.;  Tarasov, A.;  Kovalev, 
V.;  Fuchser, J.;  Nikolenko, S.;  Pineau, C.;  Becker, M.; Alexandrov, T., FDR-controlled 
metabolite annotation for high-resolution imaging mass spectrometry. Nature Methods 
2017, 14 (1), 57-60. 
20. Van Rossum, G.; Drake, F. L., Jr., Python tutorial. Centrum voor Wiskunde en 
Informatica Amsterdam, The Netherlands: 1995. 
21. Behrmann, J.;  Etmann, C.;  Boskamp, T.;  Casadonte, R.;  Kriegsmann, J.; Maaβ, P., 
Deep learning for tumor classification in imaging mass spectrometry. Bioinformatics 2018, 
34 (7), 1215-1223. 
22. Hu, H.;  Bindu, J. P.; Laskin, J., Self-supervised clustering of mass spectrometry 
imaging data using contrastive learning. Chemical science 2022, 13 (1), 90-98. 
23. Abdelmoula, W. M.;  Lopez, B. G.-C.;  Randall, E. C.;  Kapur, T.;  Sarkaria, J. N.;  White, 
F. M.;  Agar, J. N.;  Wells, W. M.; Agar, N. Y., Peak learning of mass spectrometry imaging 
data using artificial neural networks. Nature communications 2021, 12 (1), 5544. 
24. Xie, Y. R.;  Castro, D. C.;  Rubakhin, S. S.;  Trinklein, T. J.;  Sweedler, J. V.; Lam, F., 
Multiscale biochemical mapping of the brain through deep-learning-enhanced high-
throughput mass spectrometry. Nature Methods 2024, 1-10. 
25. Hernly, E.;  Hu, H.; Laskin, J., MSIGen: An Open-Source Python Package for 
Processing and Visualizing Mass Spectrometry Imaging Data. 2024. 
26. Nickolls, J.;  Buck, I.;  Garland, M.; Skadron, K., Scalable Parallel Programming with 
CUDA: Is CUDA the parallel programming model that application developers have been 
waiting for? Queue 2008, 6 (2), 40-53. 
27. Team, R. D., RAPIDS: Libraries for End to End GPU Data Science. 2023. 
28. Lam, S. K.;  Pitrou, A.; Seibert, S., Numba: a LLVM-based Python JIT compiler. In 
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, 
Association for Computing Machinery: 2015. 
29. Bisong, E., Google Colaboratory. In Building Machine Learning and Deep Learning 
Models on Google Cloud Platform: A Comprehensive Guide for Beginners, Apress: 
Berkeley, CA, 2019; pp 59-64. 

 

https://doi.org/10.26434/chemrxiv-2024-kxjgg ORCID: https://orcid.org/0000-0002-1927-9457 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-kxjgg
https://orcid.org/0000-0002-1927-9457
https://creativecommons.org/licenses/by-nc-nd/4.0/

