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Abstract 

Supramolecular transition metal catalysts with tailored reaction environments allow for the usage of 
abundant 3d metals as catalytic centres, leading to more sustainable chemical processes. However, such 
catalysts are large and flexible systems with intricate interactions, resulting in complex reaction 
coordinates. To capture their dynamic nature, we developed a broadly applicable, high-throughput 
workflow, leveraging quantum mechanics/molecular mechanics (QM/MM) molecular dynamics in 
explicit solvent, to investigate a Cu(I)-calix[8]arene catalysed C-N coupling reaction. The system 
complexity and high amount of data generated from sampling the reaction require automated analyses. 
To identify and quantify the reaction coordinate from noisy simulation trajectories, we applied 
interpretable machine learning techniques (Lasso, Random Forest, Logistic Regression) in a consensus 
model, alongside dimensionality reduction methods (PCA, LDA, tICA). Leveraging a Granger Causality 
model, we go beyond the traditional view of a reaction coordinate, by defining it as a sequence of 
molecular motions that led up to the reaction. 
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Introduction 

Catalysis plays a pivotal role in chemistry. By lowering reaction barriers, catalysts facilitate chemical 
transformation under mild conditions, contributing to sustainable and economic processes. Nature has 
perfected this principle in enzymes, through precise control of the environment surrounding the 
catalytic centre and substrate.1 In an effort to mimic the tight control over the environment, the field of 
supramolecular catalysis chemistry has emerged.2–6 For example, the use of a macrocycle allows the 
substitution of rare earth metals with more abundant counterparts, while maintaining high catalytic 
performance.7,8  

Complimentary to experimental advances, computational chemistry has played a key role in the design 
and understanding of catalytic systems, by elucidating reaction mechanisms.9–12 Despite considerable 
efforts, quantum chemistry is limited in its predictive abilities.13 As these systems grow in complexity, 
there is a need to improve not only on the underlying electronic structure theory used to study them, 
but also the chemical model that describes the catalytic system in its environment.14 Often, the errors 
introduced by a too simplistic chemical model exceed those arising from the use of an approximate 
theoretical methodology such as DFT.13,15 Consequently, the goal is to create a chemical model which is 
a “digital twin” of the reaction flask, where the in-silico procedure can fully replicate experimental 
conditions, meaning a catalyst in explicit solvent, at finite temperature and pressure. As a full ab-initio 
quantum chemical (QC) level is not feasible, a tailored multiscale strategy has to be developed, 
accounting for conformational flexibility, explicit solvation effects and the dynamic nature of chemical 
reactions. 

While the majority of computational mechanistic studies are performed with a single structure, with 
conformer search recently gaining popularity14,16,17 thanks to easily accessible tools,18,19 a transition to 
structure ensembles provides a more complete picture.14,17  

Another crucial aspect which needs to be considered is solvation. While widely used implicit solvation 
models provide remarkable performance,20–22 they cannot describe explicit interactions between solute 
and solvent. In combination with dispersion corrections and a small basis set, they often favour very 
compact structures with many intramolecular bonds7,19 – a poor representation of a solvated system. It 
is therefore crucial to include explicit solvation in any realistic model, ideally via a full condensed phase 
calculation or through microsolvation.23,24 

Describing catalyst ensembles in explicit solvent is a significant improvement of the chemical model, yet 
it is important to recognize that catalysts are, by nature, dynamic entities. By tracking the motion of the 
nuclei during a reaction, we may observe a different reaction pathway,25,26 The dynamic effects are well 
documented for organic molecules in implicit solvents,27 yet rarely investigated in transition metal 
catalysis.25,27,28  

While the inclusion of dynamics in mechanistic studies makes a model more realistic, it adds complexity 
and significantly increases computational cost. This limitation can be addressed by relying on multiscale 
methods such as quantum mechanics/molecular mechanics (QM/MM) which describe the catalytic 
centre and substrates at a QM level, while the surrounding environment is treated with MM.29–31 This 
hybrid methodology can be combined with MD to investigate the dynamic behaviour. A transition to 
QM/MM MD in explicit solvent allows for sampling timescales to the order of nanoseconds, magnitudes 
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higher than in a pure QM approach. Due to the rare nature of the reactions, repeated sampling is a 
requirement for statistically relevant information regarding energy barriers and structural information. 

While the setup of such multiscale methods is a challenge in itself, a vast amount of data is generated 
from the simulations. As it is not feasible to interpret them by observation only, an automatic way of 
processing reaction trajectories is needed. Machine learning approaches can be used to evaluate the 
data and extract condensed results which contain insight into the reaction coordinate.28 While neural 
network approaches32 have garnered a lot of attention recently, they are not very well suited for data 
analysis approaches where understanding of the process is required, due to their black box nature, 
which makes them very difficult to evaluate.33 Instead, interpretable machine learning techniques, such 
as decision trees, random forests or logistic regression, offer good performance in extracting relevant 
information from large datasets and presenting them in easily understandable ways. In addition, 
dimensionality reduction techniques—Principal Component Analysis34 (PCA) or time-lagged Independent 
Component Analysis35 (tICA) effectively detect combined coordinates from the trajectories, revealing the 
key motions of a system. Yet these dimensionality reduction techniques have almost exclusively been 
applied to biomolecules36–38 with few exceptions.39,40 A combination of aforementioned methods offers 
great promise to detect a cumulative reaction coordinate from a multitude of independent trajectories, 
providing chemical insight into the mechanism and reactivity of the system. To the best of our 
knowledge these combined methods have not been applied to study reaction mechanisms in explicit 
solvent, let alone large supramolecular transition metal catalysts. 

Another aspect that has until now been neglected in chemistry is causality. While the concept is 
widespread across various scientific domains41—ranging from economics42–46 and climate research47–51 
to biology52,53 and medical studies54–56—it remains surprisingly absent in the field of chemistry. Although 
a handful of precedents in biomolecular simulations exists,57–59 it has not been explored to study 
chemical reactions, not to mention transition-metal catalysis. As trajectories are essentially discrete 
time series, containing the various degrees of freedom of the system, causality can be statistically 
inferred from the analysis of these trajectories. Consequently, the reaction coordinate can be 
decomposed into a sequence of motions leading up to the reaction, exposing the intricate interplay of 
functional groups of the system, offering an unprecedented view of reactivity. 

 

Figure 1. The supramolecular system calix[8]arene-based [Cu(C8PhenMe6)I] catalyses the C-N coupling reaction of phenyl 
bromide and aniline. 
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A supramolecular catalyst that has shown remarkable catalytic efficacy for C-N coupling is the the Cu(I)-
1,5-(2,9-dimethyl-1,10-phenanthroyl)-2,3,4,6,7,8-hexamethyl-p-tert-butylcalix[8]arene system.7 The 
macrocyclic ligand allows for usage of earth abundant metals, such as Cu, an essential step towards 
more sustainable chemical processes.60–65 The investigated system necessitates explicit solvation for 
accurate results, as implicit solvation models lead to a collapse of the macrocyclic cage, which 
compromises catalytic activity.7 To account for the conformational flexibility of the supramolecular 
cage7,66 and the dynamic nature of the system as a whole, a dynamic ensemble-based approach is 
required to study the reaction. While the mechanism of this catalysts was established to be a sequence 
of oxidative addition / reductive elimination,7 the dynamic effects of the system, in particular the 
contribution of the cage, and the influence of explicit solvent molecules are completely unknown. 
Consequently, we developed a multiscale QM/MM MD approach to understand the bond formation 
dynamics of the C-N coupling step with the Cu-calix[8]arene catalyst in explicit chloroform. By relying on 
the GFN2-xTB67 method to describe the QM part, we could achieve massive sampling, resulting in 152 
individual reaction trajectories. To extract chemically relevant information from these data, we 
employed supervised and unsupervised interpretable machine learning dimensionality reduction 
models, in order to identify the cumulative reaction coordinate and to detect critical movements in the 
structure. A consensus approach combining individual machine learning techniques improved the 
performance, while random forest models and decision rules allowed us to quantify the reaction 
coordinate. Finally, we employed the statistical Granger Causality analysis model68,69 to decompose the 
reaction coordinate into a sequence of individual consecutive movements. This works serves as a widely 
applicable template for any mechanistic investigations, revealing and quantifying complex reaction 
coordinates, alongside causal effects derived from the individual movements leading up to the reaction. 

Results 
We obtained 152 QM/MM MD reaction trajectories for the C-N coupling step. Out of these, 142 reacted 
within 20 ps of simulation time. From these trajectories we evaluated the reaction energy and labelled 
the structural data accordingly as educt, transition state, or product – resulting in three ensembles. We 
then used this information to identify the reaction coordinate, quantify it and identify a sequence of 
movements leading to the reaction. 

Reaction Energetics Analysis 
We analysed 142 simulations where a reaction occurred to extract insights about the C-N coupling 
process. As the reaction happened spontaneously during the simulations, the energy profile can be 
obtained directly (SI Figure S2 A) and served as indicator to label the three distinct states, educt, 
transition state, and product. The reaction energy was obtained by averaging the ensembles of the 
educt and product states and amounted to -212 ± 25 kJ mol-1. A sigmoid fit through the smoothened 
energy profile of each simulation (see SI, Figure S2 B and C) allowed identification and the calculation of 
the energy barrier to be 13 ± 9 kJ mol-1. These GFN2-xTB reaction energies are in excellent agreement 
with full DFT data, obtained with PBE0/def2-SVP/D3 (see SI, Table S2). 
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Extracting Chemical Information from Structural Data 
To obtain information about the changes in chemical structure from the reaction trajectories with a 
total of over 1.5 million frames, we resorted to interpretable machine learning approaches.  

Determination of a suitable coordinate system 

A standard method to extract reaction coordinates from trajectories, either in biomolecular or reaction 
dynamics studies, is principal component analysis (PCA) in cartesian coordinate space. However, this 
approach proved unsuccessful for the Cu-calix[8]arene catalyst due to the difficult to properly align this 
highly flexible system not showing any separation between the three states (Figure S3).  

 

Figure 2. A. Schematic depiction of the calixarene, showing the centres of mass used for the calculation of the reduced set of 
internal coordinates. B. PCA analysis performed on the reduced internal coordinates. 

To achieve good separation between the three states, educt, TS, and product, we developed a reduced 
internal coordinate description of the system (see Figure 2A) to minimize the noise from highly 
correlated coordinates.82 Hence, we described rigid fragments, such as the individual calixarene units 
(cX), the phenanthroline bridge (Phena), the phenyl (Phe) and aniline (NPh) moieties by their respective 
centres of mass (Figure 2A). An overview over the distribution of the internal coordinates can be found 
in This internal coordinate set nicely separates educts and products in the PCA space (Figure 2B), but still 
shows overlap between educts and transition states. Analysing the loadings of the principal components 
(see SI Figure S5), we can see that the main contributions belong to the C-N, NPh-Phe, Cu-N distances, as 
well as to the Phena-Cu-Br angle, describing changes in the coordination at the Cu centre as the product 
is formed. 

A second less common method, to reveal the reaction coordinates in biomolecular studies, is the time-
lagged independent Component Analysis (tICA). While PCA focuses on the largest variance in the 
dataset, which generally corresponds to fast molecular motion, tICA can be used to separate and extract 
the internal coordinates which exhibit the strongest time-correlations for a chosen lag time, thus 
revealing slow movements in the system. 
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Figure 3. Time-Lagged Independent Component Analysis of the MD trajectories, using a lag time of 20 fs. A. Distribution of the 
structural ensembles over each of the four independent components. B. Projection of the ensembles in the space of independent 
components 1 and 2, with the ensemble colouring performed a posteriori. C. Normalized internal coordinate (feature) 
contribution to each independent component. 

The tICA performed on the reduced internal coordinates set, resulted in a good separation of the 
product and educt states, mainly across the first independent component (IC1), as shown in Figure 3A, 
yet the transition state ensemble cannot be fully separated from the educts. When taking into 
consideration further ICs (Figure 3A and 3B), we observe a broad distribution of the product ensemble, 
indicating significant conformational flexibility. The contributions to ICs can be traced down, by relating 
the contribution strength (Figure 3C) to the degree of freedom it corresponds to (Figure 3B insert). A 
positive contribution (coloured in red) means that the respective feature increases as the values of the 
IC increases, while a negative contribution (coloured in blue) means the feature increases as the IC 
values decrease. The absolute value of a contribution (colour intensity) represents the importance of the 
feature in defining the IC.  

IC1 reveals the changes at the reaction centre (see 1st column, Figure 3C), related the Cu adopting a 
planar configuration upon product formation. Of particular interest is the strong contributions of the 
distance of NPh to the c0, c2, c6 and c7 (2nd column bottom/3rd column top) and their similarity to the C-
N distance (4th column bottom). Additionally, a translation of the calixarene units can be inferred, when 
looking at the changes in the Phena-Cu-cX and Phena-Cu-oX angles (5th column). Their similar 
contribution values indicate a translation, rather than a rotation. This indicates that the distance 
between the phenyl part of the product and the calixarene units decrease as the reaction proceeds, 
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which is indicative of p-p stacking between the product and calixarene cage. IC2 acts to separate various 
conformers within the product ensemble. 

Improved Reaction Coordinate Detection Through Supervised Methods 

We intended to further improve the separation of the three states in the PCA by utilizing the labelling of 
the data, indicating each structure as educt, product or transition state. Using this information, we 
trained a model that maximized the separation between the three ensembles and simultaneously 
reduced the number of internal coordinates (features) to those that contribute the most to the 
separation. The latter is referred to as feature elimination. There are various ways of achieving this goal 
and we tested a selection of them in PCA and Linear Discriminant Analysis (LDA) dimensionality 
reduction approaches (see Figure 4). While PCAs depend on the technique used to eliminate the 
features (Figure 4A-C and SI Figure S4), LDA is independent on the feature selection and consistently 
yields excellent separation (Figure 4D-F and SI Figure S4). While LDA results in compact distinct 
ensembles, PCA also achieves separation within the ensembles depending on the feature elimination 
approach that was used.  

 

Figure 4. Dimensionality reduction performance with various feature reduction methods: A. PCA with Logistic Regression with 
mean-based cutoff; B. PCA with Random Forest with mean-based cutoff; C. PCA with LassoCV; D. LDA with Recursive feature 
elimination with cross validation using a logistic regression classifier; E. LDA with Recursive feature elimination with cross 
validation using a random forest classifier; F. LDA with LassoCV. 

Amongst the top contributors are the change in the Phena-Cu-Br angle, as well as the C-N distance. 
Secondary features such as the distance between the product and phenanthroline bridge also play an 
important role for the LR classifier. The RF identifies the distances between the Cu and several 
calixarene units as being important, as well as the distance between the aniline and phenanthroline. The 
separation with the LassoCV approach is superior to that obtained with the logistic regression, as the 
educt and transition state ensembles are better separated. However, the there is only one ensemble 
visible for the product state. The principal contributors are the Cu-N, Cu-Phe, Cu-C, Phe-O3 and Phe-O2 
distances. 
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It can be observed that the various feature selection methods show variability and differences in the 
selected internal coordinates and separation performance. 

Revealing Causality in the Reaction Coordinate – Information from Consensus Model 

In order to combat the variability associated with the various feature selection methods, we switched to 
a consensus model, which integrates the features highlighted by all supervised ML methods. The model 
identifies 49 features (internal coordinates) (Figure 5A) of high importance. We performed an additional 
PCA (Figure 5B) on the consensus features. Additional insight can be obtained by performing hierarchical 
clustering on the consensus features (see SI) and calculating the correlations between them, resulting in 
a clustermap (Figure 5C), which reorders the internal coordinates according to their correlation to each 
other. 

 

Figure 5. Analysis of internal coordinates deemed as high importance by the consensus model. A. Internal coordinates and their 
contribution; B. PCA of the consensus features; C. Clustermap of the internal coordinates Pearson correlations. 

Judging the importance of the consensus model features (Figure 5A), we see that the C-N bond distance 
is most important (in agreement with chemical intuition), alongside several distances and angles 
corresponding to the reaction centre. Notably, the c6-C distance is also deemed highly important, which 
indicates that the cage indeed plays a role in defining the reaction coordinate. This small set of internal 
coordinates yields almost perfect separation of the three states as well as distinguishing the product 
conformations (Figure 5B), thereby outperforming any of the individual feature selection methods. 

When looking at the clustermap plot (Figure 5C), we see two distinct regions of the complex with 
opposite correlation. Upon closer inspection of the individual features and their clustering, we can see 
the internal coordinates corresponding to the each calixarene unit group together. Coordinates that 
show positive correlation with the C-N bond (depicted in blue) decrease in value as the reaction 
proceeds, while those showing a negative correlation (depicted in red) increase during the reaction. 
Hence, the distances between Phe and NPh (comprising the product) and calixarene units 6 and 7 
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decrease, indicating  p-p stacking interactions (depicted in blue), whereas C moves away from calixarene 
units 2-4 (coloured in red).  

While the correlation analysis shows which movements take place in a correlated fashion, it is also 
interesting to evaluate the causality of these movements and how they propagate through the system. 
As tICA, a time-lag based method, revealed new information regarding the cage movement and product 
interaction, we decided to apply the Granger causality model, also time-lag based, to evaluate the 
reaction trajectories. 

Using the coordinates resulting from the consensus model, we can construct a propagation cluster map 
of our system (Figure 6), which allows us to observe how the internal coordinates influence the C-N 
bond formation. This combines the hierarchical clustering of the consensus features with the results of 
the Granger causality model. Thus, we can infer the causality between coordinates and groups of 
coordinates.  

 

Figure 6. Propagation cluster map of the system, leading to the C-N bond formation. The numbers represent the total causality 
effects uncovered by the respective coordinate(s) and the red arrows indicate the direction of causality. 

It allows us to examine the effects leading to the change in the C-N distance, identified as the most 
important feature in the consensus model. Causality was evaluated between each of the 49 consensus 
features and then examined with regards to the C-N bond distance. Thus, Figure 6 can be read as a map 
of movements leading to the coupling reaction, by choosing a starting point and following the arrows 
towards the highlighted C-N feature. The numbers next to the arrows indicate the number of 
trajectories where the C-N bond formation can be attributed to the respective features. In 52 
trajectories out of 139, the coupling is triggered by a move in the orange cluster, consisting of the 
calixarene 2,3,4 and 7 to C distances as well as the proximity of Phe to the Cu. When we include 
information about the Phena-Cu-Br angle, alongside Cu and Br distances to NPh, from the purple cluster, 
as well as information from the red cluster, we can infer causality in 90 of the trajectories. The green 
cluster consists mostly of information related to the position of the calixarenes around the reaction 
centre. When we combine all information together, we can infer that the C-N coupling is caused by 
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movements in the calixarene cage, alongside the Cu coordination change in 121 trajectories. Naturally 
the causality analysis can be expanded to include the sources of changes in each feature, however this 
quickly becomes a very complex multidimensional problem. 

Quantification of Reaction Coordinates 

While the previous approaches identified the relevant internal degrees of freedom which determine the 
reaction coordinate, as a next step, we sought to quantify it, that is, to define ranges which separate the 
data into the three ensembles. A method to achieve this, is the decision tree, which splits ensembles by 
setting cut-offs based on the coordinates that show the largest distribution differences between classes. 

 

Figure 7. Decision Tree classifier used to interpret the differences between the 3 structure groups. A. Model of the calixarene 
with the reduced centres of mass. B. Decision tree trained on the balanced classes. 

The decision tree in Figure 7 has been trained on the whole dataset, with balanced weighting given to 
the groups via oversampling, in order to remove biasing against the transition state ensemble, which 
contains significantly fewer structures. The results of an unbalanced tree can be found in Figure S7. 
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Analysing the tree, we can see that the Cu-C distance plays a key role in the splitting of the educts and 
products, with the majority of transition states being grouped with the educt class. The remaining 
transition state contamination of the product ensemble can be separated by taking the angle 
determined by the Phenanthroline bridge, Cu and Br atoms into account (Phena-Cu-Br), where values 
below 112.8° are indicative of a transition state.  

To differentiate between the transition states combined with educts, the C-N bond represents an 
effective metric, where values higher than 2.33 Å indicate an educt, while distances below 2.24 Å 
indicate a transition state. The educt states that do exhibit a C-N bond distance similar to that of the TS 
can be identified by a smaller phenyl to calixarene unit 4 oxygen atom distance (Phe-O4). When 
transition states exhibit a C-N bond distance over 2.33 Å, we can perform a selection based on the 
calixarene c0 and calixarene O5 distance (which should be greater than 11.79 Å) and the angle defined 
by the Phenanthroline bridge, Cu and c0, where values below 110.5 indicate a TS. 

The reliability of a single decision tree-based approach can often be improved by utilizing a random 
forest classifier and averaging the results. In general, this improves accuracy, but reduces the 
interpretability. To overcome this limitation decision rules can be used, providing a semantic 
understanding of the RF classifier. We used 30 decision trees, each trained on a subset of the data, to 
yield the random forest. When applied to our dataset, this method provides rules for each of the three 
classes, as seen in Figure 8, below. A complete diagram of the decision rules can be found in the SI, 
Figure S8. 

 

Figure 8. Graphical depiction of the decision rules derived from the random forest approach, Product A, B, C refers to different 
conformer ensembles within the product category. 

Notably, the decision rules approach identifies three distinct rulesets for defining a product. This 
correlates with the findings from the PCA consensus analysis and indicates the existence of various 
conformers in the product ensemble. 

Discussion 

Taking advantage of semi-empirical quantum chemistry methods allowed us to obtain a large sample set 
of the reductive elimination step of the C-N coupling reaction with a Cu-calix[8]arene catalyst, using a 
hybrid QM/MM molecular dynamics approach. Since the amount of generated data, alongside the very 
high dimensionality, makes the reaction difficult to interpret by visual analysis, statistical methods and 
machine learning techniques were used to extract chemically relevant information from the dataset.  

All structures C-N > 2.17Å Educt

Product A
Cu-N >1.83 Å
C-N ≤ 1.68 Å

Phe-NPh ≤ 5.17 Å

Product B
Cu-C >2.17 Å
C-N ≤ 1.84 Å

Phe-N ≤ 3.05 Å

Product C
Cu-C >2.08 Å
Cu-N >1.84 Å

Phe-N ≤ 3.01 Å

Transi4on State
Cu-C ≤ 2.12 Å
C-N ≤ 2.167 Å

Cu-Phena > 2.95 Å

Ruleset
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To investigate the C-N coupling step we generated 152 reaction trajectories, amounting to more than 3 
ns of total sampling time. We observed a convergence of the PCA analysis with increased sampling (see 
SI, Figure S9), we assumed the total simulation time to be sufficient. As we observed spontaneous C-N 
coupling in 142 of the 152 trajectories, we could directly analyse these unbiased simulations. 

By analysing the reaction energy profiles, we were able to quantify the reaction energy, as well as the 
reaction barrier, including uncertainty values. While the reaction barrier computed with a static 
modelling approach is within 10 kJ mol-1 (13 ± 9 kJ mol-1 vs 23 kJ mol-1), the reaction energy exhibits 
some differences, -212 ± 25 kJ mol-1 vs -255 kJ mol-1.7 The remaining differences in the reaction energy 
can be attributed to the different chemical models that were used: in the static model, the investigated 
structure was obtained at 0 K, representing the bottom of the potential energy surface, while the 
dynamic study not only averages over all conformations but also considers thermal energy, hence, the 
structures are not 0 K structures and hence no minima on the potential energy surface. Alongside 
energetics, the reaction profile allowed for the categorization of the structures into three ensembles, 
namely educt, transition state and product. This was a key step in improving the reaction coordinate 
detection, as it allowed for the use of supervised learning methods to reduce the coordinate space. 

To yield any separation between the three states in the PCA, we had to transform cartesian coordinates 
to a reduced set of internal coordinates, to minimize the number of highly correlated coordinates in the 
data set, thus reducing noise. While product states could be separated from educts and transition 
states, the latter two still showed overlap. In contrast, standard PCA on the cartesian coordinates 
resulted in no separation of the three states. We suspect the poor performance stems from failure to 
fully eliminate rotational and translational degrees of freedom from the system. Complementary to PCA 
tICA was used to identify slow movements of the system. While the analysis revealed some structural 
insights into the product conformer ensemble – revealing π-π stacking interactions between the 
coupling product, phenanthroline, and calixarene – it was not able to separate educts from transition 
states. Hence, tICA could not fully identify the reaction coordinate. 

Utilizing the labelled data in PCA and LDA combined with supervised ML approaches resulted in a much 
better separation of the three ensembles. While the performance of PCA was highly dependent on the 
internal coordinate set, LDA showed remarkable separation between the three ensembles, highlighting 
the robustness of the method. A consensus model developed to combine the performance of the 
various dimensionality and feature reduction methods, identified 49 internal coordinates to be relevant, 
with the C-N distance being the most prominent one, which is in agreement with chemical intuition. 

By applying the Granger causality model, pioneered in econometrics and widely applied in other 
scientific fields, 41–56 we were able to decompose the reaction coordinate into a sequence of molecular 
motions. The four main components of the reaction coordinate, separated in time and happening as a 
domino effect, are depicted schematically in Figure 9: i) the calixarene cage tilts perpendicularly to the 
phenanthroline; ii) the Cu changes coordination to become planar; iii) the C-N bond distance shortens; 
iv) π-π stacking effects drive the movement of the product inside the cage and below the 
phenanthroline. It appears that in the majority of the sampled data, the C-N coupling distance is largely 
influenced by a movement in the upper cage of the calixarene, namely units 2,3 and 4, which can be 
seen as the trigger for the reaction. This works presents a causal analysis, based on the robust Granger 
model for the C-N bond formation as a proof of principle. However, the model relies on the assumptions 
of stationary time-series and provides limited insight into the scale of the relationship between cause 
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and effect. A transition to more advanced causal discovery models, such as PC Momentary Conditional 
Independence (PCMCI)112 based methods would allow for analysis of non-stationary time series and 
better false positive control but is beyond the scope of this work. 

 

 

Figure 9. Schematic representation of the movements corresponding to the reaction coordinate of the C-N coupling reaction. i) 
Tilting movement of the calixarene cage; ii) Change in coordination of the copper centre; iii) Shortening of the C-N bond; iv) π-π 
stacking effects stabilise the product in the cavity. 

To quantify the changes in internal coordinates, we employed a decision tree trained on the three 
ensembles, which highlighted the Cu-C and C-N distances as being the main feature for separating 
products from educts and transition states, respectively. However, decision trees are dependent on the 
initialisation condition and must be limited in their size to maintain interpretability. A transition to the 
decision rule approach overcomes some of the limitations by assigning a semantic interpretation to a 
random forest classifier, thus, clearly separating the three ensembles. In addition, three distinct product 
conformers are identified, each with a different set of rules defining them. These conformations will 
likely converge as the product diffuses out of the cavity. 

To the best of our knowledge there is only a single study of the reaction dynamics of a transition-metal 
complex with explicit solvent with repeated sampling of the reaction step.28 This study on Fe-oxo-
mediated C–H functionalization reactions by Joy et. al used kinetic energies, quantum numbers and 
velocities to distinguish between two different dynamic reaction pathways.28 While they also used ML 
for feature selection, their focus is on physical chemical factors that impact reactivity. Our focus lies on 
the analysis of structural changes to ease interpretation and to facilitate causality analysis, which has 
never been attempted for chemical reactions but opens a completely new angle on how to understand 
reactivity. 

Conclusion 

We developed a workflow to identify and quantify the reaction coordinate from a set of trajectories, 
detecting chemically intuitive and less intuitive contributions. 

By devising a high throughput QM/MM MD workflow, we were able to study the C-N coupling reaction 
dynamics of a supramolecular Cu-calix[8]arene catalyst under experimental conditions. This 
development is a crucial step towards a predictive operando model for complex catalytic reactions. It 
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allowed us to extract not only reaction energies and barriers with uncertainties but also provide insights 
into the intricate dynamic nature of the macrocyclic transition metal catalyst in explicit solvent. 

To process the vast amount of data, interpretable machine learning techniques proved to be invaluable, 
thanks to the ability to map results back to structural changes. However, a consensus model is needed 
to eliminate the inherent variability/instability of the individual ML approaches. 

By performing a causal analysis of the internal coordinates of a system that contribute to the 
categorisation of the ensembles, an extra temporal dimension can be added to the reaction coordinate, 
allowing us to explain the chemical reaction as a sequence of movements leading up to C-N bond 
formation. One can then utilize this information to pinpoint the exact source (group of atoms) that 
triggers the reaction and by suitable chemical mutation tweak the system in such way that the reactivity 
is enhanced. By checking the outcome of decision trees and rules run on this modified system, one can 
gauge the impact of a specific change on the reaction coordinate. Through the implementation of the 
methodology in a straight forward workflow and the restriction to analysis of structural parameters, this 
technique is accessible to the non-expert user, while the obtained results, that is changes in coordinates 
during the reaction, can easily be understood by a general chemist. 

Our methodology was demonstrated on a highly flexible Cu-calix[8]arene catalyst, but serves as a 
blueprint to identify and quantify the reaction coordinate in any dynamic chemical system, from small 
(in)organic complexes to large (bio-)molecules. 

 

Methods 
Workflow for Determination of Complex Reaction Coordinates  

The multistep protocol developed to investigate the C-N coupling dynamics with a Cu-calix[8]arene 
catalyst is highlighted in Figure 10. It involves high throughput explicit solvent MD sampling of the 
reaction step, followed by machine learning analysis, where consensus features are extracted. These are 
utilized for qualitative and quantitative analysis of the reaction coordinate. As a last step, the time 
evolution of the system is considered by applying a causality model that allows to redefine the reaction 
coordinate as a sequence of individual movements of groups of atoms. 

Simulation Protocol 

For the QM/MM MD simulation, we chose the in-house developed ab-initio quantum mechanical charge 
field (QMCF) molecular dynamics approach70 using the link-bond method to describe the bonds crossing 
between QM and MM.71,72 The simulation parameters were set up using the GAFF73 force-field74, using 
the PyConSolv19 1.0.0 tool, with default settings. For the geometry optimization, the PBE0 functional75 
was used with the def2-SVP basis set76 and D3 dispersion corrections77 in implicit chloroform, using 
CPCM.20 The system was solvated in a cubic periodic box with 1708 chloroform molecules. For detailed 
information regarding the simulation parameters, see the supporting information. The 54 atoms at the 
centre of the calixarene cage were included in the QM zone (see SI Figure S1). The quantum mechanical 
calculations were performed at two distinct levels. The semi-empirical method GFN2-xTB was utilized, 
providing a vast speedup of the QM calculation. As semi-empirical methods require benchmarking,78–80 a 
full DFT reference was used, with PBE0/def2-SVP/D3 using Turbomole.81  
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Figure 10. General workflow for extracting highly detailed information about the reaction coordinate from both a correlational 
and causal point of view. 

To generate an appropriate starting structure the system was equilibrated and a 100ns MM/MD 
simulation was carried out, using the multistep protocol implemented in PyConSolv.19 We conducted 
152 simulation runs using the QM/MM MD protocol of the reductive elimination step, employing GFN2-
xTB as QM method. Among these runs, 142 simulations captured the reductive elimination step and 
were utilized for energy and structural analysis. 

Ensemble Labelling and Reaction Energy 

From the MD simulation trajectories, cartesian coordinates and QM energies of the catalyst were 
extracted. The QM energy was used to label the individual frames as educt, transition state and product, 
while employing a filter function to minimize random fluctuations. The transition states were identified 
as the frames that define the last energy maximum before the large drop in energy associated with the 
formation of the product (See SI for details). The reaction barrier was defined as the difference between 
the transition state structure energy and the maximum value of a sigmoid function fitted through the 
reaction profile. The reaction energy, with uncertainty, was calculated based on the energy difference 
between the average energy of the product and educt ensembles, respectively. As DFT sampling on a 
similar scale as GFN2-xTB is not achievable, we cannot compare the reaction energies using the DFT 
educts and products. Thus, we used the fitted sigmoids to calculate the energy difference between the 
educts and product, by subtracting the highest sigmoid value from the lowest. 

Identification of the Reaction Coordinate 

We resorted to three coordinate systems to describe the reaction coordinate and significant secondary 
movements. Firstly, a cartesian coordinate system, obtained by combining all simulations and aligning 
them on the rigid phenanthroline bridge. This helps mitigate the impact of rotational and translational 
movements of the system during the simulations.82 Secondly, we generated a set of internal coordinates 
for all trajectories, using the MDanalysis package.83 This has the advantage of removing the issue of 
noise due to alignment artefacts, yet introduces more correlational effects.82 Thirdly, we generated a 
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reduced set of internal coordinates, describing highly rigid chemical moieties by their centre of mass 
(see SI for details) 

To determine the importance of each feature in distinguishing between the three ensembles (educt, TS, 
product), and therefore its contribution to the reaction coordinate, we performed dimensionality 
reduction on the coordinate sets, aiming to increase separation between ensembles. 

To this end, we utilized Principal Component Analysis (PCA)34 and Time-lagged Independent Component 
Analysis (tICA),35 which complement each other in regards to addressing the variances present in the 
dataset,84,85 as unsupervised methods. For supervised dimensionality reduction, we opt for Linear 
Discriminant Analysis (LDA)86 due to its efficacy in separating distinct classes within a given dataset. To 
further enhance the separation capability of PCA and LDA, several methods of automated feature 
selection were chosen and implemented, namely Recursive Feature Elimination with Cross Validation87 
(RFECV) using both Random Forest 88 (RF) and Logistic Regression89 as classifier models, and Lasso90 with 
Cross Validation (LassoCV), all using fivefold stratified cross-validation.91 The RF and Logistic Regression 
classifiers were also evaluated manually for performance, eliminating features under a certain threshold 
(see SI for details). Additionally, a simple Pearson correlation evaluation between the energy and each 
feature was performed, removing any coordinate which exhibited low correlation (higher than -0.75 and 
lower than 0.75). For the final feature selection, we employed a consensus model that extracted high-
contributing features. These features were identified by performing a PCA and LDA based on the 
Recursive Feature Elimination with Cross-Validation (RFECV), LassoCV, and manual assessments 
approaches. Subsequently, we computed the average contributions to the first three principal 
components, as well as the two LDA components. The selected features needed to appear in at least 
70% of the elimination models to be deemed significant. This process yielded a set of 49 internal 
coordinates for the PCA and 46 for the LDA. These coordinates were further subjected to causal 
inference (as detailed in the Statistical Methods section) and correlation interpretation. To enhance 
comprehensibility, we applied a hierarchical clustering algorithm to group together similar movements 
within the consensus features.92 

In tandem with automated feature reduction methodologies, we leveraged decision trees to highlight 
features from our dataset. These decision trees underwent training under two distinct conditions: one 
with class balancing and another without. Furthermore, we adopted a decision rule framework, 
employing the skoperules93 library. Within this framework, a random forest bagging classifier, consisting 
of 30 decision trees, was used to provide a semantically quantitative characterization of the three 
ensembles. 

Statistical Model for Causality Inference 

We aimed to infer the cause of the onset of the chemical reaction. To this end, we focused our 
investigation on the educt and TS ensembles of each trajectory. We eliminated trajectories with few 
educt structures (less than 100), thus having a total of 139 reaction sampling events. To infer Granger 
Causality68 (GC) we followed the protocol outlined by Toda and Yamamoto.69 This involved performing 
the augmented Dickey-Fuller94 and Kwiatkowski–Phillips–Schmidt–Shin95 tests to ascertain the 
stationarity of the various time series. Most of the time series were deemed stationary, with only a 
couple of the features presenting non-stationarity, which were rendered stationary through differencing 
(see SI for the critical and test statistics for each test and trajectory).96 A multivariate vector 
autoregression model97,98 was constructed and fitted with lag times varying from 0 to 50, for each time 
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series. The appropriate lag time was chosen for each trajectory, based on the Akaike information 
criterion97,99 (see SI for additional information). The correlated time series were checked for 
cointegration using the Johansen test.100 Finally, we calculated a GC matrix for each feature, for every 
simulation, resulting in a total of 139 matrices, using a VAM trained at the appropriate lag time. To 
account for the occurrence of false positives with repeated sampling of the reaction, we applied the 
false discovery rate (FDR) correction proposed by Benjamini and Hochberg,101 with a threshold alpha of 
0.1. The threshold for the GC test was set to p < 0.05. The full p-values for the causality matrices, non-
FDR corrected, can be found in the SI, along with the results of all statistical tests. 

Technical Note 

Our implementation leveraged the following Python packages for data processing, statistical analysis 
and machine learning: pandas 2.2.1,102 numpy 1.26.4,103 scikit-learn 1.4.1.post1,104 statsmodels 0.14.1,105 
scipy 1.12.0,106 mdanalysis 2.7.0,83,107 skoperules 1.0.1,93 and pyemma 2.5.12.108 For visualizations, we 
utilized dtreeviz 2.2.217,109 seaborn 0.13.2,110 and matplotlib 3.8.318.111 The code used for analysis is 
made available as a jupyter notebook on Github (https://github.com/PodewitzLab/MLReactCoord) and 
will be integrated in the analysis suite of a future version of PyConSolv 
(https://github.com/PodewitzLab/PyConSolv). 

 

Data availability 

The p-values for the statistical analysis are available on Github 
(https://github.com/PodewitzLab/MLReactCoord), alongside two example trajectories. Due to the size 
of the simulation data, it can be made available upon request from the corresponding authors. 

Code availability 

The python code used for analysis is made available on Github 
(https://github.com/PodewitzLab/MLReactCoord) and the respective functions will be implemented in a 
future version of PyConSolv (https://github.com/PodewitzLab/PyConSolv) to facilitate a broad 
applicability. 
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