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ABSTRACT: Chlorinated compounds are generally known to be non-readily biodegradable. The insight into the structural 
features that allow chlorinated compounds to readily biodegrade is crucial information that needs to be unveiled. Combined 
in silico modeling and machine learning approach to predict desirable compound properties has proven to be an effective 
tool, enabling chemists to save time and resources compared to web lab experimentation. Here we present two machine 
learning-based quantitative structure – biodegradability relationship (QSBR) models, one for predicting biodegradability val-
ues of chlorinated compounds, and the other one for classifying chlorinated compounds as biodegradable or non-biodegrada-
ble. The regression models were generated using the Support Vector Regression (SVR) machine learning method. The optimal 
regression model was a 10 descriptor SVR model with R2 = 0.925 and R2test = 0.881. The optimal classification model was a 
logistic regression classifier model with 5 descriptors. It has a Matthew’s Correlation Coefficient of 0.59 for training and 0.55 
for test, as well as accuracy of 0.79 for training set, 0.77 for test set. For validation purposes the models were tested on an 
external data set of chlorinated compounds. In addition, models were further applied to an external test set of monomeric 
units representing polymers to assess the capability of the model to estimate the biodegradability of polymers, where the 
models showed statistical robustness. The developed SVR model could be used for accurate prediction of biodegradability of 
various organic molecules, as well as materials based on organic compounds.  The analysis of the influence of descriptors on 
biodegradability is performed. The classification model showed that the biodegradability of chlorinated compounds is heavily 
correlated with descriptors that relate to electrotopological descriptors, position of oxygen relative to chlorine.  

Introduction 

Polymer plastic materials have profoundly shaped the 
course of the last century, revolutionizing industries and 
daily life alike. Their lightweight, versatile, and cost-effec-
tive nature paved the way for innovations in packaging, 
manufacturing, and medical devices, fostering economic 
growth and enhancing human well-being. Plastics assumed 
a significant role in the global economy with their increased 
usage. However, as the utilization of plastic escalated, ap-
prehensions regarding the environmental repercussions of 
post-use plastics arose. Rapid plastic accumulation has 
shown devastating effects in marine and land environ-
ments.1,2,3. The environmental impact of traditional petro-
chemical-based polymers has caused concern over the de-
pletion of nonrenewable resources and waste manage-
ment.4,5,6. In addition to concerns for the carbon footprint 
and bulk management of these materials, microplastic pol-
lution is a major challenge that could have lasting environ-
mental and human health impacts. 7,8,9,10 Polymer plastics 

can pose a severe threat to the environment, biodiversity, 
and human health due to possible buildup where natural 
functions are inhibited, especially as they degrade into mi-
croplastics.1,3 

Questions regarding approaches of plastic management led 
the scientific community to research techniques to better 
re-utilize or to safely degrade plastics.11 Such techniques in-
clude mechanical degradation, thermo-chemical degrada-
tion, photodegradation, and biodegradation.11,12 The com-
plexity of logistics and the expenses associated with me-
chanical, thermo-chemical, and photodegradation repro-
cessing have made biodegradation the preferred solution 
for addressing plastic waste challenges on a large 
scale.13,14,15 Biodegradability is the ability of a material to 
break down into simpler compounds by the action of micro-
organisms, and the term is generally used as a measure of 
the rate at which a material will break down. Ultimately, any 
organic compound is biodegradable, going through pro-
cesses of deterioration, fragmentation, assimilation, and 
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mineralization; however, this process may take hundreds of 
years for certain materials.16  

The investigation and data analysis of biodegradability of 
materials is delineated by the various engineering stand-
ards applied for determining biodegradability, which in-
clude ISO, CEN, and ASTM standards.17, 18,19,20,21,22,23,24. 
Moreover, these standards do not take into account the en-
vironmental impact of the material at end-of-life. While 
some overlap exists between standards, specific implemen-
tation of variables such as time frames and percentages de-
graded differ. Furthermore, no single standard can simulate 
the process of biodegradation within a natural environment 
fully. Despite these challenges, investigation into the engi-
neering of enzymes, bacteria, fungi, or algae capable of plas-
tic degradation has yielded promising outcomes for certain 
extensively-utilized plastic types in recent years. However, 
owing to the extensive diversity of plastics, the hereto de-
veloped microorganism solutions exhibit the capability to 
degrade only specific plastic varieties.15 

Clearly, given the engineering and environmental chal-
lenges polymer plastics, the development of new polymers 
must focus on the creation of safely biodegradable or com-
pletely compostable materials. Emerging materials, such as 
Polycaprolactone-collagen hydrolysate blends, have been 
engineered to be compostable by design.25 To increase the 
pace of materials development, it is essential to create a 
framework of principles for polymer biodegradation to aid 
in the research of plastic-degrading organisms and to de-
velop more biodegradable materials. Quantitative Struc-
ture-Property Relationships (QSPR) is a pivotal concept and 
a technique in materials design which encompasses compu-
tational models that correlate the structural characteristics 
of materials with their specific properties, enabling in-
formed predictions and tailoring of materials for desired 
functionalities.26 Furthermore, an extension of this concept, 
Quantitative Structure-Biodegradability Relationships 
(QSBR), applies the QSPR framework specifically to the pre-
diction of material biodegradation behaviors. These QSBR 
models establish connections between molecular struc-
tures and biodegradability, offering valuable insights for the 
design of environmentally sustainable materials with en-
hanced degradation properties.27,28 

Multiple QSBR models have been developed for biodegrada-
tion, providing insight into the impact of chemical structure 
on the complex biodegradation process.29,30,31 Certain mod-
els exhibit strong predictive capabilities for biodegradation 
yet lack conceptual clarity, whereas others demonstrate a 
partial accuracy in predicting biodegradability while em-
phasizing structure-property relationships. The central 
hurdle in biodegradability prediction centers around the in-
tricate task of formulating precise models for polymers. 
Constructing such models for discrete chemicals is feasible; 
however, the complexity arises when dealing with polymers 
due to the absence of uniform biodegradation testing and 
data reporting standards, the lack of standardized charac-
terization methods, and the extensive diversity and intri-
cacy inherent to polymers. It is important to note that pres-
ence of above-mentioned structures does not guarantee the 
biodegradability or non-biodegradability of compounds but 
is highly correlated and can be used as a tool for predicta-
bility with either class. 

Chlorinated polymers represent a distinctive class of mate-
rials characterized by the incorporation of chlorine into 
their polymer chains, introducing unique properties to the 
resulting polymers, such as improved flame resistance, 
thermal stability, chemical resistance, and electrical insula-
tion. As a subset of halogenated polymers, chlorinated pol-
ymers find applications in various industries, including con-
struction, electronics, automotive, and aerospace, where 
their exceptional fire-retardant properties are particularly 
advantageous. However, concerns have been raised about 
the environmental impact of chlorinated polymers due to 
the potential release of toxic halogenated compounds dur-
ing their production, use, and disposal. As presented by 
Vorberg et. al., the tendency of halogens in organic com-
pounds making them extremely non-biodegradable, espe-
cially the tendency of chlorinated compounds which are es-
timated to be 15 times more likely to be non-biodegradable 
than biodegradable seems to be of great interest.29 Addi-
tionally, most chloride substituents are acutely toxic, and 
could provide a long-term toxicity effect on the environ-
ment.32  

There is an ongoing effort to develop more sustainable al-
ternatives to traditional chlorinated polymers while retain-
ing their desirable attributes. Despite the overall trend of 
toxicity among the by-products of chlorinated compound 
biodegradation, exceptions exist, and these exceptions war-
rant a closer examination to discern underlying factors gov-
erning the biodegradation process. In this context, QSBR 
emerges as a valuable tool, offering the potential to deci-
pher the intricate relationships between molecular struc-
tures and biodegradability outcomes. This research endeav-
ors to construct focused models specifically tailored to chlo-
rinated polymer compounds. The objective is to establish a 
heightened level of precision in predicting the biodegrada-
bility of chlorinated materials. By concentrating on this nar-
rower range of chemical compounds, the study seeks to en-
hance the reliability and applicability of the QSBR model, 
thereby offering a targeted tool for advancing the under-
standing of chlorinated compound degradation and guiding 
the design of environmentally sustainable materials within 
this distinct chemical context. 

 

2. Materials and Methods  

The data for the experiment consisted of two data sets of 
chlorinated compounds, continuous (I) and binary (II).33,31  

Data Set I Collection and Modeling  

Biodegradability information for chlorinated compounds in 
the continuous data set (I) was obtained from Toropov et 
al.33 Where dataset unit is originally measured as oxygen 
consumption following Organization for Economic Co-Op-
eration and Development (OECD) 301C – MITI Biodegrada-
tion Test.34,35 The data set contained 74 compounds, with a 
continuous value for biodegradability, ranging from 0 to 1.  
For validation purposes, the data set was split into training 
and testing sets, where the training set was used to train 
models and the test set was used for model validation. 

To generate a set of descriptors, 2D molecular structures in 
MOL format were generated using ChemSketch.36 The 2D 
structures were used to obtain SMILES notation by applying 
OpenBabel software.37 To obtain a set of molecular 
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descriptors, the Online Chemical Modeling Environment 
(OCHEM.EU) was used.38 The molecules were standardized 
using the CDK standardizer. After standardization, mole-
cules were neutralized, salts were removed, and structures 
were cleaned. The OEState Bonds 2D Indices descriptors, 
ALogPS 2D descriptors, and all subcategories of alvaDesc 
v.2.0.14 3D descriptors excluding Drug-like indices were 
calculated. The compounds were optimized with OpenBabel 
using the Merck Molecular Force Field.39–41 In total 5856 de-
scriptors were calculated. Highly correlated descriptors 
(R>0.9), constant and near constant descriptors (std<0.1) 
were removed from the data set. Descriptors having less 
than 10 compounds containing non-zero entries were re-
moved due to inability for descriptor to effectively describe 
the response value. After eliminating highly correlated de-
scriptors, constant, near constant descriptors, and de-
scriptors with low presence, 925 descriptors were present 
in the data set. All data curation steps were performed using 
Python (version 3.10.9).42,43 

The data set was normalized by the standard scale normal-
ization using Scikit-learn package, which normalizes the 
data through their mean and standard of deviation using the 
Equation (1).44      

𝑥𝑖𝑗 =
𝑋𝑖𝑗 − 𝑋𝑗

√∑ (𝑋𝑖𝑗 − 𝑋𝑗)
2

𝑛
1

𝑛 − 1

 
(1) 

Where Xj is the mean values of the jth descriptor, n is the 
number of compounds, xij and Xij are the normalized and 
original values of the jth descriptor of the ith compound. 

The developed QSBR model was subjected to statistical 
analysis evaluating the squared correlation coefficient (𝑅2) 
external validation metrics (𝑄𝐹1

2 , 𝑄𝐹2
2 , 𝑄𝐹3

2 ), Mean Absolute 
Error (MAE), and Concordance Correlation Coefficient 
(CCC). The following equations were used to calculate the 
squared correlation coefficient 𝑅2 (Equation (2)), the Mean 
Absolute Error (Equation (3)), Concordance Correlation 
Coefficient CCC (Equation (4)) 
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Where 𝑦𝑖
𝑜𝑏𝑠 and 𝑦𝑖

𝑝𝑟𝑒𝑑
 are observed and predicted values for 

𝑖𝑡ℎ compound, respectively, n is the number of compounds, 

and 𝑦
𝑜𝑏𝑠

 and 𝑦
𝑝𝑟𝑒𝑑

 are the mean values for observed and 

predicted values, respectively. Then criteria chosen for as-
sessing QSBR model were chosen in accordance with OECD 
principal No.4 for developing QSBR models with “appropri-
ate measures of goodness of fit, robustness, and predic-
tivity).  

The best model was selected based on the best values for 
the above criteria for both training and testing sets to avoid 
overfitting. The 𝑅2 and 𝑅2 test of the best models from each 
number of variables were comparted to indicate possible 
over fitting at specific variable number. This allows for ease 
of understanding the statistically best number of variables 
for indicating performance of models in both training and 
test analysis. 

To prepare the data for construction and evaluation of QSBR 
models, the data was sorted based on the biodegradability 
values from smallest to largest and split into training and 
test sets in 4:1 ration, with every 5th compound going into 
the test set. The model was developed based on the training 
set through Genetic Algorithm (GA) for variable selection. 
The variable selection process started with a population of 
1000 random models and 10000 iterations for evolution, 
with the mutation probability being 50%.   

To further refine the descriptor selection of GA, an iterative 
descriptor selection process was implemented. Models, 
based on 𝑅2,  were compared after 10000 iterations were 
conducted to determine the best models. The descriptors of 
the best models were inputted into a new dataset that in-
cluded only high performing descriptors. This method was 
conducted 4 times, labeled as repetitions, to give a dataset 
containing 94 descriptors. Where after the 4th repetition, 
models’ statistical results were not improved. Therefore the 
94 descriptor dataset was used to perform final model de-
velopment. The process of descriptor elimination allowed 
the final data set to be a set of better-performing de-
scriptors. The overall model development process is shown 
in Figure 1. 

The SVR parameters for the estimator were set to ‘rbf’ for 
kernel, C equal to 10, and ‘auto’ for gamma, which are de-
fault Scikit-learn parameters, with the rest of parameters 
being set to a default state. More information regarding the 
chosen parameters can be found in Scikit-learn library doc-
umentation.44 

Due to the difficulty in interpretation of descriptors from 
the SVR continuous data model caused by its nonlinearity, a 
differing approach is needed to analyze descriptors. The de-
scriptors were analyzed using accumulated local effect 
(ALE) plots to determine their influence on the original da-
taset.45 Briefly, interpretation of ALE plots are conditional 
on a given value, the relative effect of changing the feature 
on the prediction is read from the ALE plot. Due to ALE plots 
being centered at 0, the interpretation is comparable be-
tween other ALE plots and each point is the difference to the 
mean prediction. Finally, the ALE plots show the interaction 
of the response value and the specific descriptor. This can 
help describe descriptor influence on the whole data set. 
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Support Vector Regression Analysis for Dataset I 

 

Figure 1. QSBR SVR Model Development Methodology 

 

Data Set II Collection and Modeling 

Biodegradability information for chlorinated compounds in 
the binary data set (II) was obtained from the work of 
Mansouri et al.31 The data set contained 236 chlorinated 
compounds, with values being either 0 or 1 and represent-
ing the non-biodegradable or readily biodegradable com-
pounds respectively. Similarly, to the continuous dataset, 
the oxygen consumption was measured following OECD-
301C protocol.35 In Mansouri et al.’s work, compounds with 
biochemical oxygen demand (BOD) at or above 60% are 
classified as readily biodegradable. Any compounds below 
60% are classified as non-readily biodegradable.46  For val-
idation purposes, the data set was split into training and 
testing sets, where the training set was used to train models 
and the test set was used for model validation. 

To generate a set of descriptors, 2D molecular structures in 
MOL format were generated using ChemSketch.36 The 2D 
structures were used to obtain SMILES notation by applying 
OpenBabel software.37 To obtain a set of molecular de-
scriptors, the OCHEM.eu was used.38 The molecules were 
standardized using the CDK standardizer. After standardi-
zation, molecules were neutralized, salts were removed, 
and structures were cleaned. The OEState Bonds 2D Indices 
descriptors, ALogPS 2D descriptors, and all subcategories of 
alvaDesc v.2.0.14 3D descriptors excluding Drug-like indi-
ces were calculated. The compounds were optimized with 
OpenBabel. In total 5856 descriptors were calculated. 
Highly correlated descriptors (R>0.9), constant and near 
constant descriptors (std<0.1) were removed from the data 
set. Descriptors with less than 10 compounds of them hav-
ing non-zero entries were removed as well. After eliminat-
ing highly correlated descriptors, constant and near con-
stant descriptors, and descriptors with low presence, 992 
descriptors were present in the data set. All data curation 
steps were performed using Python (version 3.10.9).42 The 
large difference in range among descriptors makes de-
scriptors with smaller range outweighed by descriptors 
with larger range. 43 

The data set was normalized by the standard scale normal-
ization using Scikit-learn package.44  which normalizes the 

data through their mean and standard of deviation using the 
(Equation (1)). 

The developed QSBR model was subjected to statistical 
analysis evaluating confusion matrix by means of calculat-
ing Precision, Recall, F-Score (F1), Accuracy, Specificity, and 
Mathhew’s Correlation Coefficient (MCC). The following 
equations were used to calculate Precision (Equation (5)), 
Recall (Equation (6)), F1 (Equation (7)), Accuracy (Equa-
tion (8)), Specificity (Equation (9)), and MCC (Equation 
(10)) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(
5
) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(
6
) 

𝐹1 = 2 ⋅
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙)
   

(
7
) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(
8
) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(
9
) 

𝑀𝐶𝐶

=
𝑇𝑃 ⋅ 𝑇𝑁 − 𝐹𝑃 ⋅ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ⋅ (𝑇𝑃 + 𝐹𝑁) ⋅ (𝑇𝑁 + 𝐹𝑃) ⋅ (𝑇𝑁 + 𝐹𝑁)
 
(10
) 

                                                                                                        

where TP, TN, FP, and FN stand for true positive, true nega-
tive, false positive, and false negative predictions, respec-
tively. The MCC was chosen as the main indicator of model 
robustness since in most instances it is a more reliable indi-
cator of model’s performance than accuracy and other cri-
teria. 47 

 

The best model was selected based on the best values for 
the above criteria for both training and testing sets to avoid 
overfitting, with MCC being the main selection factor. 
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Figure 2. QSBR Logistic Regression Classification Model Development Methodology 

 

To prepare the data for construction and evaluation of QSBR 
models, the data was oversampled to prevent model from 
being biased towards the majority class (non-biodegrada-
ble), sorted based on the biodegradability values from 
smallest to largest and split into training and test sets in 4:1 
ration, with every 5th compound going into the test set.  The 
oversampling was performed using the Scikit-learn python 
package.44 Utilizing ‘minority’ strategy for random state in a 
range from 0 to 99, with 10 types of classifiers performing 
5 feature Sequential Feature Selection (SFS) for each ran-
dom state of oversampling. The MCC was set as the scoring 
metrics for the selection. Ten classifiers were applied to the 
dataset to determine best classifier for dataset. Rationality 
of choosing best classifier was conducted based on a com-
bined highest average performing model, out of 100, with 
ease of descriptor explanation. The ten classifiers Logisic 
Regression, K-Neighbors, SVC, SVM, Naïve Bayes, Decision 
Tree, Random Forest, Ada Boost, Quadratic, and MLP. The 
optimal results were found with Logistic Regression classi-
fier with assuming 5 features for all classifiers. Data of this 
methodology is shown in supporting information. 

All parameters for oversampling, SFS, and classifiers were 
set to default which could be found in the Scikit-learn li-
brary documentation.44 The feature selection process for 
the optimal number of features at the set oversampling 
state utilized the SFS method with Logistic Regression being 
set as the classifier and MCC being set as the scoring metrics. 
All other parameters were set to default and could be found 
in the Scikit-learn library documentation. 44 The process de-
velopment method is shown in Figure 2. 

 

3. Results and Discussion  

Continuous Data – SVR Model 

After initial data processing the continuous data set con-
tained 925 descriptors. Those descriptors were used to de-
velop multiple QSBR models. The QSBR model with the best 
statistical characteristics was selected for further analysis. 
The selected model’s statistical performance is listed in Ta-
ble 1, (Model 3). In Table 1 the quality of models was as-
sessed based on the correlation coefficient for training set, 
leave-one-out coefficient, and external validation coeffi-
cient, as well as mean absolute error MAE. The values for 

robustness of the model for the training set were higher 
than for the test set, and the values of the errors for the 
training set were lower than for the test set, indicating con-
sistency. 

 

Table 1. Statistical Parameters of Selected Best SVR Model 

Parameters Model 3 

No. of Descriptors 10 

R2 

(Training) 

0.925 

R2 

(Test) 

0.881 

Q2F1 0.881 

Q2F2 0.881 

Q2F3 0.894 

MAE (Training) 0.060 

MAE (Test) 0.067 

CCC 0.948 

k  0.863 

k′ 1.070 

For visualization of performance, Figure 3 shows the corre-
lation plot if training and test sets. Where the experimental 
data and predicted values are compared.  

 

It can be seen in Table 1. that the performance of the model 
is quite accurate and robust of chlorine containing com-
pounds. R2training is above 0.90 showing high levels of pre-
dictability and R2test is 0.88 shows its predictive capabilities. 
The relatively low values of MAE (~0.06) show the model’s 
performance error is low.  

It is necessary to mention how this data was heavily influ-
enced by a large amount of data with a response value at or 
near 0. This emphasizes the performance of the model with 
having a skewed dataset.  

The predicted values and the experimental values, shown in 
Figure 3, for biodegradability are relatively close to the di-
agonal line, which confirms the high performance of the 
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model As mentioned previously the dataset contains many 
values near 0 where it skews the dataset which is known to 
poorly influence the model performance. The Figure shows 
a large amount of these near 0 values, to be predicted rela-
tively well.  

 

 

Figure 3. Experimental vs Predicted Biodegradability Val-
ues Obtained by the SVR Model 

The Williams plot of the model for continuous data is shown 
in Figure 4. The applicability domain ranges from Std. Re-
sidual of –3 to +3 along y axis and 0.0 to h(i/i) of the lever-
age data along the x-axis. 

 

 

Figure 4. William’s Plot – SVR model of Continuous Data 

 

Regarding Figure 4, the Williams Plot, all the points of the 
model fall within three standardized residuals, indicating 
proximity of predicted and experimental values. The lever-
ages of all molecules are within the threshold, except for one 
compound in the training set, indicating it being a structural 
outlier but still able to be predicted. With this information it 
is shown that most of our dataset falls within the applicabil-
ity domain. 

With model development we can assume some level of in-
fluential information being derived from the selected de-
scriptors. Due to the nature of SVR model development we 
can assume a non-linear correlation between descriptors 
and biodegradability. With this in mind, the descriptors 
chosen by GA are shown in Table 2, and then analysis of 
normalized descriptors’ values by ALE plots are shown in 
Figures 5 and 6. The process we employ to understand the 
descriptors and their influence is a knowledge-based analy-
sis. 

Due to the complexity of the descriptors and their influ-
ences, we take a two-step approach to help discuss their in-
fluence. The first step is by grouping them in similar struc-
tural informational groups based on their structural influ-
ence. The second step is by analyzing them individually by 
discussing the trends found in the ALE plots.  

Groupings are meant to simplify the analysis process by 
conceptualizing their general information. In the first group 
we categorize it according to its overall mass and shape of 
the compounds. The second grouping of descriptors is more 
focused on atomic volume, distance, and presence of func-
tional groups within the structures. The third group empha-
sizes the electrotopological information of the structures 
where electron availability combined with general topology 
has influence on biodegradation. 

Based on the training set ALE plots above, it is shown that 
all descriptors in the model have a complicated relationship 
with the response value of biodegradability. Training set 
ALE plots are analyzed since that was the dataset that 
trained the model. It was necessary to compare training vs 
test set ALE plots to highlight their similarity emphasizing 
the test set representing, with some differences, the training 
set with little significant outliers.  

The interpretation of ALE plots could be described as fol-
lows, the x-axis signifies the descriptor value, and the slope 
of the tangent line at that x-value signifies the impact on bi-
odegradability.45 All x-values listed on the graph are nor-
malized using standard scaler. 
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Table 2. SVR Continuous Data Model Descriptors, Their Definitions and Generalized Groupings 

Descriptor Definition Descriptor Type 

Mass and shape information 

P2m 2nd component shape directional 
WHIM index / weighted by mass 

WHIM descriptors 

 

GATS4m Geary autocorrelation of lag 4 
weighted by mass 

2D autocorrelations 

 

Atomic volume, distance, and presence of functional groups 

VE1_G/D coefficient sum of the last eigenvec-
tor (absolute values) from dis-
tance/distance matrix 

3D matrix-based descriptors 

 

RDF030v Radial Distribution Function – 030 / 
weighted by van der Waals volume 

RDF descriptors 

 

F05[C-Cl] Frequency of C – Cl at topological 
distance 5 

2D Atom Pairs 

 

Eta_F_A eta average functionality index ETA indices 

 

Electrotopological information  

GATS4p Geary autocorrelation of lag 4 
weighted by polarizability 

2D autocorrelations 

 

Eig05_AEA(dm) eigenvalue n. 5 from augmented 
edge adjacency mat. weighted by di-
pole moment 

Edge adjacency indices 

 

VE1sign_Dz(p) coefficient sum of the last eigenvec-
tor from Barysz matrix weighted by 
polarizability 

2D matrix-based descriptors 

 

SpMaxA_EA(dm) 

 

normalized leading eigenvalue from 
edge adjacency mat. weighted by di-
pole moment 

Edge adjacency indices 
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Figure 5.  ALE Plots for SVR Model of Continuous Data, Training Set 

 

Descriptors referring to mass and shape information 

As seen in Figure 5a negative values of P2m negatively im-
pact biodegradation and positive values of P2m barely im-
pact biodegradation, signifying that high shape uniformness 
of a molecule with respect to mass doesn’t impact biodegra-
dability significantly, and that high heterogeneousness of 
molecule’s shape with respect to mass impacts biodegrada-
bility negatively. 

Shown in Figure 5c, the slope of GATS4m is positive for val-
ues lower than 1, signifying that high shape uniformness of 
a molecule with respect to mass affects biodegradability 
positively. There is only one data point in the ALE plot for 
GATS4m with value greater than 1, therefore it could not be 
concluded based of this descriptor whether heterogeneous-
ness of shape with respect to mass would affect the biodeg-
radability positively or negatively. 

Descriptors referring to atomic volume, distance, and 
presence of functional groups 

The slope of F05[C-Cl], shown in Figure 5b, is mostly posi-
tive, signifying that the more C-Cl bonds at topological dis-
tance of 5 the molecule has, the higher is the rate of biodeg-
radability. This information is generally against what other 
works have suggested where Cl containing molecules have 

generally lower levels of biodegradability. This is a conten-
tious finding but since our work focuses solely on this bond 
arrangement of Cl containing compounds, there can be fur-
ther investigation into this influence. 

The general trend of Eta_F_A, shown in Figure 5d, from –4 
to ~ 2, indicates that for larger molecules the rate of biodeg-
radability goes down.  

The slope of VE1_G/D, shown in Figure 5f, is positive or 
somewhat positive for all values of the descriptors, being 
most positive between the values of –1 and 0, and most neu-
tral between the values of 0 and 1. This signifies that 
VE1_G/D aids biodegradability the most for values between 
–1 and 0, and aids biodegradability the least between the 
values of 0 and 1. It also shows that there is a relationship 
between topological distances within the molecule. 

The slope of RDF030v, shown in Figure 5j, is negative for 
values less than 1 and positive for values larger than one. 
Though there are 2 values larger than one, this trend is sig-
nifying that van der Waals volume is positively correlated 
with the rate of biodegradation, and low van der Waals vol-
ume affects biodegradability negatively.  
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Figure 6. ALE Plots for SVR Model of Continuous Data, Test Set 

 

This is an interesting finding where all compounds within 
our dataset contain H,C,Cl, and sometimes N or O. The high-
est two volume atoms being C and Cl, it is believed that com-
paring this descriptor and F05[C-Cl] suggest a synergistic 
effect between the two. At the very least we believe they are 
pointing to some unforeseen insight into the connection be-
tween C and Cl arrangement along molecules which posi-
tively influence the biodegradability 

Figure 5e, shows the slope of GATS4p as negative for all val-
ues. Signifying that high uniformness of a molecule with re-
spect to polarizability negatively affects biodegradability. 
There is only one data point in the ALE plot for GATS4p with 
value greater than 1, therefore it could not be concluded 
based of this descriptor whether heterogeneousness of po-
larizability would affect the biodegradability positively or 
negatively. 

Autocorrelation descriptors compare neighboring sections 
of molecules to one another, that in combination of the uni-
formness found with polarizability. We believe that a repet-
itive molecule, such as a uniform carbon chain may be neg-
atively influential to biodegradability. Though simplifying 
the material, an example with long aliphatic chains are 

polymer materials. Where carbon backbone polymers are 
developed and are to have generally low levels of biodegra-
dability.  

Descriptors referring to electrotopological information 

The slope of Eig05_AEA(dm), shown in Figure 5g, is nega-
tive for values less than 0 and neutral for values greater 
than 0, signifying that Eig05_AEA(dm) is negatively corre-
lated with biodegradability for values less than 0, and does 
not seem to impact biodegradability for values greater than 
0. It also shows that there is a complex relationship between 
the overall dipole moment of a molecule and biodegradabil-
ity. More insight is needed to fully describe this descriptor's 
influence. 

Both descriptors including dipole moment have an overall 
negative trend, if looking at minimal descriptor value to 
maximum descriptor value along the ALE plot of 
Eig05_AEA(dm) and SpMaxA_EA(dm) . The dipole moment 
is known to be the separation of charges throughout a polar 
molecule. The general negative trend in both Eig05_AEA 
suggests low levels of dipole moment being a positive trend 
in biodegradability. Though initial thoughts are increased 
level of dipole moment would allow for more interactions 
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to occur between microbial enzymes and molecules, this 
negative trend may suggest possible toxicity influence of the 
compounds during biodegradation process. Where reactive 
compounds can decay the microorganism's degradation ca-
pabilities. 

The ALE plot of Figure 5h, shows that the slope of 
VE1sign_Dz(p) is positive for values less than 0.5 and nega-
tive for values greater than 0.5. Signifying that 
VE1sign_Dz(p) is negatively correlated with biodegradabil-
ity for values less than 0.5, and positively correlated with 
biodegradability for values greater than 0.5. It also shows 
that there is a relationship between the overall polarizabil-
ity of a molecule and biodegradability. 

Generally polarizability increases as the volume occupied 
by electrons increases.48 This is generally thought of as 
larger atoms have more loosely held electrons in compari-
son to smaller atoms.49  The electrotopological information 
this provides is assumed to combine atomic size, similar to  
Rdf030V descriptor where volume is an influential manner. 
The available electrons for dipole moment to occur shows 
synergy with the Eig05_AEA(dm), SpMaxA_EA(dm), and 
GATS4p descriptors. 

The slope of SpMaxA_EA(dm), as shown in Figure 5i, is pos-
itive for values less than roughly 1.5 and negative for values 
greater than that point, which signifies that if value is less 
than 1.5, SpMaxA_EA(dm) influences biodegradability posi-
tively, and if value is greater than that of 1.5 it impacts bio-
degradability negatively. It also shows there is a relation-
ship between biodegradation and alcohols (which was con-
firmed by past studies to be positive) and biodegradation 
and dipole moment (which is a trend that could be studied 
further).  

The incorporation of dipole moment in this descriptor 
aligns with what was previously mentioned in with the 
Eig05_AEA(dm) descriptor. Additionally, the inclusion of 

edge adjacency information in both descriptors gives in-
sight into the bond-atom ratio within a molecule towards 
biodegradability. Though more investigation is needed to 
understand the bond-atom ratio influence, it highlights in-
fluential connections between structure and biodegradabil-
ity. 

A quick summary of the SVR model of the continuous data 
is as follows. High frequency of carbon and chlorine atoms 
at topological distance 5, high uniformness of molecule with 
respect to mass, and high van der Waals volume are posi-
tively correlated with biodegradability. High heterogene-
ousness of molecule’s shape with respect to mass, large size 
of a molecule, and high uniformness of a molecule with re-
spect to polarizability are negatively correlated with bio-
degradability. All electrotopological group descriptors have 
an overall negative relationship to the biodegradability of 
molecules. Topological distances between various atoms, 
overall dipole moment of a molecule, overall polarizability 
of a molecule, and the relationship between alcohols in a 
molecule and its dipole moment need to be investigated fur-
ther to determine their relationship to biodegradability. 

 

Binary Data 

After initial data processing the classification data set con-
tained 992 descriptors. SFS was used to determine the best 
performing descriptors. The chosen descriptors were used 
to develop a logistic regression classification QSBR model. 
The models were monitored to avoid over-fitting and the 
highest statistical performing model was chosen for further 
analysis. To monitor model performance, relative to de-
scriptor number and avoid overfitting, the performance of 
models relative to number of descriptors is shown in Figure 
7 for both training and test set.  

 

 

Figure 7. Performance of Models with Respect to Number of Features in Model. Training Set, a, and Test Set, b. 

 

 

𝑙𝑛 (
𝑃𝑥

1 − 𝑃𝑥

) = −0.2691 − 0.7823(𝑀𝐴𝑇𝑆1𝑠) − 0.7173(𝑆𝑀06−𝐴𝐸𝐴(𝑑𝑚)) 

−0.4507(𝐻2𝑠) − 0.1798(𝐵03[𝑂 − 𝐶𝑙]) + 0.3228(𝑆𝑒1𝐶1𝐶2𝑠) 

(11) 

where Px is the probability of a compound to be biodegradable and descriptors are presented in Table 3. 
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Table 3. Logistic Regression Classification Model Descriptors, Definitions, Types, and Model Coefficients 

Descriptor Definition Descriptor Type Coefficient 

Electrotopological Information 

MATS1s Moran autocorrelation of 
lag 1 weighted by I-state 

2D autocorrelations –0.7823 

SM06_AEA(dm) spectral moment of order 
6 from augmented edge 
adjacency matrix 
weighted by dipole mo-
ment 

Edge Adjacency indices 

 

-0.7174 

H2s H autocorrelation of lag 2 
/ weighted by I-state 

GETAWAY descriptors -0.4507, 

Se1C1C2s E State E-state indices 0.3228 

Presence of Functional Group Information 

B03[O-Cl] Presence/absence of O – 
Cl at topological distance 3 

2D atom pairs -0.1798 

 

 

Once the best performing number of descriptors was deter-
mined, the quality of models was assessed based on MCC. 
Additionally, we take into consideration accuracy, preci-
sion, recall, f1, and specificity. The overall performance of 
the model shows moderate to high level of predictability 
while also allowing for interpretability of descriptors. As lo-
gistic regression is readily interpretable.43 The developed 
logistic regression model is shown in Equation 11. 

Model performance is shown in Figure 8 where the MCC 
shows the values of true positive, true negative, false 

positive, and false negative. Generally, the ratio of correctly 
predicted true values relative to incorrectly predicted false 
values, give insight into the performance of our model. The 
statistical performance of the model is shown in Table 4 
where the model performs well. High levels of performance 
for precision, accuracy, and specificity suggest great pre-
dictability and classification. 

 

 

Figure 8. The Correlation Matrix of a, the Training Set, b, Test Set.  of the Classification – Logistic Regression Model for Binary 
Data. 

 

Table 4. - Statistical Performance of the Classification – Logistic Regression 5 Variable Model for Binary Data 

Parameter Training Set Test Set 

Precision 0.78  0.74  

Recall 0.83 0.83  

F1 0.80  0.78    
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Accuracy 0.79 0.77  

Specificity 0.76 0.71   

MCC 0.59 0.55  

 

 

 

Figure 9. The Area Under the Curve of a, Training and b, Test Sets for Logistic Regression Model. 

 

 

To view the robustness of the model, area under the curve 
(AUC) plots were generated and shown in Figure 9. The 
area under the blue curve shows the ability of the model to 
predict compounds within the applicability domain. If the 
blue line is aligned with the orange line this indicates ran-
dom classification (0.5), where the orange line is superim-
posed onto the figure for comparison purposes.  

 

Classification Model 

Discussing Figure 7, the plot was made to monitor possible 
over fitting and determine best number of descriptors 
based on statistical performance. It can be seen that the 
model’s performance, relative to number of descriptors, 
stagnates or reduces after the 5-descriptor mark. The best 
performing model with fewest number of descriptors was 
chosen. 

Before analyzing the descriptors, we can discuss the statis-
tical performance of the logistic regression model. Figure 8 
shows how the model disproportionally predicts false posi-
tives relative to the amount of positives (readily biode-
gradable) within the dataset. This indicates that the model’s 
capability is tailored more towards predicting non-biode-
gradable compounds. This can occur due to influence of the 
low amount readily biodegradable compounds vs non read-
ily biodegradable distribution of the dataset. The dataset is 
heavily weighted by non-readily biodegradable com-
pounds. Though this occurs, influential information can still 
be found regarding both readily biodegradable and non-
readily biodegradable compounds. 

The ability of the model to distinguish between the two clas-
ses of readily biodegradable and non-readily biodegradable 
is represented as AUC plot in Figure 9.  The closer the value 
to one, the better discriminatory power of the binary classi-
fication model. An AUC value of 0.79 indicates that the 

model has reasonably good ability to distinguish between 
the biodegradable and non-biodegradable compounds. This 
highlights the ability of our model to distinguish between 
the two categories even with the dataset heavily favored to-
wards non-readily biodegradable. 

The descriptors and their influential information selected 
by SFS is described using knowledge-based analysis. We 
grouped the descriptors into 2 categories based on their 
definition and influence of defined chemical properties. The 
categories being electrotopological and presence of func-
tional groups. 

Descriptors referring to electrotopological information 

MATS1s, the Moran autocorrelation of lag 1 weighted by I-
state, describes Moran coefficient of a molecular graph with 
respect to its intrinsic states at topological distance of 
1.50,51,52 The low value of the descriptor indicates random 
dispersion of free valence electrons, while a high value indi-
cates valence electrons being clustered in one area of a com-
pound. 

H2s, the H autocorrelation of lag 2 / weighted by I-state, de-
scribes the average leverage of each atom in relation to 
other atoms at a topological distance 2, with respect to in-
trinsic state, where higher leverage indicates smaller or lin-
ear molecules and lower leverage indicates larger or spher-
ical molecules. The value also increases from linear to more 
branched molecules.53 

Se1C1C2s, the E-state index, describes a sum of intrinsic 
states based on the ratio of Kier-Hall electronegativity to the 
number of skeletal single bonds of molecule’s Carbon 1 and 
Carbon 2 atoms with available sigma bonds. The intrinsic 
state value is larger for electronegative atoms or atoms with 
few skeletal connections and is smaller for atoms with sev-
eral available sigma bonds.54 
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Descriptors of MATS1s, H2s, and Se1C1C2s all relate to the 
intrinsic state of the molecules and include some level of 
topological information. Intrinsic state signifies the amount 
of weak bonded electrons relative to strongly bonded elec-
trons. It suggests that the electrons distributed along the 
molecule has influence on the biodegradability. Though it is 
difficult to ascertain what level of influence electronic infor-
mation has on biodegradability due to the varying magni-
tude and sign of the coefficients, we can assume large influ-
ence by these factors. Further information on the topology 
includes the size, shape, and bond types thus combining 
with electronic information gives us a possible direction for 
future investigations.  

SM06_AEA(dm), the spectral moment of order 6 from aug-
mented edge adjacency matrix weighted by dipole moment, 
describes a complex non-linear relationship between vari-
ous atoms of a compound, and in simple terms could be con-
ceptualized as the average amount of bonds that an atom 
shares with other atoms written in a matrix that is brought 
to a power of its order (in this case 6), indicating embedding 
frequencies, with respect to dipole moment. The low value 
of SM06_AEA could indicate low branching of a molecule to 
dipole moment ratio, and high values could indicate high 
branching to dipole moment ratio.52  

Descriptors referring to presence of functional groups 

The descriptor, B03[O-Cl], describes the frequency of chlo-
rine atoms being at a topological distance of 3 in relation to 
oxygen atoms. Due to the obvious connection of the de-
scriptor and its connection to the topology of the structure 
allows for ease of understanding, with the chlorine atom be-
ing relatively close.  

 

Model  

As seen in the model Equation 11, the probability of bio-
degradation is negatively impacted by MATS1s, signifying 
that dispersed intrinsic states of a molecule aid biodegrada-
tion and clustered intrinsic states impact it negatively. 

The negative impact on biodegradation by SM06_AEA(dm) 
indicates that low branching of a molecule to dipole mo-
ment ratio aids biodegradation, while high value becomes 
an obstacle to the process. 

The negative impact on biodegradation by H2s indicates 
that molecules with low average leverage of atoms are more 
likely to be biodegradable, and molecules with high lever-
age are less likely. It also indicates that spherical molecules 
are more likely to be biodegradable than linear molecules, 
and linear molecules are more likely to be biodegradable 
than branched molecules. 

The negative impact on biodegradation by B03[O-Cl] indi-
cates that presence of oxygen atoms at a topological dis-
tance 3 away from chlorine atoms makes the compound less 
likely to be biodegradable. 

The positive impact on biodegradation by Se1C1C2s indi-
cates that compounds with C1 and C2 carbons having fewer 
skeletal connections are more likely to be biodegradable. 
The presence of few sigma bonds for those atoms would 
lower the chance of biodegradability.  

 
4. Conclusions  

Chlorinated compounds are generally known to be difficult 
to degrade due to their toxic products formed when in nat-
ural environments. Because of this, we were interested in 
determining compounds that contain chlorine but are 
known to be readily biodegradable due to their scarcity and 
possible use. Two models were developed with the goal of 
predicting the biodegradability of chlorine containing com-
pounds. One model, being a 10 variable SVR model based on 
continuous data, was developed using Scikit-learn package. 
Analysis of the predictive capability and influential explana-
tion of the descriptors was conducted. The statistical per-
formance of R2Training and R2Test are 0.925 and 0.881 respec-
tively. It was found that mass, shape, topology, functionality, 
and electrotopological information of the compounds have 
influential characteristics relative to the distribution of the 
descript on biodegradability. Synergistic effects are be-
lieved to be expressed through commonalities of the de-
scriptors where RDF030v and F05[C-Cl] indicate atomic 
volume connecting to C – CL bond arrangement in the topol-
ogy of the compounds. 

The second model, being logistic regression model based on 
categorical data of readily biodegradable vs. Non readily bi-
odegradable, was developed and analyzed. The MCC was 
used as the primary indicator of model performance with an 
precision and accuracy of 0.78 and 0.79 respectively. The 
model showed higher levels of false positives which we at-
tribute to the skewed dataset containing many more non-
readily biodegradable compounds vs readily biodegradable. 
The descriptors were further analyzed and suggest that 
electrotopological information, specifical intrinsic state, 
and topological information have influence on biodegrada-
bility. Though it is difficult to determine the direction of in-
fluence of the electrotopological information, such as posi-
tive or negative towards biodegradability, we can see how 
available electrons for interatomic interactions shows var-
ying levels of biodegradability. This may be signifying the 
need for electrons to be easily moved throughout the mole-
cule for degradation to occur while also signifying possible 
toxic products being formed due to changes in electrotopo-
logical structure. The topological descriptor of BO3[C-Cl] 
suggests C to Cl connections 3 atoms apart negatively affect 
biodegradation. We believe it describes aliphatic chains 
nearby Cl atoms, such as found in polymeric materials, deter 
biodegradation to occur. 

Both models give insight into the structural features of bio-
degradability of chlorine containing compounds where fur-
ther investigation in the complex nature of electronic and 
topological information are intertwined in biodegradability. 
We believe future work in investigating described varia-
tions in the electronic structural and topological systems, 
such as applying ab initio methods, would give needed in-
sight into the complex relationship between structure and 
biodegradability of chlorine containing compounds.  
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