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Abstract

Large language models (LLMs) have demonstrated outstanding capabilities in general problem-solving
and been shown to improve productivity in certain domains. Thanks to their flexibility, recent work has
leveraged them for diverse scientific applications, ranging from predictive modeling, scientific Q&A, and
even as autonomous agents towards automation in chemistry. The democratization of high-quality chemistry
education faces several challenges, including heterogeneity among sub-fields, limited access to personalized
guidance, and an uneven distribution of resources. Additionally, hands-on laboratory experiments, a crucial
component of chemistry education, are difficult to scale due to inherent safety risks that necessitate close
supervision. We propose that LLMs can help overcome these obstacles by providing scalable solutions that
tailor educational content to individual needs, enhancing the overall learning experience. In this perspective,
we discuss how LLMs can catalyze chemistry education across multiple dimensions, from preparing and
delivering lectures and tackling guidance in both wet lab and computational experiments, to re-thinking
evaluation methodologies in the classroom. We also discuss some potential risks of this technology, such as
the possibility of generating inaccurate or biased content, and emphasize the need for further development
to ensure the successful integration of LLMs in the chemistry classroom.
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Figure 1: Opportunities for LLMs in Chemical Education. Large Language Models (LLMs) promise to
augment chemical education across multiple dimensions (bottom). Multiple LLM-based systems such as
Agents, Chat interfaces, and other systems (middle) can leverage multiple sources of chemical knowledge,
such as software, literature, and laboratory manuals and protocols (top).

1 Introduction

Chemistry education and research have historically evolved closely together, each influencing the other [1].
In the early days, chemistry education relied heavily on the repetition of experimental procedures, which, while
lacking theoretical insights, was useful for the industrial needs of the time [2]. The advent of unifying theoretical
frameworks, such as structural theory and valence bond theory imported from research in chemistry, in turn
shaped education, which by the 1950s started to lean toward more theoretical content [3, 4]. Not only has
education been drastically influenced by groundbreaking theories but also by the introduction of new tools
along with new ways of learning and experimenting [5, 6]. The introduction of computers came with a new
way of interacting with knowledge, which started a revolution with long-standing effects [4]. From molecular
visualization [7] to simulation-guided experimentation [8] and built-in data processing equipment in analytical
instruments [9], chemists have fully embraced computers as a key part of their lives [10], permeating education
along the way [11, 12].

New technologies in the field of Artificial Intelligence (AI) promise to fundamentally change science, much
like the introduction of computers did [13, 14]. Popularized in the recent years, Large Language Models (LLMs)
have demonstrated outstanding capabilities in tasks requiring reasoning and understanding across fields,
including programming [15], knowledge extraction [16], experiment design [17, 18] and question-answering [19].
These very capable systems are based on neural networks, trained using massive amounts of text, and scaled
to comparably massive amounts of parameters.

These capabilities have made them promising tools in research and education [20, 21, 22]. From the
emergence of the most capable models [20, 23, 24], researchers have derived and built chemistry-specific
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applications tackling predictive modeling [25], optimization [26], assistance with experimental design [27],
and automatic experimentation [18, 17], among others [28, 29]. These models also encode large amounts of
chemistry knowledge, showing that they are capable of passing college-level exams and answering basic
chemical questions [30, 20], as well as writing code with chemistry-relevant applications [31]. These works
highlight the potential for future tools powered by LLMs, and how chemists will, similar to the adoption of
computers, embrace them.

Following these advances in LLMs and more generally, generative AI, more attention has been paid to
education and learning in chemistry [32, 33, 34, 35]. Promising potential applications have been discussed and
implemented [36, 37, 38, 39, 40, 41, 42, 43], that highlight promising opportunities while also discussing potential
negative effects of already publicly-accessible tools [44, 33]. Indeed, authors cite issues such as threats to the
traditional essay writing for evaluation of understanding [44], plagiarism concerns [33], and more broadly the
effect of Generative AI on student’s learning and understanding [45, 46, 47, 48].
In this perspective piece, we propose a new LLM-augmented paradigm that encompasses multiple scenarios
in chemistry education, from the classroom to the wet lab, computational lab, and the student evaluation
stage, among others.

In the vision we introduce here, LLMs can enhance the lecturing experience in chemistry by aiding
teachers in content creation as well as students with personalized Q&A and assistance in problem-solving,
among others. In the lab, LLMs can help guide and assist students through manuals to ensure the correct
implementation of protocols, troubleshoot experimental setups, and build connections between experiences
in the lab and the underlying chemical principles. Similarly, education in computer simulations will benefit
from LLMs that can write code, and as interfaces to an array of software used in computational chemistry.
Furthermore, LLMs can also aid in cultivating critical thinking in students by aiding with scientific writing,
helping to organize ideas, and offering pertinent resources, all with real-time feedback.

We recognize the opportunities that these new technologies offer for democratized access to high-quality
educational resources in chemistry. Still, we also highlight the potential risks of misuse that accompany these
benefits, as well as potential avenues for mitigation from the educator’s perspective. We predict LLMs will
open an entirely new world for learning and education in chemistry, and write this piece to prepare both
educators and chemists to take the best from these developments.

2 Interactive learning systems are revolutionizing lecturing.

Lectures play a pivotal role in education, serving as the primary medium through which educators present
specific topics from a curriculum. Although lecturing is usually a linear and one-sided process, where teachers
serve as knowledge givers and students as receivers [49, 50], some pedagogical models suggest that more
productive approaches can involve more active roles form the student’s side, mediated by different levels of
intervention [51, 52]. Under these views, lecturing is a more dynamic and bi-directional process, where the
advent of LLMs offers unprecedented possibilities in the lecture planning and delivery stages [53] as shown in
Figure 2. These systems potentially offer a host of benefits that extend beyond mere content enhancement.
From providing instant feedback and generating thought-provoking questions, to adapting discussions, LLMs
will assist educators through several stages of lecture preparation.

• Lecture delivery. Thanks to their capacity to provide instant feedback, generate thought-provoking
questions, and adapt discussions, LLMs will assist educators in generating and refining discourse ideas, as
well as providing a platform to experiment with pedagogical concepts [32]. LLMs also provide interactive
interfaces to a multitude of tools, allowing educators to prepare improved visualizations and adapt their
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Figure 2: LLMs in lecturing. Multiple applications of LLMs can directly impact different steps of the lecturing
process in chemistry. (center) shows the teacher-student interaction as single- and bi-directional relationships.
The bi-directional relation encompasses assisted problem-solving skills, which can be augmented with
instruction-tuned LLMs to follow human-defined instructions. The single-directional, mainly encompassing
the lecturing sessions themselves, can also benefit from augmented visualization opportunities, along with
access to tools and databases. (left) shows ways in which teachers can benefit from LLMs by using them to
access scientific knowledge and experiment with pedagogical situations, while (right) shows how learning
resources can be augmented for students by offering assistance with self-study and accessibility to chemistry-
specific software tools.

lectures with interactive demonstrations, and enabling students to explore virtual models, all without
the burden of mastering new frameworks.

• Guidance in problem-solving. Beyond memorizing facts, students are expected to develop problem-
solving skills. A major limitation is the scalability of this process. In contrast to Massive Open Online
Courses (MOOCs) for software skills, students in the natural sciences often receive limited feedback
when solving problems. LLMs are regarded as a potential solution to this challenge, as they can efficiently
provide students with immediate responses to questions, offer feedback on problem solutions, and
suggest problem-solving strategies [54, 55, 56, 57]. These capabilities position LLMs to serve as virtual
teaching assistants, augmenting the learning experience for students [58, 59].

• Gateways to scientific knowledge. The in-context learning and summarization capabilities of LLMs
[60, 61, 62], when paired with efficient and accurate retrieval systems [63, 64], can serve as interactive
gateways to scientific knowledge. They will provide literature-grounded responses to scientific inquiries
and links to relevant sources, enabling students and educators to access the latest research related to
their lectures [65, 66, 67].

These technologies in their current state, however, remain hampered by issues regarding the handling of
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references and the spread of misinformation. Potential solutions have been proposed recently, including
fine-tuning for citations [68], and retrieval-augmented generation [69, 70]. These approaches partially
mitigate these issues [19], paving the way for the future tools we envision. In addition, some reports show
that reliance on such technologies may hinder learning while boosting confidence in acquired knowledge
[46], providing devious illusions of learning. Given the ubiquitousness of such systems, addressing these
issues while leveraging technologies will become an important topic in chemical education research.

Overall, LLM-based technologies have the potential for strengthening the connections between the
classroom and current scientific questions, techniques, and solutions, which significantly enriches the
educational experience.

3 Bridging theory and experiments: LLMs in lab sessions.
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Figure 3: LLMs in the wet lab. LLMs will influence students’ laboratory experience in all three stages: before,
during, and after the lab. Before the lab (left), students can benefit from enhanced lab preparation through
LLM-mediated interaction with lab manuals and other documents, and interaction with computational tools.
During the lab (top), LLMs can facilitate personalizedmonitoring and assistance, particularly, when augmented
with Augmented Reality tools. Such a setting can enhance safe lab practices. Finally, post-lab (right), students
can leverage LLMs for data analysis and for support in understanding the experimental results they obtain.

Chemistry’s foundations are deeply rooted in empirical observations, giving experimentation and laboratory
training a key role in chemical education. As shown in Figure 3, the chemistry laboratory involves three
main stages that can, to some extent, benefit from LLM applications. These can provide invaluable and
scalable assistance in various aspects of laboratory work, from pre-session preparation and safety protocols to
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real-time feedback and post-session data analysis. This potential for integration of LLMs into the chemistry
laboratory represents a significant step forward in the evolution of scientific education, offering a blend of
traditional hands-on learning with this cutting-edge technology.

• Laboratory preparation. For laboratory sessions to be productive, students need to adequately prepare.
Therefore, LLMs can provide personalized assistance in the preparation process, ensuring students
derive maximum benefit from lab sessions [71]. Specifically, LLMs can clarify procedures detailed in
lab manuals, offer comprehensive explanations of why certain setups are designed in particular ways,
and augment safety resources [72, 73], making the student fully aware of the many design choices, risks,
and learning objectives of experiments, without the entry barrier of lengthy lab manuals. By doing so,
LLMs can bridge the gap between lab manuals and classroom teaching, ensuring a cohesive learning
experience without imposing additional burdens on educators [74].

• Personalized guidance & augmented reality. Success in experimental sessions depends heavily on
how well manual instructions are understood and followed by students, while failure in this respect
carries serious consequences. LLMs can play a pivotal role in this aspect by providing accurate and
timely feedback based on session-specific manuals and standardized procedures. Additionally, they can
offer specific recommendations and safety advisories regarding the substances in use.

The integration of Augmented Reality (AR) technology and LLMs has the potential to transform labora-
tory procedures [75, 76, 75]. AR technology can gather real-time data from experimental actions, and
when processed through LLMs, students can receive immediate feedback, suggestions, and warnings.
This integration not only enhances learning by offering personalized guidance, but also significantly
improves the implementation of safety measures. By continuously monitoring actions, LLM-powered
systems can be designed to identify and correct unsafe practices in real time, preventing accidents
and ensuring a safer learning environment. This innovative integration of AR and LLMs represents a
significant shift in laboratory training, merging the immediacy of real-time feedback with the immersive,
enhanced experience of AR. Assistance in the lab is, nevertheless, of the uttermost importance, as minor
mistakes in the lab can have important consequences. The implementation of such an application should
thus be accompanied with other forms of regulation, such as rule-based systems carefully designed by
experts.

• Analysis of empirical results. Laboratory training requires analyzing empirical results and exploring
their connection to fundamental chemistry principles [77]. Here, LLMs can serve as powerful bridges
to scientific knowledge. They can serve as assistants in analyzing and facilitating discussions centered
on data that students have gathered over the course of the laboratory sessions. Furthermore, LLMs
could connect students to relevant experimental results from the scientific literature, enhancing their
understanding of the broader context of their findings. However, to fully harness this potential, the
development of advanced retrieval systems specifically tailored for chemistry is of great importance.
This integration of LLMs into the process of data analysis and interpretation could significantly enhance
students’ comprehension and application of chemistry principles in a practical context.

4 Augmenting chemistry simulations

Computational chemistry provides a way to explore and understand the properties, behavior, and interactions
of chemical species at the atomic level [78]. Complementary to experiments, computation helps chemists gain
insights into structures that are difficult to capture and characterize through experimentation (e.g., transition

6
https://doi.org/10.26434/chemrxiv-2024-h722v ORCID: https://orcid.org/0000-0003-2988-0374 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-h722v
https://orcid.org/0000-0003-2988-0374
https://creativecommons.org/licenses/by/4.0/


StudentStudent

job submission

error detection

bug fixing

Visualization

Quantum Chemistry

AR/VR 
Feedback

Calculation configuration

Analysis automation

Code snapshot generation

Interactive debugging

API 

Template-based generation
Experts’ codes

Translation

Software
Methods & parameters

Cloud/HPC

N

O

Br

B

OH

HO

Figure 4: LLMs in computer simulation. LLMswill aid students for computational simulations in four parts:
Starting with helping students configure their calculations (top right), LLMs can also generate code snapshots
for students to revise (bottom right). After a calculation is submitted, students conduct an interactive process
of debugging with the assistance of LLMs and cloud computing (bottom left). Lastly, automated analysis was
performed, delivering more vivid and diverse types of visualization to students (top left).

states in chemical reactions [79]). Until as recently as 1956, however, there had not yet been calculations of a
single molecule’s properties on a computer [80]. The first systematic study in 1956 on diatomic molecules (for
example, N2) was performed using Hartree-Fock theory at various basis sets [81]. By 1971, the largest molecules
computed were naphthalene and azulene [82]. Even in the early 2000s, many works were published with a
focus on comparing the energies and orbitals of a small number of molecules. This situation shifted drastically
in the 2010s with the development of both quantum chemistry software packages and high-performance
computing infrastructure [83], accelerating large-scale computation for chemistry simulation and advancing
chemical discovery in catalysis and drug design [84].

Recognized as an emerging discipline in the 1970s, computational chemistry aids hands-on experience
in concretizing abstract quantities in chemistry, such as reaction barrier, electron density, and wavefunc-
tion. However, due to the organization of chemistry curricula, chemistry students typically lack a strong
programming background by the time they finish chemistry-focused classes. Thanks to their natural language
interface, LLMs can bridge this gap for chemistry students, alleviating the burden of coding for students while
still delivering the central knowledge and hands-on experience of computational chemistry. Similar to how
students and researchers in the 1970s could not foresee the growth of computational chemistry over the next
50 years, we are only scratching the surface of use cases for LLMs in computation. In the future, we envision
LLMs cultivating a new generation of chemists more capable of computation on daily experiments validation
empowered by LLMs.
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• Choosing the right configuration. Part of the complexity of computational chemistry lies in its
approximation to the exact solution of the Schrödinger equation. This necessity of making an approxi-
mation leads, in practice, to the user’s choice of software, electronic structure method, wavefunction
basis, and other details of the calculation setup. As these are all details that impact the final outcome of a
calculation, the appropriate choices rely heavily on “know-how” that is often present but not adequately
summarized in the literature [85]. With LLMs learning from open-source repositories, books, and papers,
this latent knowledge in computational chemistry configuration can, in principle, be extracted and better
democratized to everyone who wants to do computer simulations of chemistry. Nevertheless, as in
other areas where LLMs will be applied, publication bias or knowledge source could influence such
summarized recommendations.

• Generating code snapshot. As each quantum chemistry software has its own advantages and domain of
application, becoming proficient in all of them is a challenging task. From simple natural language queries,
LLMs can synthesize functional pieces of code demonstrating the use of various types of simulation
on a variety of computational chemistry packages, reducing the labor of learning the syntax needed to
interact with quantum chemistry software [86, 87, 88, 89, 90].

• Debugging. LLMs, as generative models, may not be completely error-free when generating code,
leading to bugs in execution. However, this shortcoming can be viewed as a feature, rather than a bug,
in learning and education [91, 92, 93, 94, 95]. The capability of the LLM to correct itself by interacting
with error messages provides a natural way of debugging, which helps students learn coding gradually
with chains of reasoning steps. The requirement of user interaction with LLMs prior to executing code
also lowers the risk of over-reliance on LLMs when chemistry students learn to understand the setup of
quantum chemistry calculations and basic rules of coding.

• Automating analysis. An important use case of computation in chemistry is to concisely present
abstract concepts (for example, visualizing electron density to learn about covalent bonding). However,
calculating these properties would normally require users develop significant familiarity with electronic
structure theory and quantum chemistry packages. This separation in domain knowledge has led to
reluctance for experimentalists to apply computations during the design of experiments or might not
knowwhat the feasible and and most efficient calculations are. LLMs provide a natural solution to bridge
this gap, by helping experimentalists automate more advanced computational analysis and visualization
to fulfill the daily needs of simulation.

As multimodal LLMs develop, one would imagine executing chemistry simulations more easily even
without writing any code or input files[83]. For example, molecules drawn by hand may be recognized via
image recognition, after which calculations can be directly set up by interfacingwith LLM agents and run in the
cloud. In terms of visualization, ball-and-stick models that are introduced in high school chemistry teaching
may no longer be needed. Augmented or virtual reality would visualize the molecules and computational
results, providing a more vivid experience for students to interact with atoms in a molecule and, better, its
electron density or vibrational spectra[96, 97].

5 Cultivating scientific thinking through scientific writing

Scientific writing is a key facilitator of scientific thinking [98], a fundamental goal of chemistry education [99].
The traditional approach to teaching scientific writing, primarily through interactive lecturing, is undergoing
a significant transformation with the integration of LLMs [100, 101, 102]. LLMs are elevating the standards of
scientific writing, but they are also instrumental in facilitating critical thinking during writing [103].
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Figure 5: LLM-assisted scientific writing and learning outcome evaluation. (a) LLMs can bridge
topic/genre with templates, prompt sparse ideas into stories, and provide feedback to drafts. (b) LLMs can
propose variants to old exam questions, grade exams, and enable interactive exam formats. (c) LLMs can
prompt and process student feedback at scale in real time.

• Planning. Planning is a critical step to structure and organize contents in scientific writing. This process
involves analyzing the purpose and audience of scientific writing, understanding the importance of clear
and logical structuring, and recognizing the impact of different writing styles on the reader. Through
this process, students develop a deeper understanding and appreciation of the nuances of scientific
writing. LLMs can serve as a rich repository of templates, examples, and criteria that define high-quality
scientific writing. LLMs will also encourage students to engage in critical thinking, prompting them to
question why certain approaches are effective.

• Writing. After planning, writing is an iterative process to concretize thoughts and ideas. This process
not only improves their writing skills but also cultivates a habit of self-reflection and critical evaluation,
which are essential for developing scientific writing skills. LLMs can provide real-time feedback and
suggestions, playing a crucial role in shaping student writing. This feedbackmechanism is complemented
by exercises in critical thinking as students are encouraged to reflect on the feedback and consider how
different word choices or structural changes alter the clarity and persuasiveness of their arguments.

Despite being a promising tool, ethical concerns of LLMs remain challenging to overcome [104]. Schools have
taken action to [105, 106, 107] navigate a co-creation between human and generative AI tools: mainly by having
some transparency about the ways such tools are used or should be used. Academic publishing groups have
also taken actions to request reports on the use of LLMs in publications [108, 109]. We discuss more ethical
and legal concerns in Sec. 7.

6 Getting creative with evaluations: how to assess learning out-
comes?

Evaluating learning outcomes is a pivotal step in the education cycle, assessing the quality of education, and
providing essential feedback for refining earlier stages [110, 111]. This evaluation encompasses two primary
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areas: (1) assessment of student performance [112], and (2) assessment of educator effectiveness [113]. Traditional
evaluation methods often rely on educator-assigned tasks such as homework assignments, group projects, and
exams. Meanwhile, student-provided feedback includes such procedures as course evaluations and student
reports. The advent of LLMs is revolutionizing this process by introducing innovative, dynamic, and effective
assessment strategies [114, 115].

• Automated exam workflow. LLMs will be instrumental in aiding instructors to formulate exam
questions and variations of homework assignments based on patterns in previous materials. This variety
will not only ensure a comprehensive assessment of the curriculum, but it will also keep the evaluation
process up-to-date and adaptive to students. LLMs will also aid in grading assignments, thereby alleviat-
ing the routine grading workload on teaching assistants [116, 117, 118, 119]. Finally, automated grading will
mitigate potential biases or human errors in grading.

• Enhancing creative problem-solving. LLMs can pose unique, scenario-based problems that require
creative thinking and problem-solving, going beyond traditional assessment paradigms [120, 121, 122, 123].
Specifically, students can be asked to teach the LLMs to complete a lab or simulation run, fostering
students’ ability to apply learned concepts in novel situations, a key indicator of a deep understanding of
the learned concepts rooted in practice.

• Personalized feedback for educators. Moving beyond traditional course evaluation forms, LLMs
can prompt students for more timely, personalized, and insightful feedback. Furthermore, they will
help monitor long-term learning trends and suggest immediate attention based on the feedback. This
monitoring could include analyzing student responses for common trends, generating comprehensive
and personalized feedback reports, and offering targeted suggestions for course improvements.

7 Challenges

Despite the promising capabilities demonstrated by the current generation of LLMs, specific risks need to be
mitigated for their effective application in educational settings.

• Hallucination. LLMs, in their current state, often generate inaccurate and misleading information, even
though it may seem plausible [124]. Mitigating these hallucinations remains a large and active research
area with proposed solutions ranging from improved data quality [125], enhanced interpretability [126],
constrained generation [127], to adversarial training, etc [128]. Consequently, students and teachers must
be aware of the possibility of LLMs providing convincing, but false, responses when prompted, and use
these tools carefully with appropriate verification. This may be particularly challenging for students
learning new fields, such as chemistry or more specifically advanced computational chemistry.

• Over-reliance. Despite their capabilities, LLMs should not only be treated as a machine to ease exam
question design. To alleviate the risk of LLMs eroding educational outcomes may require lecturers and
professors to rethink exams, or even more, whether memorization-based recollection of knowledge as
an educational goal will still hold in the age of LLMs. There is also a concern that LLMs might lead to
surface-level learning, where students may prioritize quick answers over a deep understanding of the
subject matter.

• Ethical and legal concerns. When students interact with LLMs, their data, including potentially
sensitive information, might be collected and used in ways that are not transparent, raising privacy
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concerns [129, 130]. Furthermore, the ownership of the work created with the assistance of LLMs may be
subject to patent or copyright. The introduction of LLMs could change the traditional roles of teachers
and students, with potential implications for the teaching profession and the nature of learning. In
addition, the training data of LLMs from the internet may lead to potential copyright infringement, and
the misinformation spread by LLMs also lack of responsibility. Finally, the regulation for the proper use
of LLMs by students has been experimented with in schools and publication groups (Sec. 5).

• Over-standardization. Unified opinions offered by LLMs can hardly be expected to lead to break-
throughs in science and engineering. But can LLMs really provide diverse perspectives and ways of
thinking? Over-standardization of LLMs for information and problem-solving could impede the de-
velopment of critical thinking and research skills in students and thus influence our next-generation
researchers.

• Inequality. LLMs are recognized to exhibit reduced efficacy when operating with low-resource lan-
guages or certain dialects like African American vernacular English [131, 132, 133, 134, 135]. As a result, users
representing these linguistic variations may encounter sub-optimal performance compared to native
English speakers. This diminished user experience can manifest in various ways, potentially leading to
outputs of inferior quality, increased biases, and even model-generated hallucinations.
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