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Abstract2

FEgrow is an open-source software package for building congeneric series of com-3

pounds in protein binding pockets. For a given ligand core and receptor structure,4

it employs hybrid machine learning / molecular mechanics potential energy functions5

to optimise the bioactive conformers of supplied linkers and functional groups. Here,6

we introduce significant new functionality to automate, parallelise and accelerate the7

building and scoring of compound suggestions, such that it can be used for automated8

de novo design. We interface the workflow with active learning to improve the efficiency9

of searching the combinatorial space of possible linkers and functional groups, make10

use of interactions formed by crystallographic fragments in scoring compound designs,11

and introduce the option to seed the chemical space with molecules available from on-12

demand chemical libraries. As a test case, we target the main protease of SARS-CoV-2,13

identifying several small molecules with high similarity to molecules discovered by the14

COVID Moonshot effort, using only structural information from a fragment screen in15

a fully automated fashion. Finally, we order and test 19 compound designs, of which16

three show weak activity in a fluorescence-based Mpro assay, but work is needed to17

further optimise the prioritisation of compounds for purchase.18
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Introduction19

Recent advances in structural biology, from sample preparation, to synchrotron infrastructure20

and data analysis pipelines, have transformed the throughput of protein-ligand complexes21

available to inform drug discovery campaigns.1 When soaked with carefully designed com-22

pound libraries,2 the numbers of small molecule (or fragment) structural hits can reach 10s23

or 100s against a single therapeutic target.3 A frequently employed next step is to attempt to24

grow and/or link the hit compounds, using either custom synthesis2 or ordering from cata-25

logues of purchasable compounds.4,5 However, chemical space is vast such that even choosing26

follow-up compounds for purchase from on-demand libraries, such as the readily accessible27

(REAL) Enamine database6 (> 5.5 bn compounds in 2022), becomes highly non-trivial.728

As such, attention is turning to cheminformatics and machine learning based algorithms29

for structure-based de novo hit expansion, linking and merging.8 A wide range of approaches30

are available to build from initial structural biology data, including DeepFrag9 that identifies31

promising fragments for addition to an input bound ligand, using a deep convolutional32

neural network, and DEVELOP10 that combines 3D pharmacophoric constraints from the33

binding pocket with a graph-based deep generative model for R-group and linker design.34

The SILVR method enables an equivariant diffusion model to be conditioned to generate35

molecules based on a reference structure, such as a fragment from a crystallographic screen.1136

The V-SYNTHES approach makes use of on-demand libraries for hit-finding by decomposing37

compounds from purchasable databases into reactive scaffolds and synthons, and using the38

highest scoring docked fragments as seeds for further growth.12 One particularly noteworthy39

example is the use of fragment merging to design hits against the nonstructural protein 340

(NSP3) of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).13 Fragments41

from a crystallographic screen were merged using the Fragmenstein package,14 ensuring42

placement of molecular substructures onto the original fragments, and subsequently used43

as templates for searching on-demand chemical space. In this way, fragments were rapidly44

elaborated into a 0.4 µM hit (representing a >400-fold improvement in affinity).45

3

https://doi.org/10.26434/chemrxiv-2024-xczfb ORCID: https://orcid.org/0000-0003-2933-0719 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-xczfb
https://orcid.org/0000-0003-2933-0719
https://creativecommons.org/licenses/by/4.0/


While extremely promising, all of the above de novo design approaches suffer from some46

combination of the following issues: i) reliance on an approximate classical molecular me-47

chanics force field or knowledge-based algorithm for generating and optimising binding poses,48

ii) use of an approximate objective function (usually a docking score) as a surrogate measure49

of binding affinity, iii) approximation of a rigid target receptor structure, and iv) limited syn-50

thetic tractability of the designed compounds. We therefore developed the FEgrow software51

as an open-source, interactive Jupyter notebook based workflow for building user-defined52

congeneric series of ligands in protein binding pockets to start to address some of these53

open questions (Figure 1A).15 FEgrow grows user-defined functional groups (R-groups) off54

a constrained core of a known hit compound, thus incorporating input from structural bi-55

ology and the expertise of the user in selecting synthetically tractable elaborations. Since56

publication, we have added functionality for connecting R-groups to the core via a flexible57

linker, which can be chosen from a library of those common to bioactive molecules.16 In this58

way, users can choose from 1M+ combinations of linker and R-group from our distributed59

libraries (or upload their own R-group modifications). The modular workflow allows for the60

incorporation of state-of-the-art molecular modelling algorithms, such as the use of hybrid61

machine learning / molecular mechanics potential energy functions to optimise the ligand62

binding pose,17,18 and the gnina convolutional neural network scoring function to predict63

the binding affinity.19 We plan to expand the range of available optimisation algorithms and64

scoring functions as they become available (see Methods Section).65

While interactive work is useful for small-scale studies, we have found it useful to au-66

tomate the workflow for use on high performance computing (HPC) clusters, and since67

publication have added an application programming interface (API) to FEgrow (Figure 1B).68

This enables us to build virtual libraries with a common core, for example, using reaction-69

based generative scaffold decoration with LibInvent21 or substructure searching of compound70

libraries,22 and then rapidly build the compounds into the protein binding pocket with FE-71

grow. However, unless the libraries are designed using information from the binding pocket,72
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Figure 1: A) Example building and scoring of a SARS-CoV-2 inhibitor20 using the inter-
active FEgrow workflow.15 The fixed core (grey) is extended using a user-defined, flexible
linker (pink) and R-group (yellow), and scored using gnina.19 B) Compound libraries with
substructures that match the rigid core can now be automatically grown and scored, treating
the rest of the molecule as fully flexible. C) Proposed active learning cycle. Compounds are
grown, built in the binding pocket and scored with FEgrow. The outputs are used to train
a machine learning model, which is used to select the next batch of compounds. Optionally,
the chemical space can be seeded using compounds available from on-demand chemical li-
braries.

time is wasted building and scoring compounds that are unlikely to be beneficial and it is73

still not feasible to routinely scan all possibilities.74

Hence, rather than exhaustive or random searches of chemical space, we investigate here75

the use of active learning to elaborate compound design with FEgrow. The general idea76

behind this approach is that a subset of compounds is evaluated using an expensive design77

objective function (in this case the molecular growing and scoring algorithms in FEgrow)78

and used to train a machine learning model (Figure 1C).23 The machine learning model79

then predicts the objective function for the remainder of the chemical space, and the next80

subset of molecules is picked for evaluation (for example, in order to optimise the objective81

or further explore the chemical space). By cycling through this procedure, the algorithm82

can iteratively make up for any lack of diversity in the initial training subset, and it is has83

been found previously that the most promising compounds can be identified by evaluating84

only a fraction of the total chemical space.85

Several studies have investigated the effects of choices such as machine learning algorithm,86
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sample selection protocol and total dataset size on active learning efficiency for experimen-87

tal and computational affinity predictions.24–28 In general, active learning has been shown88

to increase enrichment of hits compared to either random or one-shot training of a ma-89

chine learning model, at low additional cost, and to be relatively insensitive to choices of90

molecular representation, model hyperparameters and initial training subsets. Active learn-91

ing has shown practical utility in prioritising compounds based on objective functions from92

docking29–31 or free energy calculations.25,26,32,3393

Here, we interface FEgrow with active learning to efficiently search the chemical space of94

linkers and R-groups from a user-defined vector. As well as using a docking score to guide95

optimisation, we also experiment with functions that combine other molecular properties,96

such as molecular weight, and 3D structural information, such as protein-ligand interaction97

profiles (PLIP).34 To address the issue of synthetic tractability of the compound designs, we98

combine the workflow with regular searches of the Enamine REAL database to ‘seed’ the99

chemical search space with promising purchasable compounds. After testing and optimising100

the hyperparameters of the active learning models, we apply the algorithm to the prospective101

design of inhibitors of the main protease (MPro) of SARS-CoV-2, the virus responsible for102

the COVID-19 pandemic. This target has undergone extensive study in recent years. The103

COVID Moonshot Consortium used open science crowd-sourced designs, in combination104

with high-throughput structural biology and assays, free energy calculations, and machine105

learning driven synthetic route predictions, to generate a series of potent inhibitors.4 Other106

notable approaches that include biological confirmation of hits have employed, for exam-107

ple, structure-based design starting from a drug repurposing study,20 virtual screening of108

a curated collection of commercially available compounds,35 a deep reinforcement learning109

model using pharmacophore and substructure matches with known inhibitors,36 and a deep110

generative framework using only target sequence information as input (along with priori-111

tisation based on factors such as docking score and retrosynthetic feasibility).37 Here we112

employ active learning to prioritise compounds for purchase and testing from the Enamine113
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REAL database based only on early fragment hits. We suggest several novel designs that114

show activity in a fluorescence-based Mpro assay, as well as automatically generating several115

compounds that show high similarity to known Moonshot hits.116

Methods117

Workflow Design118

The FEgrow software package is described in detail elsewhere.15 Briefly, FEgrow aims to119

grow a ligand within a protein binding pocket, starting from a provided receptor structure,120

ligand core and growth vector (Figure 1A). Libraries comprising 2000 linkers16 and around121

500 R-groups, are provided, or users can supply their own. Merging is achieved using the122

RDKit package,38 which also generates an ensemble of ligand conformations via the ETKDG123

algorithm,39 with the atoms of the core strongly restrained to the input structure. That is,124

the default behaviour is to allow flexibility only in the regions of the grown linkers and125

R-groups. The ensemble of ligand structures is filtered to remove any that clash with the126

protein, and the remaining conformers are structurally optimised in the context of a rigid127

protein binding pocket using the OpenMM software.18 During energy minimisation, the128

protein is treated using the AMBER FF14SB force field,40 while intramolecular energetics129

of the ligand are described, where possible, using the ANI-2x machine learning potential.17130

Non-bonded interactions between the protein and ligand are described using a mechanical131

embedding scheme, that is, they use electrostatics and Lennard-Jones terms described by132

either the Open Force Field ‘Sage’41 or GAFF242 general force fields. The goal of this133

hybrid machine learning / molecular mechanics approach is to correct for known deficiencies134

in potential energy surfaces of classical force fields, while ensuring that optimisations are135

significantly faster than using full QM/MM.136

The lowest energy structures are then output for scoring. In the first iteration of FEgrow,137

we used the gnina convolutional neural network (CNN), which has been jointly trained on138
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binding pose and affinity prediction.19,43,44 We showed that the gnina ‘CNNaffinity’ scores139

(predicted pK) correlated reasonably well with experiment for ten series of congeneric in-140

hibitors built using FEgrow.15 Here, we add further options for scoring molecules based on141

protein-ligand interaction profile (PLIP),34 molecular properties, or a combination thereof.142

For construction of the PLIP score, interactions formed in the available protein-fragment143

complex crystal structures were one-hot encoded to form a reference vector of desired inter-144

actions (here, hydrophobic, hydrogen-bonding, π-stacking, and salt bridge were all identi-145

fied). A similar vector was constructed for the designed de novo compound, and its Tanimoto146

similarity to the reference vector used as the objective for optimisation. It has been argued147

that combining information from various properties can also be advantageous,8 for example148

by using pharmacophore constraints in combination with docking scores, and we make use149

here of a simple, combined score (CS):150

CS =

(
pK

MW

)
×
(
PLIP

0.3

)
× 100 (1)

which aims to maximise the predicted gnina affinity (pK) and the protein-ligand interaction151

profile (PLIP) similarity to reference structures, while keeping the molecular weight (MW)152

low.153

Active Learning154

Active learning23 is a subset of machine learning that is based on iteratively labeling data155

points from an unlabeled dataset (in our case, de novo compounds that are built into protein156

binding pockets and scored). The aim is to pick the most useful samples for training a157

surrogate model, whilst ultimately minimising the potentially expensive computation needed158

to find instances that maximise an objective function. There are two main components to an159

active learning workflow: the regression model, and the acquisition function. Every scored160

instance is used to train a specified machine learning model, with more examples refining161
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the model accuracy, which is then used to select new molecules to be built. In this work we162

consider and benchmark two models.163

The first approach is gradient boosting machine (GBM), which is a random forest based164

technique, utilising ensembles of decision trees. These trees are created from random sub-165

sets of features (fingerprints), that are then used to make predictions. GBMs expand on166

traditional random forests by using the gradient of the error to construct trees specifically167

designed to minimise this error. Gradually increasing the number of relatively poor individ-168

ual trees additively increases their predictive power (hence ‘gradient boosted’). The second169

model is Gaussian Process (GP) regression, which is a Bayesian approach that makes predic-170

tions by assuming observations can be modelled by the probability distribution over possible171

reasonable (Gaussian) functions.45 These Gaussian distributions are iteratively refined by the172

observation of new samples. Because model prediction is performed via a probability distri-173

bution, it natively incorporates uncertainty and other useful quantities, such as estimates of174

expected improvement of a given new sample.46175

The acquisition function defines the method by which new molecules are picked at the176

start of each active learning cycle, with the simplest example being a ‘greedy’ approach,177

which directly selects the (currently predicted) highest scoring molecules. However, an ac-178

quisition function has to balance picking the best compounds, with the need to further refine179

the accuracy of the machine learning model. Picking the best scoring candidates in descend-180

ing order might initially increase the objective function, but the algorithm will have the181

propensity to get stuck in local maxima and to be sensitive to the initial selection of training182

molecules.183

There are a variety of alternatives that aim to avoid the problems of a simple greedy184

approach, and the approach used here is the upper confidence bound (UCB) uncertainty-185

based acquisition function.47 UCB considers not just the value of the objective function,186

but also the variance of the prediction (model uncertainty), effectively biasing towards the187

selection of molecules about which the model is the least certain of the predicted score. The188
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UCB function is defined by:189

UCB(x) = µ(x) + βσ(x), (2)

where µ(x) and σ(x) are the mean and standard deviation of the regressor for molecule x,190

and β is a parameter controlling the degree of exploration (high β increases the chances191

that a molecule with moderate score but high uncertainty will be picked). The effects of the192

choice of machine learning model and acquisition function, as well as other active learning193

hyperparameters, are discussed later.194

Database Search195

A challenge for automated growing of linkers and R-groups, and for de novo design in general,196

is the synthetic tractability of the designed compounds. Approaches to address this limitation197

could include a synthetic accessibility score in the objective function48 or the expert curation198

of libraries with known synthetic routes.32 However, we wished to fully automate the design199

process, and be confident of acquiring compounds for rapid design-make-test-analyse cycles.200

We therefore make use of the rapidly-growing make-on-demand compound libraries as a201

surrogate measure of synthetic accessibility. Ideally, we might use the entire catalogue as202

a chemical space in which to perform the active learning. Although such an approach has203

been used as a one-off screen,49 evaluating the regression models used here soon becomes204

prohibitively expensive in an active learning cycle. On the other hand, highly efficient205

methods have been developed for similarity and substructure searches of these libraries.22206

We therefore make use of these searches to seed the chemical space with compounds that207

are similar to the predicted actives at each step of the active learning cycle (Figure 1(C)). In208

this way, at the subsequent acquisition step, we enable the algorithm to pick compounds for209

growing and scoring that are likely to be scored highly (due to similarity with other highly210

scoring compounds) and available for purchase or synthesis (due to presence in on-demand211

libraries).212
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In detail, the Enamine REAL database of 4.5 B compounds was searched for similarity to213

designed molecules through the public interface to SmallWorld https://sw.docking.org,214

using a graph-edit-distance space search.22 At each cycle, 100 new, top-scoring compounds215

were searched, and up to 100 of the most similar compounds from the REAL database were216

extracted per search query (using a maximum distance of 5 steps). This 10 K compound217

set was filtered for substructure match with the core using RDKit,38 and those compounds218

that passed were added to the active learning search space. Active learning then selects219

compounds for scoring following Enamine enrichment, as usual, but there is no explicit bias220

to select compounds from the on-demand catalogue.221

Computational Details222

Protein input structures were taken from the set of noncovalent complexes crystallised early223

during the COVID-19 pandemic.3 In particular, the input PDB: 5R83 was used as the224

receptor structure for active learning design, and Chimera was used to add hydrogen atoms.50225

The ligand was truncated to include only the pyridyl moiety, as this appeared in other226

available crystallised fragments in a consistent binding mode (PDB: 5RE4, 5REH, 5R84,227

5RF33) and with a suitable vector for growth into the binding pocket. The full set of 23228

non-covalent complexes (that had ligands bound in areas of the pocket accessible by a growth229

vector) was additionally used for construction of the reference PLIP34 interactions.230

For testing of the active learning protocols, the chemical space was assembled by combin-231

ing the pyridyl moiety with 508 R-groups51 and 100 of the most common linkers16 from the232

FEgrow library. A total of 47710 unique molecules were successfully grown into the bind-233

ing pocket and scored using the gnina CNN scoring function.19 A further 1656 molecules234

were assigned a penalty score of pK = 0 as they could not be embedded due to steric clash235

with the protein. In cases where rare errors occurred, such as a failure to assign force field236

parameters, the molecules were discarded completely.237

The previously tested FEgrow molecule building protocol was applied throughout.15 The238
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ETKDG algorithm39 was used to generate 50 conformers, using a 0.5 Å root-mean-square239

similarity threshold. Any conformers with an atom closer than 1 Å to any atom in the240

protein was discarded. Energy minimisation was applied using a hybrid machine learning241

/ molecular mechanics energy function in a mechanical embedding scheme.15 The ANI-2x242

potential17 was used for the ligand, in cases where all elements in the molecule are covered by243

the model, or the Open Force Field Sage41 potential otherwise. The lowest energy conformer244

was retained for scoring.245

An active learning library based on scikit52 and modAL53 python packages was adopted246

from another study.26 A set of molecules to initialise the active learning cycle can be se-247

lected via RDKit’s MaxMin picker38 from the chemical space, or picked at random. The248

processing was parallelised using the python library Dask,54 which supports a diverse set of249

technologies, including the Slurm Workload Manager that is deployed ubiquitously on high-250

performance computing clusters. Dask is used to secure resources (scheduling workers on251

Slurm), submitting work and retrieving results. The three major computationally-expensive252

components were parallelised: 1) building and scoring of the molecules, 2) computing the253

Morgan fingerprints, and 3) computing the Tanimoto similarity across the chemical space254

for the Gaussian Process modelling.255

Results256

Interfacing FEgrow with active learning enables efficient search of257

chemical space.258

In order to investigate the performance of the active learning protocol, and the effect of259

machine learning hyperparameters, we built a labelled ‘oracle’ set of 47 K compounds using260

standard FEgrow input settings (see Computational Details). This is a larger set of com-261

pounds than would be typically built and scored against a target, but knowing the affinities262

of the full chemical space enables us to assess the performance of the active learning ap-263
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proach. The common core was selected to be a pyridyl fragment common to several early264

crystal structures of the SARS-CoV-2 main protease,3 located in the S1 pocket with a vector265

pointing into the enzyme active site (Figure 2(a)).266

Figure 2: a) The position of the ligand core and definitions of binding pocket labels, the
purple sphere is the hydrogen atom for replacement. b) Histogram of computed pK for the
47 K compound oracle dataset. c) UMAP of entire 47 K oracle chemical space, coloured by
computed pK. 2D structures of representative strong binders are included.

Figure 2(b) shows the distribution of predicted binding affinities, computed using the267

gnina convolutional neural network scoring function19 from FEgrow built structures. The268

scores are symmetrically distributed around pK = 4.5, with a maximum affinity of around269

6.0, which is indicative of a set of low molecular weight (range between 100 and 350 Da,270

Figure S1), unoptimised compounds at the start of a hit finding effort. Indeed, it is at this271

stage where the options for expansion are vast, and strategies to suggest exploration of hits272

are particularly valuable. Note that compounds that could not be built (for example, due to273

steric clashes with the protein) are arbitrarily assigned a pK of zero, so that this information274

can be included in the active learning model.275

Figure 2(c) further shows the UMAP projection of the chemical space, coloured by pre-276

dicted pK. The visualisation shows a diverse composition of linkers and functional groups,277
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with well-spread clusters of the highest affinity binders, potentially providing a challenging278

search space for active learning. Figure 2(b) also shows locations in the chemical space of ex-279

ample linker and R-groups, attached to the pyridyl core, that make up the stronger predicted280

binders. Favourable predicted linkers include amides, sulfonylurea and various 6-membered281

ring heterocycles, and relatively bulky R-groups are feasible, which is generally expected282

given the size and shape of the binding pocket.3,4 (Note that at this stage no consideration283

is given to synthetic accessibility or stability of the compound designs).284

Figure 3: Recall and F1 score for diverse initial selection GBM (left) and GP (right) models,
and greedy acquisition for identification of top 2 % scoring compounds for different cycle
sizes. Error bars show standard errors over five runs.

Figure 4: Recall and F1 score for diverse initial selection using GP and UCB acquisition
(and varying β) with cycle sizes of 200 (left) and 400 (right) for identification of top 2 %
scoring compounds. Error bars show standard errors over five runs.

We next sought to use active learning to accelerate the search through this chemical285

space, using the oracle to assess the performance of model hyperparameters, and using the286

predicted binding affinity as the optimisation target. In particular, we have investigated the287
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effects of initial compound selection (random or diverse), number of compounds picked per288

cycle (in the range 200–500), machine learning model (GBM or GP) and acquisition method289

(greedy or UCB). As discussed, the dependence of active learning efficiency on the choice of290

model parameters is well documented, and so we do not devote much space to it here.291

By way of example, Figure 3 shows the effect of the number of compounds picked per292

cycle on model recall and precision (F1 score) for the two machine learning models (GBM293

and GP). For a fixed total number of compounds selected (here, 2500), one might expect the294

model to improve at small sample sizes (hence, more active learning cycles), but we find that295

the efficiency is already well converged when picking 500 per cycle. Similarly, the choice of296

machine learning model has little effect, with slightly higher metrics for the GBM model, but297

both recall and precision comparisons are within the error bars. Figure 4 further shows the298

effect of using the UCB uncertainty-based acquisition function, instead of greedy selection,299

in conjunction with the GP machine learning model. There is some small improvement in300

recall over greedy selection, but no significant change in the metrics used either as a function301

of cycle size or the β parameter in eq 2.302

Figure 5: Difference in selection for first (left) and final (right) active learning cycles, showing
a narrowing into areas predicted to be potent and avoiding unpromising areas.

Note that for the current dataset, random selection would give a recall of 0.05 and F1303

score of 0.03 for identification of the top 2% of compounds. Therefore, with recall of around304
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0.25–0.30 for most of our experiments, we see efficiency improvements with active learning of305

around a factor of 5x compared to random selection. For reference, the growth and scoring306

of this compound set in FEgrow requires around 1000 cpuhrs, which is not prohibitive, but307

automated acceleration at no cost is clearly worthwhile.308

In the next section, we choose to use a GP model with UCB acquisition function, with309

a cycle size of 200 and a diverse set of starting compounds. The overall accuracy of the310

chosen regression model (using β = 10), following training on 5 % of the dataset, is 0.97 pK311

units (Figure S2), which is competitive with typical models used in active learning with312

fingerprint-based representations.27 Figure 5 shows a similar UMAP projection as in Figure 2,313

but now only showing compounds acquired by our chosen active learning model in the first314

(left) and final (right) cycles. We observe both a wide exploration of the chemical space,315

which is important to increase diversity in the final set, and a focusing of the explored regions316

in the final cycle to compounds with a higher predicted binding affinity, which is important317

for the use of the model to identify strong binders.318

Active learning driven fragment expansion identifies potential SARS-319

CoV-2 MPro inhibitors.320

Having established that the active learning protocols tested here are able to improve the321

efficiency of chemical space searches with FEgrow, we turn now to prospective design of322

potential noncovalent SARS-CoV-2 MPro inhibitors. A wealth of computational and experi-323

mental data has been generated for this target in recent years, but here we limit ourselves to324

structural information that was available in the early months of the COVID-19 pandemic. In325

particular, as in the previous section, we consider expansion of the pyridyl fragment (PDB:326

5R83) along a vector into the binding pocket containing the catalytic cysteine (Cys145).3327

We now expand the size of the chemical space to an initial 250,000 molecules, built from328

the combination of supplied libraries of 500 linkers and 500 R-groups, such that full building329

and scoring of the space is prohibitively expensive for routine study. To address the issue of330
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Figure 6: Active learning drives improvements in predicted binding affinity. A GP model
is used, with UCB acquisition function (β = 0.1), a cycle size of 200 and a diverse set of
starting compounds. The solid horizontal line shows the average score for 377 compounds
randomly selected from the REAL database that were built with FEgrow.

synthetic feasibility of the output designs, we add an additional step in the active learning331

cycle (Figure 1C), whereby the chemical space is periodically seeded with compounds from332

the REAL database that are similar to the highest scoring compounds (see Methods). Fig-333

ure S3 demonstrates successful incorporation of the Enamine compounds into the active334

learning cycles, with a significant fraction of the built and scored compounds originating335

from this source.336

Figure 6 shows an example design run, optimising the compounds for predicted pK using337

the gnina scoring function (further examples are given in the Supporting Information).338

The distribution of predicted affinity increases over the first 10 active learning cycles then339

starts to saturate with a mean predicted pK close to 6 (micromolar affinity). Over the full340

run, 95% of the compounds were successfully built (assigned pK > 0) and 15% had a pre-341

dicted pK > 6. For comparison, we also extracted 1000 molecules at random that contained342

the pyridyl substructure from the REAL database used to seed the active learning cycles.343

For this set, 377 molecules (38%) could be successfully built, with an average predicted344

pK = 4.9 and only two compounds with predicted pK > 6.0 (0.2%).345

Figure 7a) shows the highest scoring compound from this run, with a predicted affinity346

of 88 nM. The compound extends hydrophobic contacts into the S3 and S1’ pockets, for ex-347
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Figure 7: a) Top-scoring compounds optimised for a) predicted pK, b) protein-ligand inter-
action profile and c) combined scoring function. d) Fragment 5RGI shown in pink (H-bond
donation by Gly143, Ser144, Cys145 and His163), and 5RF7 in green (hydrophobic and H-
bond donation with Glu166).
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ample with Met165 and Thr25, but despite this does not form any specific polar interactions348

(other than the original core interaction with His163). Since an early fragment screen had349

provided valuable information about the nature of potential protein–ligand interactions in350

this binding pocket, we sought to reduce the reliance on the gnina scoring function and drive351

the active learning towards compounds that recovered known crystallographic information352

(see Methods). Figure 7b) shows the top-scoring compound, as defined by the Tanimoto353

similarity to the vector of reference interactions. In this case, the grown molecule forms354

additional hydrogen bonding interactions with Asn142, Gly143, Ser144, Cys145 and Glu166,355

and hydrophobic interactions with Thr25 and Glu166. The majority of these interactions356

are recapitulated by, for example, fragments PDB: 5RGI and 5RF7 (Figure 7d)).357

Finally, we sought to combine the strengths of both docking scores and crystallographic358

information to optimise a combined scoring function. Figure 7c) shows the top-scoring359

compound as defined by eq 1 after 33 cycles of active learning. Although this compound is360

scored much lower by the gnina scoring function (predicted affinity 2 µM), it extends into361

the S3 and S1’ pockets and retains many of the interactions observed in Figure 7b) (e.g.362

hydrogen bonding interactions with Asn142, Gly143, Ser144, Cys145 and Glu166).363

Analysis of hit compounds.364

The top 500 compounds from each of four active learning runs (two optimising predicted365

pK, one optimising protein-ligand interactions, and one optimising the combined scoring366

function) were checked for availability from the Enamine store. Interestingly, very few of the367

top scored by predicted pK were available (four in total). This is likely due to an important368

unavailable building block(s), and could be mitigated in future by increasing diversity and/or369

including direct store queries in the search process. In any case, we focussed here on outputs370

from the remaining two runs, and submitted the top 10 protein-ligand interaction and top371

25 combination scoring compounds for costing. Finally, a total of 19 designed compounds372

were purchased (of which 15 had been optimised used the combination score) based on373
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quoted price and excluding similar compounds (based on visual inspection). Two control374

compounds were also included; one known binder from a crystallographic fragment screen375

(Enamine ID: Z44592329; PDB: 5R83)3 and one elaborated compound from the COVID376

Moonshot study (Enamine ID: Z4943052515 (literature IC50 0.288 µM)).4 The twenty one377

purchased compounds (Figure S11) were evaluated in a fluorescence-based Mpro activity378

assay at 1000, 500, 10 µM (Figure S12). Compounds 5 and 6 were excluded from the study379

due to solubility issues at 1000 µM in the assay conditions. Five compounds (8, 10, 12, 14380

and 21 (the positive control4)) showed reduction of Mpro activity ≤ 50% at 1000 µM. The381

IC50 values of these compounds, except 8 which displayed background autofluorescence, were382

further determined (Figure 8). Compounds 10, 12 and 14 showed a concentration-dependent383

inhibition of Mpro activity (measured pIC50 2.10, 3.01, 2.80 respectively). Nirmatrelvir, an384

orally bioavailable antiviral drug targeting Mpro, showed inhibition (pIC50 6.01), which was385

slightly higher than the reported IC50 (0.022 µM55), likely due to the limit of the assay (the386

enzyme concentration was at 0.2 µM). Figure 9 shows the predicted structures of compounds387

12 and 14 from the active learning design runs. Both compounds form hydrogen bonding388

interactions with the backbone of Glu166, as well as hydrophobic interactions in the S1’389

pocket.390

Finally, to investigate whether the relatively low affinity of designed compounds is due to391

insufficient exploration of chemical space or the empirical objective functions used to optimise392

molecules, we performed a retrospective analysis of the designed compound space against393

known binders resulting from the COVID Moonshot crowd-sourced discovery campaign.4 In394

particular, Figure 10 shows the three most similar compounds from the active learning runs395

(as defined by Tanimoto similarity search between RDKit Morgan fingerprints with a radius396

of 3 and size of 2048) to a curated set of 292 hit compounds. Considering that our FEgrow397

runs took as input only a single PDB receptor structure and pyridyl fragment core, it is398

clear that this fragment growing and on-demand library screening approach holds promise399

for suggesting biologically active compounds early in hit discovery campaigns. However,400
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Figure 8: IC50 determination of selected compounds with Mpro. Compounds 10, 12 and 14
were tested at a top concentration of 1000 µM. Nirmatrelvir was tested at a top concentration
of 10 µM as a positive control. Datapoints presented as mean ± SD; pIC50 presented as mean
± SEM; two biological repeats consisting of three technical replicates. 10 consists of one
biological repeat with three technical replicates. Conditions: Mpro (0.2 µM), 12-hour pre-
incubation with compounds, 20 µM fluorescent substrate, 50 mM Tris-HCl (pH 7.3), 1 mM
EDTA and temperature 25◦C.

Figure 9: Predicted bound structures of compounds 12 (Z1470573089) and 14
(Z8969017446).
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Figure 10: a) Experimental Moonshot compound (literature IC50 17 µM) and most similar
compound from this study, from active learning optimisation of predicted pK (β=10), b)
Experimental Moonshot compound (literature IC50 54 µM) and most similar compound
from this study, from active learning optimisation of predicted pK (β=10), c) Experimental
Moonshot compound (literature IC50 57 µM) and most similar compound from this study,
from active learning optimisation of combination scoring function.

further work is needed to ensure that the most promising compounds are located at the top401

of ranked lists for synthetic prioritisation and testing.402

Discussion and Conclusions403

In this study, we have combined the FEgrow software, an open modular workflow for building404

and scoring ligands in protein binding pockets, with active learning to guide and automate405

chemical space searches for promising binders. In agreement with numerous other studies,27406

we have shown that search efficiency is not too dependent on the hyperparameters of the407

active learning model, which include the choice of regression model, the acquisition function408

and number of compounds picked per cycle. For this particular study, we find efficiency409

improvements of a factor of around 5x over random selection, which will aid throughput of410

future prospective design efforts.411

With the design of FEgrow, we hope to overcome some of the current limitations of de412

novo drug design discussed in the Introduction. Some of these limitations are addressed in413

the current study, and some will be addressed in future aided by ongoing advances in molec-414
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ular modelling and machine learning. For example, we tackle the question of binding pose415

optimisation by using a fast and accurate machine learning potential (ANI-2x17) to describe416

the ligand energetics in a mechanical embedding scheme. However, with the flexibility of417

the FEgrow interface with OpenMM,18 new models could be substituted in, and these are418

now approaching sufficient speed and accuracy (including for long-ranged interactions) such419

that the entire protein-ligand complex could be described using a single, consistent machine420

learning potential.56,57 In this study, we made the approximation that the protein binding421

pocket is rigid and used a single receptor structure for design. However, now that ligand422

building and scoring is fully automated, future studies could use, for example, ensembles of423

receptor structures, which may be beneficial in cases where the pocket is more flexible.424

A limitation of this and other similar studies is the choice of objective function in the ac-425

tive learning cycles. To demonstrate the flexibility of the FEgrow package, we demonstrated426

four design cycles here, two optimising for predicted affinity using the gnina CNN scoring427

function and two including a more direct optimisation of protein-ligand contacts extracted428

from crystallographic fragment screens. While we do not have enough data to assess the429

relative merits of these scoring functions, we expect the latter to be useful where experimen-430

tal structural data exists, at least as part of a multi-objective optimisation in future.58 As431

a flexible alternative to PLIP scores trained on system-dependent crystal structures, it has432

also been shown that transferable neural networks can be trained on the PDBbind structural433

database to recognise favourable protein-ligand interactions.59434

As shown in Figure 1c), to address the issue of synthetic tractability of the de novo435

built compounds, we inserted regular queries of the Enamine REAL database into the active436

learning cycles. In this way, we can use the initial chemical space to train the active learning437

regression models, and then over time seed the chemical space with compounds that are both438

similar to predicted actives and purchasable. In this way, we were able to test the predictions439

of the active learning workflow with a turn around time of a few weeks from order to biological440

testing. Of the 19 designed compounds that were purchased here, three showed measurable441
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activity, but none approached the desired levels for further progression. Nevertheless, a442

similarity search showed the presence of effective inhibitors in the built chemical space, and443

so further investigation will focus on ranking compound designs ahead of purchase, perhaps444

via an extra stage of physics-based free energy calculations.26445

Code Availability446

FEgrow is freely available, with a set of tutorials, at https://github.com/cole-group/447

FEgrow.448
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(14) Ferla, M.; Sánchez-Garćıa, R.; Skyner, R.; Gahbauer, S.; Taylor, J.; von Delft, F.; Mars-507

den, B.; Deane, C. Fragmenstein: predicting protein-ligand structures of compounds de-508

rived from known crystallographic fragment hits using a strict conserved-binding–based509

methodology. ChemRxiv 2024,510

(15) Bieniek, M.; Cree, B.; Pirie, R.; Horton, J.; Tatum, N.; Cole, D. An open-source511

molecular builder and free energy preparation workflow. Commun. Chem. 2022, 5,512

136.513

(16) Ertl, P.; Altmann, E.; Racine, S. The most common linkers in bioactive molecules and514

their bioisosteric replacement network. Bioorganic & Medicinal Chemistry 2023, 81,515

117194.516

(17) Devereux, C.; Smith, J. S.; Huddleston, K. K.; Barros, K.; Zubatyuk, R.; Isayev, O.;517

Roitberg, A. E. Extending the Applicability of the ANI Deep Learning Molecular Po-518

tential to Sulfur and Halogens. J. Chem. Theory Comput. 2020, 16, 4192–4202.519

(18) Eastman, P. et al. OpenMM 8: Molecular Dynamics Simulation with Machine Learning520

Potentials. The Journal of Physical Chemistry B 2024, 128, 109–116.521

(19) McNutt, A. T.; Francoeur, P.; Aggarwal, R.; Masuda, T.; Meli, R.; Ragoza, M.; Sun-522

seri, J.; Koes, D. R. GNINA 1.0: molecular docking with deep learning. J. Cheminf.523

2021, 13, 1–20.524

(20) Zhang, C.-H. et al. Potent Noncovalent Inhibitors of the Main Protease of SARS-CoV-2525

from Molecular Sculpting of the Drug Perampanel Guided by Free Energy Perturbation526

Calculations. ACS Cent. Sci. 2021, 7, 467–475.527
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