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This Perspective offers an overview on the applications of the exact factorization of the electron-nuclear wavefunction
to the domain of theoretical photochemistry, where the aim is to gain insights into the ultrafast dynamics of molecular
systems via simulations of their excited-state dynamics beyond the Born-Oppenheimer approximation. The exact fac-
torization offers an alternative viewpoint to the Born-Huang representation for the interpretation of dynamical processes
involving the electronic ground and excited states as well as their nonadiabatic coupling through the nuclear motion.
Therefore, the formalism has been used to derive algorithms for quantum molecular-dynamics simulations where the
nuclear motion is treated using trajectories and the electrons are treated quantum mechanically. These algorithms have
the characteristic features of being based on coupled and on auxiliary trajectories, and have shown excellent perfor-
mance in describing a variety of excited-state processes, as this Perspective illustrates. We conclude with a discussion
on the authors’ point of view on the future of the exact factorization.

I. INTRODUCTION

Photochemical and photophysical phenomena in molecular
systems occur around us at every moment. Light absorption
initiates the chemical reactions at the basis of photosynthe-
sis in plants1, activates the isomerization of the retinal chro-
mophore in rhodopsin culminating in animal vision2, and con-
verts provitamin D into vitamin D in our body3. For tech-
nological and medical applications, the goal of understand-
ing these and similar phenomena is the design of systems that
function as well as nature itself, to produce photovoltaic cur-
rent upon absorption of light4, to label biological cells car-
rying diseases to the human body5, or to produce light in a
clean and efficient way via electroluminescence in organic
light emitting diodes6. Understanding and controlling the be-
havior of matter in all these situations require a deep knowl-
edge of the fundamental quantum-mechanical laws governing
the complex interplay of the molecules with light and with
their environment at the microscopic scale over time scales
ranging from femtoseconds to nanoseconds.

In this rich landscape of molecular processes and systems,
the field of quantum molecular dynamics has sparkled in re-
cent years7. Great progress has been achieved at the more
fundamental, theoretical level as well as from the point of
view of the algorithms/software developments and applica-
tions. Many novel ideas have been proposed, motivated by
the challenges encountered when simulating complex organic
materials4,6,8–10 and biological systems3,9,11,12, or when inves-
tigating phenomena over long time scales to look at slow pro-
cesses such as fluorescence13,14 or vibrational relaxation, or
when creating hybrid light-matter states in the strong coupling
regime in optical and plasmonic microcavities15–19.

Simulating photochemical and photophysical processes in
molecular systems requires to describe the interplay of elec-
tronic and nuclear dynamics, possibly with the explicit in-
clusion of light, and, in particular, accounting for excited-

state effects, i.e., the so-called nonadiabatic or beyond-Born-
Oppenheimer effects20. For excited-state processes, on-the-fly
molecular-dynamics simulations are perhaps the most widely
used approaches, allowing one to access complex systems
over reasonably long time scales up to few tens of picosec-
onds. Aiming to solve the time-dependent Schrödinger equa-
tion and to approximate the fundamental quantity of inter-
est, i.e., the time-dependent molecular wavefunction21, these
methods rely on the support of various kinds of trajectories to
mimic the nuclear dynamics under the effect of the electronic
ground state and the (necessary) excited states. Ranging from
quantum to classical, the nuclear evolution can be treated us-
ing:

• trajectory-basis functions, generally used to evolve
Gaussian wavepackets by integrating ordinary differ-
ential equations that in some cases closely resemble
Hamilton’s equations22–33,

• quantum34–42, coupled43–47, auxiliary48,49 trajectories,
retaining fully or partially the quantum character of the
overall dynamics,

• semiclassical methods combined with the path-integral
formulation of the quantum-mechanical propaga-
tor11,50–55,

• independent classical trajectories9,47,56–83, allowing one
to access efficiently large systems of “experimental
complexity”, even if, sometimes, at the cost a losing
accuracy.

In on-the-fly simulations, the other aspect of the problem,
i.e., the electrons, enters the nuclear evolution in a somehow
static way, as the necessary properties, such as energies, gra-
dients, nonadiabatic couplings, spin-orbit couplings, or tran-
sition dipole moments, are determined (on-the-fly) along the
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trajectories at the visited nuclear geometries. In addition, us-
ing an ab-initio or a semi-empirical or an analytical descrip-
tion of the electronic Hamiltonian, the most suitable electronic
representation for the problem at hand and for the methodol-
ogy chosen for the simulations needs to be chosen, e.g., the
adiabatic vs the diabatic representation.

It is worth mentioning here that other classes of methodolo-
gies exist to simulate nonadiabatic dynamics, those based for
instance on the density-matrix formalism10,84–92 or on quan-
tum wavepackets propagation93–98, but will not be covered in
this Perspective.

As it is clear from the above discussion, the field of quan-
tum molecular dynamics is extremely vast. Therefore, this
Perspective will only discuss the impact that theoretical de-
velopments based on the exact factorization of the electron-
nuclear wavefunction99,100 had in this domain so far, and will
present our viewpoint on some promising avenues for the fu-
ture of the exact factorization.

To go beyond the Born-Oppenheimer approximation101 and
to consider nonadiabatic, excited-state effects in the coupled
dynamics of electrons and nuclei in molecular systems, the
standard theoretical construction is the Born-Huang represen-
tation102 of the molecular wavefunction21. This is an exact
representation of the electron-nuclear wavefunction as a linear
combination of the so-called adiabatic states, i.e., the eigen-
states of the electronic Hamiltonian. An alternative to the
Born-Huang representation is the exact factorization, which
expresses the electron-nuclear wavefunction as the product
of a marginal nuclear amplitude and a conditional electronic
amplitude, parametrically dependent on the nuclear config-
uration99. The exact factorization can be extended to any
multicomponent many-body wavefunction, since no assump-
tion is made on the physical properties of the subsystems to
identify the marginal and the conditional amplitudes, e.g., the
small electron-nuclear mass ratio usually invoked in the Born-
Oppenheimer approximation.

The exact factorization depicts a photochemical reaction in
terms of the dynamics of nuclei and electrons, offering a refor-
mulation of the quantum dynamics of a molecule that is free
from concepts such as static potential energy surfaces, coni-
cal intersections103–105, and electronic transitions56. Specifi-
cally, it was formulated in 2010 by Gross and co-workers to
tackle the problem of describing the nonadiabatic dynamics
of electrons and nuclei in a molecule (H+

2 in that case) under
the effect of an external laser pulse99,106. This work proposed
to analyze and to simulate the coupled dynamics of electrons
and nuclei in nonadiabatic conditions employing the time-
dependent potential energy surface and the time-dependent
vector potential, which are concepts arising purely from the
dynamics of the electrons even in the absence of external time-
dependent fields. These time-dependent potentials provided
an original tool to rethink our way of looking at nonadiabatic
processes: in the Born-Huang framework, nuclear wavepack-
ets (blue and pink Gaussian-like shapes in Fig. 1 represent the
modulus squared of the wavepackets) evolve under the effect
of static electronic potential energy surfaces (blue and pink
curves in Fig. 1 represent the energies of the ground state and
the first excited state as function of a one-dimensional nuclear

coordinate) and exchange amplitude in the regions where the
energies are close, thus accounting for electronic nonadiabatic
transitions; in the eye of the exact factorization, the evolu-
tion of a single nuclear wavefunction (purple-colored areas in
Fig. 1 represent the modulus squared of the wavefunction) is
driven by a single time-dependent (scalar and vector) poten-
tial incorporating the dynamical effects of the electrons (the
purple curve in Fig. 1, i.e., the time-dependent potential en-
ergy surface, changes in time but its shape is reminiscent of
the shapes of the blue and pink curves of the upper panels).

The introduction of the time-dependent potentials in the
framework of the exact factorization, along with a natural
analogy with classical electromagnetism, lends itself to the
introduction of the concept of a classical force107,108, that is
uniquely defined in the framework of the exact factorization.
The concept of a classical force goes hands in hands with that
of trajectories109: in this way, the formalism has been em-
ployed successfully and largely in the domain of quantum
molecular dynamics and of on-the-fly simulations48,110–112.
Perhaps, this is the field where the exact factorization made
the most progress and proposed the most interesting develop-
ments, some of which will be discussed in this Perspective.

The time-dependent version of the exact factorization fol-
lowed previous work based on the stationary Schrödinger
equation113–119. We refer the reader to Refs. [ 118,120–
126] for an overview of the topics tackled by various au-
thors employing the time-independent formulation of the ex-
act factorization. In addition, alternative viewpoints have
been proposed to study electron-nuclear126–132, electron-
electron133–136 and photon-electron-nuclear137–142 systems.

In this Perspective, we will focus on the theoretical and
on the algorithmic aspects of the exact factorization of the
electron-nuclear wavefunction. The formulation of the the-
ory will be briefly recalled in Section II and we will describe
the coupled-trajectory algorithms derived from it to simulate
nonadiabatic processes in Section III. Some applications of
the exact factorization and of these algorithms is presented
in Section IV. Section V presents a brief overview of recent
work on the dynamics of photon-electron-nuclear systems em-
ploying the exact-factorization framework. Our conclusions
are discussed in Section VI.

II. THE EXACT FACTORIZATION FRAMEWORK

A non-relativistic quantum-mechanical system comprised
of two sets of interacting particles, with coordinates x and X,
can be described by the Hamiltonian Ĥ(x,X), which can be
written as

Ĥ(x,X) = T̂ (X)+ ĤBO(x,X) (1)

We indicate with T̂ (X) the kinetic energy of the particles iden-
tified by the coordinates X and with ĤBO(x,X) the sum of
the remaining terms, i.e., the kinetic energy of the particles
identified by the coordinates x and all the interactions. In the
electron-nuclear problem, x = r stands for the electronic po-
sitions and X = R for the nuclear positions, and ĤBO(r,R) is
usually referred to as Born-Oppenheimer (BO) Hamiltonian,
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FIG. 1. Schematic comparison of the “standard” way of looking at the steps of a photochemical “experiment” and the exact-factorization way.
Top panels: Pink and blue solid lines indicate the potential energy curves of the ground and excited state as a function of a one-dimensional
nuclear coordinate. The Gaussian-like shapes represent the nuclear densities associated to the ground state (pink) and excited state (blue)
evolving on the support of the respective potential energy curve. Bottom panels: The solid purple line shows the time-dependent potential
energy curve as a function of a one-dimensional nuclear coordinate. The purple coloured area indicates the nuclear density that evolves on the
support of the time-dependent potential energy curve. From left to right: Initially the system is in its ground state (Initialisation), absorption
of a photon excites part of the system to the excited state, creating a wavepacket (Excitation), this wavepacket evolves first adiabatically on the
excited state (Evolution) until it reaches a conical intersection where the population is transfered back to the ground state (Deactivation) where
it can finally form photoproducts by equilibrating in another region of configuration space (Photoproducts).

which explains our choice of labelling this term with the sub-
script “BO”.

The time-dependent Schrödinger equation (TDSE) with
Ĥ(x,X) dictates the evolution of the wavefunction Ψ(x,X, t)
as

ih̄
∂

∂ t
Ψ(x,X, t) = Ĥ(x,X)Ψ(x,X, t) (2)

The exact factorization of the time-dependent wavefunction
has been proposed by Gross and coworkers99,106 in the form

Ψ(x,X, t) = χ(X, t)Φ(x, t;X) (3)

by expressing the full wavefunction as the product of a
marginal amplitude, i.e., χ(X, t), and a conditional ampli-
tude, i.e., Φ(x, t;X), that parametrically depends on the coor-
dinates X. The interpretation of |Ψ(x,X, t)|2 as a joint prob-
ability density allows one to easily identify |χ(X, t)|2 as the
marginal probability density of X, with |Φ(x, t;X)|2 the con-
ditional probability density, whose normalization over x has
to be imposed ∀ X, t. The TDSE combined with such a partial
normalization condition yields

ih̄
∂

∂ t
χ(X, t) =

[
∑
ν

[−ih̄∇ν +Aν(X, t)]2

2Mν

+ ε(X, t)
]

χ(X, t)

(4)

ih̄
∂

∂ t
Φ(x, t;X) =

[
ĤBO(x,X)+Û [Φ,χ]− ε(X, t)

]
Φ(x, t;X)

(5)

which are the coupled evolution equations for χ(X, t) and
Φ(x, t;X), respectively. The index ν is used to label the parti-
cles whose coordinates are given by X.

Equation (4) is itself a TDSE where the coupling to the dy-
namics of Φ(x, t;X) is expressed in terms of a time-dependent
vector potential (TDVP)

Aν(X, t) = 〈Φ(t;X)| −ih̄∇ν Φ(t;X)〉x (6)

and a time-dependent potential energy surface (TDPES)

ε(X, t) = 〈Φ(t;X)| ĤBO(x,X)+Û [Φ,χ]− ih̄
∂

∂ t
|Φ(t;X)〉x

(7)

In the definitions of the TDVP and TDPES, we indicate with
the symbol 〈 · 〉x an integration over x, and we use the conven-
tion that such variable does not appear explicitly in the term
in the bra-ket as it is integrated over.

The TDVP encodes information about the momentum field
of the particles whose coordinates are given by X, since

Aν(X, t) =
h̄Im[〈Ψ(X, t)|∇ν |Ψ(X, t)〉x]

|χ(X, t)|2
−∇ν S(X, t) (8)

where χ(X, t) = exp [(i/h̄)S(X, t)]|χ(X, t)|.
Note that the product form of the wavefunction

Ψ(x,X, t) is invariant under the phase transformations
Φ̃(x, t;X) = exp [(i/h̄)θ(X, t)]Φ(x, t;X) and χ̃(X, t) =
exp [(−i/h̄)θ(X, t)]χ(X, t). Thus, under these transforma-
tions, the TDVP and TDPES transform as well, as standard
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gauge potentials, namely Ãν(X, t) = Aν(X, t) + ∇ν θ(X, t)
and ε̃(X, t) = ε(X, t) + ∂tθ(X, t), and Eqs. (4) and (5) are
form-invariant.

Equation (5) yields the evolution of Φ(x, t;X), where the
coupling to the dynamics of Eq. (4) is provided by

Û [Φ,χ] = ∑
ν

[−ih̄∇ν −Aν(X, t)]2

2Mν

(9)

+∑
ν

1
Mν

(
−ih̄∇ν χ(X, t)

χ(X, t)
+Aν(X, t)

)
(−ih̄∇ν −Aν(X, t))

The exact factorization of the time-dependent wavefunction
has been employed extensively in the field of quantum molec-
ular dynamics as a tool to interpret and to simulate the coupled
electron-nuclear dynamics in nonadiabatic conditions, i.e., be-
yond the BO approximation. In this case, X labels the nu-
clear positions R and x labels the electronic positions, with
Ψ(r,R, t) indicating the time-dependent molecular wavefunc-
tion.

In the Born-Huang representation of the coupled electron-
nuclear problem, the molecular wavefunction is written as a
linear combination of adiabatic electronic states ϕl(r;R), that
are the eigenstates of the BO Hamiltonian, with coefficients
χl(R, t) usually referred to as nuclear amplitudes, namely

Ψ(r,R, t) = ∑
l

χl(R, t)ϕl(r;R) (10)

If in the exact-factorization form of the molecular wavefunc-
tion, the electronic conditional amplitude is expressed as a
Born-Huang-like expansion,

Ψ(r,R, t) = χ(R, t)Φ(r, t;R) = χ(R, t)∑
l

Cl(R, t)ϕl(r;R)

(11)

the relation χl(R, t) = χ(R, t)Cl(R, t) follows.
When describing the interaction of a molecule with (clas-

sical) light, as in the case of a laser pulse143–146 or a
continuous-wave laser147–153, an additional time-dependent
term may appear in the Hamiltonian, which can be expressed
as V̂ (r,R, t) = −µ̂(r,R) ·E(t) in the dipole approximation.
In this case, the interaction potential V̂ (r,R, t) depends on
µ̂(r,R), the molecule electric dipole moment, and on E(t),
the external time-dependent electric field. In some situa-
tions154–164, the relativistic correction due to the geometry-
dependent spin-orbit coupling ĤSOC(x,R) can be included in
the system Hamiltonian, where the variable x = [r,σ] ac-
counts for the electronic spin σ as well as for the electronic
positions r.

While attempts have been made to solve exactly Eqs. (4)
and (5)165,166, the most interesting developments of the
exact factorization of the electron-nuclear wavefunction
focused on introducing the quantum-classical perspective
within this framework, such that the nuclear dynamics
is ultimately approximated using classical-like trajectories
while the electronic dynamics is treated quantum mechan-
ically39,41,43,110,167–173. The quantum-classical perspective
naturally emerges in the exact factorization, since the clas-
sical limit of Eq. (4) simply means to interpret the TDVP

and TDPES as standard (classical) electromagnetic poten-
tials producing a classical force on the nuclei109. The main
efforts in this context have been devoted, then, to the cal-
culation and approximation of the TDVP and of the TD-
PES from the solution of the quantum-mechanical electronic
equation (5). To this end, extensive work has been devoted
to analyze the TDVP and TDPES in model situations, such
as in photo-activated processes107,108,174, in relaxation dy-
namics through conical intersections144,175–177, in the pres-
ence of quantum interferences178, under the effect of an ex-
ternal time-dependent field99,106,144,147,179–182, or including
spin-orbit coupling111,183. Those numerical analyses, to-
gether with theoretical developments focusing on understand-
ing the behavior of the equations in some limiting cases, e.g,
the adiabatic limit184, or on resolution strategies of the nu-
clear equation, e.g., using semiclassical techniques185 or the
method of characteristics109,166, yielded various trajectory-
based schemes readily applicable to on-the-fly molecular-
dynamics simulations, as we will present below.

III. TRAJECTORY-BASED METHODS FOR
NONADIABATIC DYNAMICS IN MOLECULES

The exact factorization of the electron-nuclear wavefunc-
tion Ψ(r,R, t), especially thanks to the TDVP and TD-
PES, has been remarkably useful for understanding how the
quantum-classical perspective is introduced starting from the
quantum formulation of the dynamical problem, once Eqs. (4)
and (5) are given. However, accurately and efficiently cal-
culating the electronic TDVP and TDPES in the course of a
quantum molecular-dynamics simulation requires to develop
algorithms43,44,46,48,49,147,168,183,186,187 and software110,188–191

exploiting the strengths of current quantum-chemistry tech-
niques for on-the-fly dynamics. With this idea in mind, let us
present and compare the various quantum-classical schemes
that have been introduced in recent years to simulate nonadi-
abatic (photochemical) processes.

In general, the quantum-classical perspective on the exact
factorization requires to replace the concept of a quantum
nuclear wavefunction with an ensemble of trajectories. For-
mally, this is done by replacing in the equations R, a 3Nn-
dimensional vector, with Nn the number of nuclei of the sys-
tem, with the symbol Rα(t). Here, α = 1, . . . ,Ntr labels the
trajectories, that have to be many in order to reproduce the de-
localization of the nuclei in configuration space, and for each
α and at each time t, Rα(t) is a 3Nn-dimensional vector. The
trajectory-based nuclear dynamics can be simply summarized
using Hamilton’s equations

Ṙα
ν (t) =

Pα
ν (t)
Mν

(12)

Ṗα
ν (t) = Fα

ν (t) (13)

where we introduced here, for every trajectory α and for every
nucleus ν , the concepts of velocity, i.e., Ṙα

ν (t), of momentum,
i.e., Pα

ν (t), and of force, i.e., Fα
ν (t). In particular, Pα

ν (t) and
Fα

ν (t) are expressed in terms of the TDVP and of the TDPES.
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The trajectories can be assimilated to a moving grid: while
in the quantum treatment the value of a function f (R, t) can be
determined at time t at any point R, in the quantum-classical
treatment only the values f (Rα(t), t) are accessible. Clearly,
for a very large number of trajectories Ntr, information is not
lost when going from the quantum to the quantum-classical
treatment. It is important to note that, in order to evalu-
ate how functions of the type f (Rα(t), t) evolve, only to-
tal time-derivatives can be computed instead of partial time-
derivatives.

Aiming to develop on-the-fly procedures to solve the exact-
factorization equations by exploiting quantum chemistry, the
electronic wavefunction is expanded in the adiabatic basis,
as shown in Eq. (11). Therefore, the expression Φ(r, t;R) =
∑l Cl(R, t)ϕl(r;R) is inserted in Eq. (5) to derive a set of evo-
lution equations for the expansion coefficients Cl(R, t). Fol-
lowing from the above observations, when the idea of trajec-
tories is introduced, the electronic equation (5) is affected as
well, and the evolution of the coefficients is ultimately ex-
pressed as a total time-derivative Ċl(Rα(t), t) = Ċα

l (t).
The key quantity arising in such a quantum-classical formu-

lation of the electron-nuclear dynamics is the so-called quan-
tum momentum. In Eq. (5), the operator Û [Φ,χ] depends on
the nuclear wavefunction, and, when it is expressed in polar
form in terms of its modulus |χ| (or

√
|χ|2) and phase S, one

gets

−ih̄∇ν χ(R, t)
χ(R, t)

+Aν(R, t) = [∇ν S(R, t)+Aν(R, t)]

+i
−h̄∇ν |χ(R, t)|2

2|χ(R, t)|2

= Pν(R, t)+ iPν(R, t) (14)

where the term in square brackets is the classical momen-
tum Pν , that depends on the TDVP as anticipated above,
and it is summed to the quantum momentum Pν , which ap-
pears as a purely imaginary correction. The quantum momen-
tum encloses information about the spatial delocalization of
the nuclear density, and this information has to be recovered
even when trajectories are used to mimic the nuclear dynam-
ics. Therefore, the non-local character of the quantum nu-
clear density is encoded in the quantum momentum, that is
why the algorithms derived from the exact factorization re-
quire either a coupled-trajectory scheme43,44 or an auxiliary-
trajectory scheme42,48.

In general, the exact-factorization-based algorithms derived
so far can be viewed as variations of the Ehrenfest scheme or
of the surface-hopping method, where the effect of the quan-
tum momentum is included. The advantage of these particu-
lar formulations is twofold: first, since Ehrenfest and surface
hopping are the most widely-used approaches for simulations
of photochemical processes, they are well-understood by the
community and are implemented in many codes; second, it
is easy to show how the corrections related to the inclusion
of the quantum momentum cure the major drawbacks of both
approaches, i.e., the mean-field character of Ehrenfest171 and
the overcoherence problem of surface hopping59,66,192. To
demonstrate this second point, we find instructive to show
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FIG. 2. Left panels: Ehrenfest dynamics (using 1000 trajectories).
Right panels: Surface hopping dynamics (using 2000 trajectories). In
the upper panels, the ground-state (dark-green line) and the excited-
state (orange line) potential energy curves are shown, along with the
quantum nuclear density at three times along the simulated dynam-
ics compared to the Ehrenfest or surface hopping trajectories at the
same times. In the lower panels, the population of the excited state
is shown as black curves, superimposed to the population estimated
during Ehrenfest dynamics (left) or during surface hopping dynamics
(right).

here, for a simple model case, the performance of Ehrenfest
dynamics and of surface hopping. Similarly to the scheme of
Fig. 1, we use a one-dimensional two-electronic-state model
defined by the green and orange potential energy curves re-
ported in the upper panels of Fig. 2. The dynamics is initiated
in the excited state with a Gaussian wavepacket centered at
R = 2 bohr, whose density is represented as light-blue curves
in both upper panels of the figure. The dynamics proceeds
with such a photo-excited wavepacket moving towards the
right and crossing the region where the energies of the ground
and of the excited states are close. There, a nonadiabatic event
takes place and the wavepacket branches, following partially
the ground state potential and partially the excited state poten-
tial. This behavior can be verified at t = 12 fs, when the ma-
genta nuclear density presents two peaks, attesting to the fact
that the potential energy curves with different slopes drive the
dynamics. Later on, at t = 24 fs, the nuclear density, repre-
sented in purple, is completely delocalized, with the portion
on the right associated to the ground state while the portion
on the left crosses once again the nonadiabatic region after
being reflected by the barrier on the far right of the excited
state potential curve.

The mean-field character of the Ehrenfest approach is not
able, by construction, to capture with trajectories the dynam-
ics just described, characterized by a final density that pro-
ceeds along diverging paths. This is very clearly represented
by the circles in the upper left panel of Fig. 2, that show the po-
sitions of the Ehrenfest trajectories at the same time snapshots
of the density, along with the potential energy felt by those
trajectories, whose gradient is used to compute the force. The
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absence of the splitting in the distribution of trajectories yields
wrong nuclear dynamics, and, consequently, it is not surpris-
ing that the population of the excited state (lower left panel of
Fig. 2) at the end of the simulated dynamics is not correctly re-
produced by Ehrenfest. The surface-hopping approach cures
the mean-field problem of Ehrenfest. Specifically, the trajec-
tories follow at all times either one or the other potential en-
ergy, that is why the circles on the right panel of Fig. 2 are
distributed always either on the ground-state or on the excited-
state energy curve. Surface-hopping trajectories correctly re-
produce the splitting of the nuclear density since a hopping
algorithm allows them to change instantaneously the potential
that drives their dynamics (so-called, active state), with high
probability in the region of strong nonadiabaticity. Nonethe-
less, the disconnect between the potential (or the force) that
drives the dynamics of the trajectories and the evolution of the
electronic coefficients (similarly to the Ċα

l (t) above) is often
source of disagreement between the two ways of estimating
the electronic populations: one way is to count the fraction of
trajectories in each state, while the other is via the coefficients.
This problem, related to the concepts of internal consistency
and of overcoherence of the algorithm, clearly appears at the
final times of the simulated dynamics (lower right panel of
Fig. 2), where the purple-dashed and blue-continuous curves
diverge.

Various algorithms based on the exact factorization are ca-
pable to circumvent naturally at the same time the mean-field
and overcoherence issues of Ehrenfest and surface hopping
thanks to the presence of the quantum momentum. In the past
few years, different groups introduced different flavours of
quantum-classical algorithms: the coupled-trajectory mixed
quantum-classical (CTMQC) scheme was developed by Gross
and coworkers in 201543, and as the name says, it employs an
ensemble of coupled trajectories to mimic the nuclear dynam-
ics; later on, the method surface hopping based on the exact
factorization (SHXF) was introduced by Min and coworkers
in 201848, aiming to use a surface-hopping scheme to mit-
igate the problems related to the large computational cost
of CTMQC by evolving independent trajectories and adopt-
ing auxiliary trajectories when necessary; with a similar pur-
pose, in 2021, Pieroni and Agostini developed the coupled-
trajectory Tully surface hopping (CTTSH)44, which uses the
idea of surface hopping within a coupled-trajectory procedure;
Ha and Min proposed in 2022 an independent-trajectory ver-
sion of CTMQC, named Ehrenfest dynamics based on the
exact factorization (EhXF)49, which requires auxiliary tra-
jectories similarly to SHXF; aiming to alleviate the issue of
non-conservation of the total energy in CTMQC, Villaseco
Arribas and Maitra introduced in 2023 a variation of the al-
gorithm, i.e., CTMQC-E187,193, by imposing energy conser-
vation over the ensemble of trajectories, following a similar
idea that in EhXF is imposed at the single-trajectory level;
in a similar spirit, Blumberger and coworkers developed in
2023 CTMQC-(E)DI46, where a double-intercept (DI) idea
is introduced in CTMQC and in CTMQC-E to cure numer-
ical instabilities encountered in CTMQC(-E) when calculat-
ing the quantum momentum and, thus, greatly improving en-
ergy and norm conservation; in 2024 Maitra and coworkers,
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FIG. 3. Same as in Fig. 2 but for the CTMQC algorithm (using 1000
trajectories).

inspired by the work of Martens194, developed the quantum-
trajectory surface-hopping based on the exact factorization
(QTSH-XF)42, where a phase-space approach combined with
the exact factorization cures the frustrated hops and velocity
rescaling issues that SHXF inherits from surface hopping; an
assessment of various exact-factorization-based algorithms,
i.e., those based on auxiliary trajectories, along with their im-
plementation in the Libra package195 has been recently pre-
sented by Han and Akimov191. Currently, to the best of our
knowledge, the available open-source codes able to perform
exact-factorization-based calculations are PyUNIxMD190, de-
veloped in the group of Min and interfaced with various
quantum-chemistry packages, G-CTMQC196, developed by
our group and interfaced with the QuantumModelLib library
of analytical potentials197, and Libra191, which for the mo-
ment only allows calculations with model potentials; CTTSH
has been recently implemented in MOPAC-PI198,199.

As an example of the structure of the equations defining
the CTMQC algorithm43,170 as a variation of the Ehrenfest
scheme, let us show the following electronic and nuclear
(force) equations

Ċα
l (t)

∣∣
CTMQC = Ċα

l (t)
∣∣
Ehr +Ċα

l (t)
∣∣
qm (15)

Fα
ν (t)

∣∣
CTMQC = Fα

ν (t)
∣∣
Ehr +Fα

ν (t)
∣∣
qm (16)

Here, the first terms on the right-hand side are Ehrenfest-like
terms while the additional terms depend on the quantum mo-
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mentum. Similarly, CTTSH44 can be summarized as

Ċα
l (t)

∣∣
CTTSH = Ċα

l (t)
∣∣
TSH +Ċα

l (t)
∣∣
qm (17)

Fα
ν (t)

∣∣
CTTSH = Fα

ν (t)
∣∣
TSH (18)

where Ċα
l (t)

∣∣
TSH = Ċα

l (t)
∣∣
Ehr, as shown previously171, and

Fα
ν (t)

∣∣
TSH is simply an adiabatic force calculated as the gradi-

ent of the electronic active state that is chosen stochastically
at each time according to the fewest-switches algorithm56.

To give an idea of the performance of the exact factoriza-
tion, we show in Fig. 3 how CTMQC works in the situation
described in Fig. 2. The delocalization of the distribution of
trajectories is correctly reproduced by CTMQC, especially as
it shown by the circles at the final simulated time t = 24 fs
(green circles). Such a delocalization seems to appear more
slowly than in the quantum dynamics, as the distribution of
trajectories at t = 12 fs (blue circles) suggests. However, it is
interesting to note how a single potential is able to yield dif-
ferent forces in different portions of space so as to induce the
splitting of the distribution of trajectories (that is not possible
to achieve in Ehrenfest while in surface hopping it is only pos-
sible by introducing the hopping idea). In this simple case, the
TDPES can be calculated exactly, and it is shown in Fig. 3 as
crosses at times t = 0 (light-blue crosses), t = 12 fs (magenta
crosses) and t = 24 fs (purple crosses). Only at the interme-
diate time shown in the figure, the distribution of CTMQC
trajectories along the potential that drives their dynamics, i.e.,
the blue circles, does not follow the TDPES, i.e., the magenta
crosses, confirming, as observed previously, that CTMQC tra-
jectories reproduce the splitting of the nuclear density with
some delay. Nonetheless, such a delay does not affect sig-
nificantly the population of the excited state (lower panel in
Fig. 3) which perfectly agrees with the reference (gray line)
all along the dynamics.

A. General observations on nonadiabatic dynamics with
trajectories

It is important to mention here that, in general, the out-
come of a nonadiabatic quantum molecular-dynamics sim-
ulation strongly depends not only on the algorithm used to
propagate nuclear and electronic dynamics, but also (i) on
the choice of the initial conditions, (ii) on the representation
used for the electronic problem, and, perhaps mainly, (iii) on
the electronic-structure approach employed to determine elec-
tronic properties on-the-fly along the trajectories200. Since the
application of the exact factorization in the domain of photo-
chemistry is independent of point (iii), below, we will briefly
discuss only points (i) and (ii), as they have been analyzed pre-
cisely in the framework of the exact factorization111,142,147,177.
In relation to point (iii) above, some ideas have been devel-
oped in the context of the time-independent formulation of the
exact factorization by Requist and Gross in Ref. [120]. There,
it was proposed that the electronic equation, equivalent to
Eq. (5) but for the stationary solutions of the electron-nuclear
Hamiltonian, is expressed and solved using density functional

theory201,202 and some test studies were reported121. In addi-
tion, Min and coworkers recently recast the exact factorization
in such a way that a trajectory-based scheme can be made op-
erational in combination with real-time time-dependent den-
sity functional theory186.

An adequate preparation of the initial state of the system,
point (i) above, depends on the process under investigation
or on the experiment that one wants to simulate, and, thus, a
general “recipe” for the correct procedure does not exist. Our
group addressed this issue in earlier work focusing indepen-
dently either on the nuclear177 or on the electronic142 aspects
within the exact-factorization framework, but the problem has
been discussed in the literature by other authors203–209. The
choice of initial conditions, namely the nuclear positions and
momenta together with the electronic coefficients/populations
at the initial time, can affect the calculated dynamics and ob-
servables, like photoproducts, lifetimes, and quantum yields,
in many different ways. The dependence on the initial nu-
clear distribution might result more severe for the exact-
factorization-based coupled-trajectory methods than for other
approaches, since properly reconstructing the nuclear density
along the dynamics is crucial to compute the quantum mo-
mentum that enters the expression of the classical force, in
CTMQC (16), and of the evolution equation of the electronic
coefficients, in CTMQC (15) and in CTTSH (17).

On the one hand, in recent work on the photo-isomerization
dynamics of trans-azobenzene using CTTSH (see Sec-
tion IV B), it was necessary to freeze some high-energy inter-
nal vibrations while performing the initial harmonic Wigner
sampling to avoid creating highly energetic trajectories: due
to the limited number of affordable CTTSH trajectories (100
and 150 coupled trajectories were used) in such a large nu-
clear configuration space (of 72 dimensions), the energetic
trajectories were rapidly separating in space and needed to be
decoupled from the rest of the ensemble for numerical conve-
nience, essentially reducing CTTSH to standard surface hop-
ping. With a similar idea in mind, in order to avoid ensem-
bles, or bundles, of trajectories that dramatically diverge in
configuration space, the independent bundle approximation
(IBA) was proposed using CTMQC44. The IBA consists in
organizing Ntr trajectories in n bundles each containing ntr
trajectories, such that Ntr = n× ntr, where the ntr trajecto-
ries are grouped in the bundles according to their initial ki-
netic energy (or potential energy, or total energy, etc.). On
the other hand, the initialization of the electronic dynamics in
a pure adiabatic state is the commonly-accepted practice for
photochemical studies, since with a femtosecond laser pulse
it is possible to target the excitation of a low-lying electronic
state. Nonetheless, photo-ionization with an attosecond laser
pulse, broadly distributed in energy, is capable of creating a
coherent superposition of electronic states (see Section IV C).
For applications in attochemistry, then, the way of creating
such a superposition should be adapted to the used simulation
method as well as to the observables under investigation, as
discussed in Ref. [142].

Point (ii) above concerns the theoretical representation
adopted to describe the electronic dynamics. When aiming
to simulate the ultrafast relaxation process of a photo-excited
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system via conical intersections or avoided crossings between
electronic states of the same spin multiplicity, i.e., internal
conversions, the Hamiltonian given in Eq. (1) with x = r and
r = R is able to fully capture this dynamics. Therefore, usu-
ally, the adiabatic representation is employed, formed by the
eigenstates of the electronic Hamiltonian, i.e., ĤBO(r,R) in
Eq. (1). In this representation, a peculiar parametric depen-
dence on the nuclear configuration R appears, as consequence
of the dependence of ĤBO on R, and stimulates steadily inter-
ests in various communities due to its potential relation with
geometric phases210–220 (see Section IV A). The form of the
electronic Hamiltonian ĤBO is diagonal in this representation
and the coupling between pairs of electronic states is encoded
in the nonadiabatic coupling vectors – connecting two elec-
tronic states via the nuclear displacement operator. Due to
the very localized nature of these nonadiabatic coupling vec-
tors, local diabatization schemes are often employed to solve
the electronic evolution equation locally in the diabatic ba-
sis, designed to capture even with a finite integration time
step the localized degeneracy region between two electronic
states along the nuclear evolution. When describing processes
as intersystem crossings involving electronic states with dif-
ferent spin multiplicity, the spin-orbit coupling ĤSOC(x,R),
with x = r,σ, has to be included in the molecular Hamilto-
nian to open spin-forbidden relaxation pathways upon photo-
excitation. In such situations, the question presents itself as
to whether the spin-diabatic or the spin-adiabatic representa-
tion is most suited for the simulations111,155,183,221. The for-
mer is composed by the eigenstates of ĤBO, and the pairs of
electronic states are coupled either via the nonadiabatic cou-
pling vectors or via the spin-orbit couplings, depending on
the spin multiplicity; the latter is formed by the eigenstates
of ĤBO + ĤSOC, and the couplings between pairs of states
becomes fully of nonadiabatic character. Also in this case,
the literature presents various options depending on the algo-
rithm and on the code employed for the simulations. Dynam-
ics in the presence of spin-orbit coupling was analyzed based
on CTMQC111,183 and pointed out that, while at the exact-
factorization level there is no difference between the two rep-
resentations, as expected, the approximations underlying the
CTMQC algorithm perform better in the spin-adiabatic basis
than in the spin-diabatic basis. A very similar issue is en-
countered when an external laser field is added to the molecu-
lar Hamiltonian, i.e., ĤBO(r,R)+ Ĥext(r,R, t), since now the
ideas of field-adiabatic or field-diabatic bases can be intro-
duced222. Also in this case, authors discussed this point in re-
lation to various trajectory-based algorithms for nonadiabatic
dynamics, and in the context of the exact factorization only
the particular case of a periodic drive was considered, and CT-
MQC was combined with the Floquet formalism147, designed
to solve a TDSE with a Hamiltonian that is periodic in time.

IV. STUDIES OF ELECTRON-NUCLEAR DYNAMICS
BASED ON THE EXACT FACTORIZATION

This section of the Perspective provides an overview of the
variety of dynamical problems that have been tackled using

the exact factorization. In the following sections, we will
demonstrate the flexibility of the formalism in describing dif-
ferent effects and different properties, often providing new in-
sights into the studied processes or new understanding of the
theory.

First, in Section IV A, we will report on a dynamics in the
vicinity of a conical intersection in a Jahn-Teller model, re-
cently engineered in a quantum simulator. In this study, it
was discussed the fundamental difference between the con-
cept of topological phases due to the presence of conical inter-
sections that arise in the Born-Huang representation of the dy-
namics and the concept of dynamics-induced geometric phase
that is independent of the underlying theoretical representa-
tion used to analyze the dynamics. Then, in Section IV B, we
report on various applications of exact-factorization-based al-
gorithms to study the dynamics of molecules induced by the
creation of a vibrational wavepacket produced by photoexci-
tation. In Section IV B 1, we describe in some detail the work
of our group that employs a coupled-trajectory scheme, in par-
ticular, the photo-isomerization process of trans-azobenzene
upon nπ∗ and ππ∗ excitation with CTTSH in full dimension-
ality using the semi-empirical Floating Occupation Molecu-
lar Orbitals-Configuration Interaction (FOMO-CI) electronic
structure method with the reparametrized semi-empirical
electronic-structure model AM1. The results of CTTSH dy-
namics are compared to surface hopping w/o accounting for
decoherence corrections. In Section IV B 2, an overview of
the auxiliary-trajectory scheme SHXF is provided, highlight-
ing the works of Min and of Maitra on a large variety of
molecular systems and properties. Finally, in Section IV C,
we discuss a recent analysis reported on the different strate-
gies to initialize the dynamics simulated by various trajectory-
based procedures for excited-state dynamics in a model po-
tential upon creation of a coherent superposition of electronic
states, usually referred to as electronic wavepacket. Such an
electronic wavepacket can be created by an attosecond laser
pulse, and the ensuing dynamics is usually simulated using
the (multi-trajectory) Ehrenfest method, whose performance
in comparison to CTMQC have been discussed.

A. Low-energy dynamics at a conical intersection

As discussed in the previous sections, the exact factoriza-
tion provides a fundamentally different picture of photochem-
istry if compared to the Born-Huang representation, as it intro-
duces a single time-dependent potential governing the nuclear
evolution, in the form of a TDPES and a TDVP, bypassing
concepts such as multiple static adiabatic potential energy sur-
faces, conical intersections103–105,215,217,220,224–226 and nona-
diabatic couplings227.

When a dynamical process is studied in the Born-Huang
representation, conical intersections appear ubiquitous in
molecules: since the electronic Hamiltonian depends on the
nuclear positions, its eigenstates, i.e., the adiabatic states,
and its eigenvalues, the adiabatic potential energy surfaces,
are functions of the nuclear positions as well. Conical in-
tersections are regions of degeneracy of the adiabatic en-

https://doi.org/10.26434/chemrxiv-2024-n6cbn ORCID: https://orcid.org/0000-0003-2951-4964 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-n6cbn
https://orcid.org/0000-0003-2951-4964
https://creativecommons.org/licenses/by/4.0/


9

ergies, where the correlation between electrons and nuclei
manifests a singular behavior resulting in the divergence of
the nonadiabatic couplings. In this picture, conical intersec-
tions give rise to topological phenomena of great interest for
photochemistry and for low-energy molecular collisions or
dissociations212–216,219,228,229, which are related to geometric
phases and often referred to as molecular Aharonov-Bohm ef-
fects218,230,231.

In the light of the broad interest of the physical-chemistry
and chemical-physics communities in conical intersections
and geometric phases, several studies employing the exact
factorization144,175,176,232,233 have been conducted on proto-
typical situations of coupled electron-nuclear dynamics in the
vicinity of conical intersections. Overall, these works con-
cluded that in the studied cases, the time-dependent potentials
do not reflect the singular behavior of the adiabatic potential
energy surfaces and nonadiabatic couplings at the positions
of the conical intersections. Hence, the signatures of conical
intersections (seem to) disappear in the eye of the exact fac-
torization. These studies raised the question as to whether it is
possible to identify observable effects related to conical inter-
sections without relying on the Born-Huang, or any other the-
oretical, representation, since physical observables are inde-
pendent of the representation. This question is strictly related
to a longstanding debate about the possibility of providing ex-
perimental evidence of effects directly related to geometric
phases in molecules213,214,216,219,220,228,229.

Particular cases of geometric phases, which are those usu-
ally encountered in molecular processes within the Born-
Huang representation, are the topological phases. When
an electronic adiabatic eigenstate is slowly varied along a
closed path in nuclear configuration space encircling the con-
ical intersection, the corresponding wavefunction picks up a
phase, in addition to the dynamical phase arising from the
Schrödinger equation: if the phase depends on the geometry
of the path, it is called geometric, whereas if it depends on the
winding number of the path around the conical intersection,
it is called topological. For a real-valued adiabatic wavefunc-
tion, the topological phase is γ = 0 or π and the phase factor
is eiγ =±1, yielding a change of sign of the electronic wave-
function when transported along the path.

This idea of adiabatic transport of the electronic wavefunc-
tion in nuclear space implies the BO approximation. In an ex-
plicitly dynamical formulation, the BO approximation states
that the molecular wavefunction is

ΨBO(r,R, t) = φ
BO(r;R)χBO(R, t) (19)

thus only one electronic state φ BO(r;R), e.g., the ground state,
is considered in the dynamics. On the other hand, the exact
factorization yields the molecular wavefunction as in Eq. (11),
i.e., Ψ(r,R, t) = Φ(r, t;R)χ(R, t), which is formally similar
to Eq. (19), as it is a single product of a nuclear wavefunction
and of an electronic wavefunction with a parametric depen-
dence on R. In the BO approximation, one usually introduces
a static potential energy surface and static vector potential, or

derivative coupling, namely

ε
BO(R) =

〈
φ

BO(R)
∣∣ ĤBO(R)

∣∣φ BO(R)
〉

r

ABO
ν (R) =

〈
φ

BO(R)
∣∣− ih̄∇ν φ

BO(R)
〉

r

(20)

whose expressions are reminiscent of the TDPES (7) and of
the TDVP (6). The topological phase within the BO approxi-
mation γBO(Γ) is defined as the circulation of the correspond-
ing vector potential along the path Γ that encloses the conical
intersection,

γ
BO(Γ) =

∮
Γ
∑
ν

ABO
ν (R) ·dRν (21)

An analogous quantity can be introduced using the TDVP,
yielding

γ(Γ, t) =
∮

Γ
∑
ν

Aν(R, t) ·dRν (22)

While γBO(Γ) = 0 or π is a topological phase, and is thus
an intrinsic property of the Hamiltonian of the system, γ(Γ, t)
depends on the dynamics that the system undergoes and is a
geometric quantity. In addition, since the TDVP is related
to the nuclear momentum field of the molecular system as
shown in Eq. (8), its circulation is gauge-independent and
representation-independent. Therefore, Eq. (22) is a robust
physical observable. Note that, in addition, the curl of the
TDVP is a physical observable as well, since it is the curl of
the nuclear momentum field.234

Preliminary studies on geometric phases in the exact fac-
torization were conducted by Gross and coworkers employing
its static formulation and drew different conclusions depend-
ing on the systems that were considered124,125,235. In Ref. [
124], for instance, it was shown that, in the studied model for
proton coupled-electron transfer, the concept of topological
phase was merely a consequence of the BO approximation.
Thus, it completely disappeared in the framework of the ex-
act factorization, only to reappear as a topological quantity
in the limit of infinite nuclear mass, i.e., the BO limit. In-
stead, in Ref. [125], a model of a pseudorotating triatomic
molecule236 was used to show that the topological phase re-
verts to a geometric quantity if the system manifests a degen-
erate ground state, even within the exact factorization. These
studies suggest, then, that the topological phase of the Born-
Huang representation becomes geometric in particular cases
related to degeneracies of the full Hamiltonian, while neither
topological nor geometric phases appear otherwise. Later on,
to shed some light on the time-dependent picture of geometric
phases in the exact factorization and to relate theoretical ob-
servations to experiments, our group investigated the dynam-
ics generated by the E ⊗ e Jahn-Teller Hamiltonian recently
engineered in a trapped-ion quantum simulator220. The exper-
iment allowed to directly image the evolution of the nuclear
density at the conical intersection in order to detect directly
the signature of the conical intersection. The working hypoth-
esis was that, since the real-valued electronic wavefunction
changes sign when transported around the conical intersec-
tion, in order to yield a single-valued molecular wavefunction,
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FIG. 4. The color maps show the TDPES at different times along
the simulated dynamics of the E⊗e Jahn-Teller model of Ref. [220].
The contour lines show the nuclear density at the same times. The
cross at X ,Y = 0,0 indicates the position of the conical intersection.
Reprinted with permission from The Journal of Physical Chemistry
Letters (2023) 14 (51), 11625-11631. Copyright 2023 American
Chemical Society.

the nuclear wavefunction in Eq. (19) needs to change sign as
well. Therefore, the nuclear wavefunction has to develop a
node or a zero-density line, which are indications of destruc-
tive interferences caused by the geometric phase. However,
this hypothesis relies on the BO approximation and, as shown
in Ref. [232], it cannot be verified when employing the exact
factorization.

In Refs. [232,233], the exact quantum dynamics was sim-
ulated using the same Hamiltonian as in Ref. [220] and com-
pared to the BO approximation, by calculating and analyzing
the nuclear density, the TDPES and the TDVP of the exact
factorization. Overall, the observations allowed to discard all
traces of singularities or destructive interferences related to
topological-phase effects. As an example, let us discuss here
the TDPES in Fig. 4, which is shown as colour map at three
times along the dynamics. First, in the left panel, the nuclear
density (depicted as black contour lines) approaches the lo-
cation of the conical intersection (indicated by a red cross at
the origin X ,Y = 0,0) at 0.24 ms; then, in the central panel,
the density has reached the location of the conical intersec-
tion at 0.69 ms; finally, at 1.35 ms, the density has passed
the origin X ,Y = 0,0 and exhibits a depletion along the line
X > 0,Y = 0. In particular at this last time, it is interesting to
observe that the TDPES develops a barrier-like feature along
Y = 0 for X > 0. However, while the height and width of
this barrier change over time, it remains finite and does not
diverge. Thus, this barrier induces a depletion of the nuclear
density along Y = 0 but cannot cause a node in the correspond-
ing nuclear wavefunction. Indeed, a finite (strictly larger than
10−5), yet small, amount of nuclear density is always present
in the region X > 0,Y = 0, attesting to the fact that there is
no nodal line formed and thus, no topological-phase effect in-
duced in the nuclear dynamics.

As indicated in Eq. (22), the geometric phase arising in the
exact factorization is calculated using the TDVP. While the
TDVP is a gauge-dependent quantity, its curl and its circula-
tion are not, thus they are physical observables. In Fig. 5, we
show the curl of the TDVP at three different times along the
simulated dynamics, and we compare it to the curl of the nona-
diabatic coupling vectors of the Born-Huang representation.
Note that in the particular case of a two-state system with real

FIG. 5. The color maps show the curl of the TDVP at different times
along the simulated dynamics of the E⊗e Jahn-Teller model of Ref. [
220] and the curl of the nonadiabatic coupling vectors (NACV) for
the same model. The circles show the paths along which the line
integrals of Eqs. (21) and (22) are performed. Reprinted with per-
mission from The Journal of Physical Chemistry Letters (2023) 14
(51), 11625-11631. Copyright 2023 American Chemical Society.

adiabatic eigenstates, γBO(Γ) of Eq. (21) can be calculated
by replacing ABO

ν (R) with the nonadiabatic coupling vectors.
Therefore, we find instructive to compare the two quantities,
i.e., the curl of the TDVP and the curl of the coupling, that give
rise to the geometric phases. In Fig. 5 it is clear that the two
quantities are qualitatively different, one being smooth every-
where in space and the other presenting a particular behavior
only at the location of the conical intersection. Furthermore,
we observe that the TDVP is not irrotational and, thus, cannot
be eliminated by a suitable choice of gauge. It is clearly de-
pendent on the dynamics of the electron-nuclear system while
the nonadiabatic coupling vector is an intrinsic property of the
system Hamiltonian itself.

The geometric phases, γBO(Γ) and γ(Γ, t), have been cal-
culated from Eqs. (21) and (22), respectively, and are reported
in Table I. We used different paths Γ, namely ΓCI1 and ΓCI2
encircling the position of the conical intersection, and ΓX and
ΓY that do not encircle the position of the conical intersection.
The paths are shown in Fig. 5. Table I shows that in the adi-
abatic representation, namely for for γBO(Γ), a value close to
π is obtained only for ΓCI1 and ΓCI2, and that we find a value
much smaller, i.e., close to zero, along the other paths. Using
the TDVP, all the values change with time and with the path.
Thus, the dynamics-induced geometric phase arising in the ex-
act factorization is not a topological feature but rather caused
and governed by the dynamics of the system, in stark contrast
with the topological, path-independent phase that arises only
in the adiabatic representation.
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0.24 ms 0.69 ms 1.35 ms adiabatic
ΓCI1 -0.0209 0.0265 0.0506 3.12
ΓCI2 -0.794 2.05 -0.00973 3.12
ΓX 0.00269 0.0624 0.000178 -0.00281
ΓY -0.758 0.157 0.188 0.000581

TABLE I. Geometric phase γ(Γ, t) at three times throughout the dy-
namics (first three columns) along four different paths, encircling the
point representing the location of the conical intersection (ΓCI1,ΓCI2)
and without encircling this point (ΓX ,ΓY ). The last column reports
the values of γBO(Γ) using the same paths.

B. Dynamics induced upon creation of a vibrational
wavepacket

In Section IV B 1, we report on our recent study of the pho-
todynamics of trans-azobenzene using CTTSH, whereas in
Section IV B 2 we present some examples of the work by Min
and by Maitra with SHXF.

1. Coupled-trajectory methodologies

The photoisomerization mechanism of trans-azobenzene
was investigated using the CTTSH approach199 in compar-
ison to the Tully surface-hopping (TSH) scheme, in order
to assess the performance of the implementation of CTTSH
in MOPAC-PI198. This study represented the first applica-
tion of CTTSH to a molecular system in full dimensional-
ity, as previous applications of CTTSH have been limited to
model systems of one or two dimensions, typically compris-
ing only two electronic states. While the theoretical founda-
tions of the CTTSH approach have been previously discussed
for low-dimensional model systems, the algorithm required
customization to address numerical and computational chal-
lenges encountered in simulations involving systems with a
large number of nuclear degrees of freedom.

In Ref. [199], the photoisomerization dynamics was investi-
gated upon nπ∗ and ππ∗excitation, describing and comparing
a two-state dynamics and a three-state dynamics, respectively.
The semi-empirical FOMO-CI method was used to evaluate
the electronic properties required for the on-the-fly dynam-
ics, entering the evolution equation of the electronic coeffi-
cients (17) and the expression of the force needed for the nu-
clei classical propagation (18). The semi-empirical FOMO-
CI method demonstrates high computational efficiency and
reasonable accuracy when properly parameterized, making it
suitable for computing multiple trajectories for medium to
large molecular systems over time scales of up to a few pi-
coseconds.

In CTTSH the force for the propagation of the nuclear tra-
jectories is the same as in TSH, whereas CTTSH includes an
additional term in the propagation of electronic coefficients
that depends on quantum momentum, as shown in Eq. (17).
TSH is known to suffer from a systematic issue termed “over-
coherence”, arising from the disconnect between the evolution
of electrons and nuclei. Throughout time, the nuclei evolve on
a single adiabatic potential energy surface and are allowed to

hop to another surface at any time based on a stochastic al-
gorithm. Therefore, on the one hand, the nuclear dynamics
is governed by a single electronic states, while, on the other
hand, the electronic evolution remains always coherent along
a trajectory and yields a superposition of adiabatic states along
that trajectory. CTTSH, thanks to the coupled-trajectory term
of Eq. (17), improves the description of quantum decoherence
compared to TSH as it accounts in the electronic evolution
equation for information about the spatial delocalization of
the trajectories. This information is encoded in quantum mo-
mentum (14), which is related to the spatial variation of the
nuclear density. Then, the nuclear density needs to be con-
structed from the distribution of trajectories, and this is done
in CTTSH, as in CTMQC, with a sum of normalized Gaus-
sians centered at the positions of trajectories. Therefore, at
a given time t, the positions of all the trajectories need to
be “shared” among the trajectories to construct the nuclear
density and, thus, the trajectories cannot be evolved indepen-
dently. From a practical standpoint, this is the main draw-
back of CTTSH when compared to standard TSH. For an ef-
ficient performance of CTTSH, a parallelized implementation
using the Message Passing Interface (MPI) was employed in
Ref. [199]. Despite the additional computation required for
the quantum momentum, the runtime of our parallelized im-
plementation is similar to that of a standard TSH approach, as
all other calculations are performed in parallel. Furthermore,
a local diabatization algorithm was utilized within the frame-
work of the Runge-Kutta integrator to bypass the computation
of the expensive and sometimes unavailable nonadiabatic cou-
pling vectors.

This work on the photodynamics of trans-azobenzene
demonstrated that, in CTTSH, the accuracy of the approxi-
mation of the nuclear density is crucial for a proper descrip-
tion of the quantum momentum and, consequently, for a cor-
rect account of decoherence effects in the electronic dynam-
ics. Indeed, reconstructing the nuclear density for a poly-
atomic molecule is much more challenging than for a few-
dimensional system. Therefore, we proposed four variants of
the CTTSH method depending on the set of nuclear coordi-
nates considered to construct the quantum momentum and de-
pending on the approaches used to determine the widths of the
Gaussian functions. The implementations of CTTSH can be
summarized as follows:

1. CTTSH-FGAC (CTTSH with Frozen Gaussians and All
Coordinates): In this approach, we utilize frozen Gaus-
sians and all coordinates contribute to the calculation of
the quantum momentum.

2. CTTSH-TGAC (CTTSH with Thawed Gaussians and
All Coordinates): In this approach, we employ Gaus-
sians whose widths change over time, and all coordi-
nates contribute to the calculation of the quantum mo-
mentum.

3. CTTSH-FGLA (CTTSH with Frozen Gaussians and
List of Active Atoms): In this approach, we utilize
frozen Gaussians and only “active atoms”, whose list
is provided as an input, contribute to the calculation of
the quantum momentum.
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4. CTTSH-TGLA (CTTSH with Thawed Gaussians and
List of Active Atoms): In this approach, we utilize
thawed Gaussians and only “active atoms” contribute
to the calculation of the quantum momentum.

To asses the performance of these four flavours of CTTSH im-
plementations, we compared our numerical results with TSH
and TSH corrected with the inclusion of overlap-based deco-
herence corrections237 (TSH-ODC).

The minimum energy path on the S1 potential energy sur-
face of azobenzene connects the trans (and cis) geometries to
the S1/S0 conical intersection, located at approximately 95◦

of torsion of the CNNC dihedral. Consequently, nonadiabatic
transitions to S0 in isolated trans-azobenzene occur predomi-
nantly in this region or slightly before, within a CNNC range
of 90 to 120◦. During the decay to S0, this molecule can iso-
merize to cis-azobenzene. The partial238 photoisomerization
quantum yields Φnπ∗ calculated using all four CTTSH meth-
ods, TSH, and TSH-ODC for the trajectories starting in the
nπ∗ state are shown in the second column of Table II. The
calculated Φnπ∗ values are consistent across methods, are in
agreement with each other and in good agreement with exper-
imental results, which fall within the range of 20-32%239–246.
It is worth noting that trajectories with faster decay predom-
inantly remain in the trans configuration after relaxing to the
ground state, whereas slower trajectories have a higher prob-
ability of undergoing photoisomerization. In the third column

method Φnπ∗ Φππ∗

CTTSH-FGAC 0.22±0.04 0.11±0.04
CTTSH-FGLA 0.19±0.03 0.19±0.05
CTTSH-TGAC 0.23±0.04 0.13±0.04
CTTSH-TGLA 0.20±0.04 0.38±0.08

TSH 0.18±0.04 0.17±0.05
TSH-0DC 0.22±0.03 0.13±0.04

TABLE II. Partial photoisomerization quantum yields (Φ) calculated
with our four implementations of CTTSH, with TSH and TSH-ODC.
The second column reports the results for the dynamics initiated in
the nπ∗ state and the third column reports the results for the ππ∗

excitation.

of Table II, we report the values of the partial photoisomeriza-
tion quantum yields Φππ∗ upon ππ∗ excitation. The lower
photoisomerization quantum yield after ππ∗ excitation has
been previously discussed247–249. It is related to an exception
to Kasha’s rule, resulting from a competition between “reac-
tive” and “unreactive” internal conversion at the S1/S0 con-
ical intersection, i.e., between internal conversion with pho-
toisomerization or without photoisomerization, respectively.
Both processes require a certain degree of progress along the
CNNC torsional coordinate. However, the unreactive S1→S0
internal conversion process can occur earlier (i.e., farther from
the 90◦ midpoint of the torsional pathway) if more vibra-
tional energy is available, as is typically the case with ππ∗

excitation. TSH-ODC, CTTSH-FGAC, and CTTSH-TGAC
approaches presented photoisomerization quantum yields for
ππ∗ in a very good agreement with the ones reported ex-
perimentally (0.09− 0.16), whereas TSH, CTTSH-FGLA,
and CTTSH-TGLA were unable to do so. These last three

FIG. 6. Populations of the S0 state (in red) and of the S1 state (in
blue) as functions of time obtained from the calculations of the pho-
todynamics of trans-azobenzene upon nπ∗ excitation using the four
implementations of CTTSH. Thick lines refer to the fraction of tra-
jectories Fm(t) and thin lines refer to the average over the trajectories
of the electronic populations Pm(t). Reprinted with permission from
Journal of Chemical Theory and Computation (2024) 20 (2), 580-
596. Copyright 2024 American Chemical Society.

approaches showed higher or equivalent photoisomerization
quantum yields for ππ∗ and nπ∗ excitation. However, it is
important to emphasize that only approximately 40% of the
trajectories for the TSH and CTTSH-TGLA methods success-
fully reached the ground state by the end of our simulations.
Therefore, it is challenging to attribute a “precise” quantum
yield in such cases.

Figure 6 shows the populations of the ground state S0 (in
red) and of the excited state S1 (in blue) as functions of time
for the simulation starting after the nπ∗ excitation. The four
panels refer to the four flavors of CTTSH implementations
presented above. Figure 7 reports the analogous quantities
calculated using TSH and TSH-ODC. In Figs. 6 and 7, the
thick lines represent the populations calculated as the frac-
tion of trajectories in a given electronic state m, namely as the
ratio Fm(t) = Nm(t)/Ntr, where Nm(t) is the number of tra-
jectories for which the active state at time t is m, and Ntr is
the total number of trajectories; the thin lines represent the
electronic population estimated as the average Pm(t) over the
trajectories of |Cα

m(t)|2, where Cα
m(t) are the electronic coeffi-

cients along the trajectory α . In general Fm(t) 6=Pm(t), and the
difference is particularly severe if decoherence effects are im-
portant and not accounted for, like observed for TSH in Fig. 7.
The decoherence corrections used in TSH-ODC are designed
to restore the internal consistency of the TSH procedure in an
ad hoc manner, resulting in Fm(t) ' Pm(t), as seen in Fig. 7.
Instead, we note a remarkably good agreement across imple-
mentations of CTTSH with respect to the electronic popula-
tions evaluated as Fm(t) or as Pm(t). Internal consistency, thus
Fm(t)' Pm(t), is correctly achieved with CTTSH when utiliz-
ing frozen Gaussians (fixed widths) all along the simulated
dynamics, instead, the agreement between Fm(t) and Pm(t)
decreased over long times when thawed Gaussians (variable
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FIG. 7. Same as in Fig. 6 but for TSH and TSH-ODC. Reprinted
with permission from Journal of Chemical Theory and Computation
(2024) 20 (2), 580-596. Copyright 2024 American Chemical Society.

widths) are employed to calculate quantum momentum. This
happens because, as the trajectories become delocalized in
space, the widths of the individual Gaussians used for re-
constructing the nuclear density increase. Consequently, the
quantum momentum, which is evaluated as the spatial deriva-
tive of the density, decreases, leading to a reduced effect of
decoherence. Nevertheless, we believe that by significantly
increasing the number of coupled trajectories, we can attain
an accurate representation of the nuclear distribution in con-
figuration space without requiring a substantial increase in
Gaussian width. In an ideal scenario, each trajectory would
be strongly coupled to several others, making the nuclear den-
sity almost insensitive to variations in Gaussian widths within
a reasonable range. However, achieving this would necessitate
a much larger number of trajectories than the 100-150 (total
number of trajectories used in this study) that can currently be
accommodated on a single computing node, with the required
number increasing with the number of coordinates.

2. Auxiliary-trajectory methodologies

An efficient technique to combine the surface-hopping al-
gorithm with the exact factorization has been proposed by
Min and coworkers and dubbed SHXF, i.e., surface hopping
based on the exact factorization48. The main idea at the basis
of SHXF is to use the surface-hopping procedure to propa-
gate independent nuclear trajectories adiabatically, with the
fewest-switches probability for the hops, and, at the same, to
“spawn” auxiliary trajectories on the electronic states that are
nonadiabatically coupled to the active/force state. The auxil-
iary trajectories are essential for the calculation of the quan-
tum momentum (14), similarly to what is done in the original
CTMQC algorithm: the quantum momentum induces quan-
tum decoherence effects in the electronic evolution equation,
thus bypassing the overcoherence problem of standard fewest-
switches surface hopping59,66. SHXF is an interesting alter-
native to CTMQC and CTTSH, as it is computationally less
demanding, due to the fact that for each physical trajectory,
only a few auxiliary trajectories need to be generated in the
vicinity of a region of strong coupling as long as such a re-
gion remains well localized in space. The auxiliary trajecto-
ries can be evolved according to “unphysical” forces, in the
sense that they do not need to follow the adiabatic potentials
and, in fact, are launched with constant velocity, chosen such

that the difference in potential energy from the active surface
is isotropically distributed in the coordinates; in addition, the
auxiliary trajectories are removed from the algorithm as soon
as they evolve far away from the physical trajectory.

SHXF has been applied to a large variety of molecular sys-
tems to predict their nonadiabatic behavior upon photoexci-
tation. Min and workers studied the photoinduced isomer-
izations of the trans-penta-2,4-dieniminium cation250 and the
ring-opening in cyclohexa-1,3-diene251, they worked on a
class of molecular rotary motors that utilize the fulgide mo-
tif252,253, and they simulated the primary steps of the pho-
todynamics of cyclopropanone254. These simulations have
been performed using the PyUNIxMD code190,255, mainly in
combination with spin-restricted ensemble-referenced Kohn-
Sham method250,251, that allows for a proper characterization
of the conical intersections with the ground state. It is worth
mentioning, however, that Min proposed recently an interest-
ing generalization of the exact factorization and of SHXF such
that the electronic evolution equation accommodates for a her-
mitian formulation in terms of the electronic density. With
this proposition, the photodynamics of ethylene was studied
employing real-time time-dependent density functional the-
ory186.

In order to assess the performance of various surface-
hopping procedures, including SHXF, Maitra and cowork-
ers presented an in-depth analysis of the photodynamics of
ethylene, fulvene and the methaniminium cation employing
ab initio multiple spawning as benchmark256. Specifically,
the work analyzed various decoherence-correction schemes,
which are found to operate in very different ways on the in-
dividual trajectories while yielding comparable results when
averaged over the trajectories. In addition, the choice of the
velocity-rescaling algorithm as well as the influence of nu-
clear time step for the propagation were studied as they were
found to have an equally, if not more, important role on elec-
tronic and nuclear properties compared to the decoherence
correction. Finally, Maitra and coworkers showed that the
rigorous account of decoherence via the quantum momentum
in exact-facatorization based methods, among which SHXF,
is essential to capture the dynamics of the uracil cation as it
is driven by a three-state conical intersection, that cannot be
correctly captured using pairwise accounts of the decoherence
effects112,257.

C. Dynamics induced upon creation of an electronic
wavepacket

The creation of an electronic wavepacket can be achieved
following the interaction of a molecule with an attosecond
laser pulse258–261 that ionizes the molecule. Such a photoion-
ization is able to trigger an ultrafast process that implies elec-
tronic charge redistribution coupled to the nuclear motion.
The ultimate goal of the emerging field of attochemistry71

is to be able to control the evolution of such a wavepacket
that implies the control of chemical reactivity, which is poten-
tially achievable by tuning the electronic coherences among
the states which are coupled via a second probe pulse or via
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the nuclear dynamics.
An accurate description of electron-nuclear correlation ef-

fects, including coherence and decoherence, is essential for
understanding and controlling the products of a photochem-
ical reaction. However, the theoretical description of these
processes presents several well-known challenges, and in
Ref. [142] we focused on the problem of the initialization
of the electronic dynamics in trajectory-based simulations.
The initial conditions for the classical-like nuclear dynam-
ics {Rα

ν ,Pα
ν } are often sampled from the (harmonic) Wigner

distribution of the ground state nuclear wavepacket assum-
ing vertical excitation or from a classical Boltzmann distri-
bution at some given temperature177. However, several op-
tions can be proposed for the initialization of the electronic
dynamics via the electronic coefficients {Cα

k (0)} when more
than one electronic state needs to be populated to initiate the
nonadiabatic simulations. In Ref. [142], we defined and dis-
tinguished two situations, a pure state, where all trajecto-
ries carry the same set of electronic coefficients at the initial
time, and a mixed state, where each trajectory is allowed to
carry a different initial superposition of electronic states in
such a way that the ensemble-average electronic populations
at the initial time reproduces the “expected” population dis-
tribution of the molecular wavefunction after the pulse, i.e.,

1
Ntr

∑
Ntr
α |Cα

l (0)|2 =
∫

dR〈ϕ l
R|Ψ(R,0)〉r ∀ l. Our work aimed

to assess the performance of Ehrenfest and CTMQC in de-
scribing the nonadiabatic dynamics initiated by the creation
of an electronic wavepacket distinguishing the two cases of
a pure state and of a mixed state. We used a model system
for our calculations, described by a two-electronic-state one-
nuclear-mode Hamiltonian that consists, in the diabatic repre-
sentation, of two coupled one-dimensional harmonic oscilla-
tors displaced in position and energy. The initial condition for
the quantum dynamics is chosen as a coherent superposition
of 80% and 20% of the ground state and of the excited state,
respectively.

For such a model system, reference results can be pro-
vided by solving exactly the TDSE. Turning to the trajectory-
based calculations, in the pure state, the initial electronic state
for all trajectories is described by {C(α)

0 (0)} =
√

0.8 ∀α and

{C(α)
1 (0)}=

√
0.2 ∀α , whereas in the mixed state 80% of the

trajectories are initialized by {C(α)
0 (0)}= 1 and the remaining

20% by {C(β )
1 (0)} = 1. Here, the index α runs over 80% of

the trajectories, and β runs over the remaining 20%.
Figure 8 shows the electronic excited state population and

the electronic coherence as functions of time. Surprisingly,
we observe that starting with a pure state in Ehrenfest dynam-
ics yields negligible net population transfer with the ground
and excited state remaining coherent throughout the dynam-
ics. This behavior is in stark contrast with the expected re-
sult predicted by the quantum dynamics (QD) simulation. On
the other hand, CTMQC captures both the population and co-
herence behavior in very good agreement with the reference.
Note that all methods miss the recoherence just after 90 fs
that, unlike the other recoherences, occurs far from the nona-
diabatic coupling region. Details on this mechanism are dis-
cussed in Ref. [262].

FIG. 8. Upper panel: indicator of coherence as function of time.
Lower panel: population of the excited state as function of time. In
black, the reference results of the quantum dynamics (QD) are re-
ported. Trajectory-based results are indicated in green (for Ehrenfest
with pure-state initialization), in blue (for Ehrenfest with mixed-state
initialization) in red (for CTMQC with pure-state initialization), and
in purple (for CTMQC with mixed-state initialization). Reprinted
from The Journal of Chemical Physics (2024) 160 054102, with the
permission of AIP Publishing.

Let us focus on the first decoherence event occurring
within the first 20 fs, during which the excited-state nu-
clear wavepacket moves away from the trapped ground state
wavepacket before entering a region of strong nonadiabatic
coupling. This situation represents the first step after a
molecule gets excited via the laser pulse. Fig. 9 shows
time snapshots of the exact nuclear density and the spatially-
resolved energies (upper panel) and excited state populations
(lower panel) during this event. We observe that Ehrenfest tra-
jectories evolve in a mean-field surface which has 80% ground
state character, and their electronic populations (and coher-
ences) do not change away from regions of strong nonadia-
baticity. Conversely, the quantum momentum term accounted
for in the CTMQC equation of motion (15) induces both a
branching of the electronic coefficients and a splitting of the
trajectory distribution achieving decoherence. We now direct
our attention to the mixed-state results, where both Ehrenfest
and CTMQC capture the periodic population transfers, with
Ehrenfest deviating from the reference at ∼120 fs. In terms
of coherences, both methods cannot account for the initial de-
coherence, because in a mixed state the coherences are zero
initially. However, after this first decoherence event, CTMQC
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FIG. 9. Upper panel: time snapshots of the exact density (orange),
adiabatic potential energy curves (red lines), nonadiabatic coupling
(magenta regions), TDPES (black), distribution of CTMQC trajecto-
ries starting in a pure ensemble (blue dots) and of Ehrenfest trajecto-
ries starting in a pure ensemble (green dots). Lower panel: Excited
state populations as function of R or R(α)(t) for QD (black line),
CTMQC starting in a pure ensemble (blue dots) and Ehrenfest start-
ing in a pure ensemble (green dots). Reprinted from The Journal of
Chemical Physics (2024) 160 054102, with the permission of AIP
Publishing.

captures the behavior of the indicator of coherence quite well,
even though it misses the large recoherence at 90 fs as pointed
out earlier; instead, Ehrenfest remains overcoherent after the
first increase of coherece at ∼25fs.

In summary, this work pointed out that the problem of
the initialization of the electronic dynamics is critical when
trajectory-based methods are used to simulate the dynamics
triggered by an ultrashort laser pulse that creates an electronic
wavepacket. We presented two strategies: a pure state and
a mixed state. We tested these concepts in the simulation of
the nonadiabatic dynamics of two-state electronic wavepacket
in a one-dimensional model system. The pure state seems
the natural choice for both Ehrenfest and CTMQC since all
trajectories are associated to the same coherent superposi-
tion of electronic states. However, Ehrenfest performs very
poorly, and if the mixed state is used instead, the popula-
tion behavior greatly improves but the coherences, and con-
sequently coherence-dependent observables such as the elec-
tronic current-density142, will be wrong from the very begin-
ning. On the other hand, CTMQC starting from a pure state
accurately captures both populations and coherences behavior.
The quantum momentum is essential to capture those events
at the spatially-resolved level, which is key to predict the right
dynamics when regions of nonadiabatic electron-nuclear cou-
pling are encountered.

V. PHOTON-ELECTRON-NUCLEAR SYSTEMS: THE
FUTURE OF THE EXACT FACTORIZATION?

Little over a decade ago, the field of polaritonic chemistry
started to emerge as an innovative way to steer photochem-
ical reactions by creating hybrid light-matter states, i.e., the
polaritons263–265. The strong-coupling regime between the
molecular excitations and confined light can be achieved in
optical and plasmonic cavities as it scales inversely with the
volume of the cavity and is proportional to the dipole mo-
ment of the molecule17,266–283. The modifications of the pho-
tochemical landscape underlying a cavity-free molecular pro-
cess are achieved when the bare electronic energies are altered
by the coupling to the photons and produce the polaritonic
states, whose energies, in turn, are affected by the number
of molecules in the cavity. Theoretical modeling of polari-
tonic chemistry clearly requires a quantum-mechanical treat-
ment of the coupled photon-electron-nuclear (PEN) problem
and the extension of state-of-the-art simulation techniques for
molecular dynamics to treat light as an intrinsic variable of the
process rather than as an external field.

The fields of physical chemistry and chemical physics have
sparkled with ideas for novel developments to study pro-
cesses in the strong light-matter coupling regime, reformulat-
ing in cavities concepts such as the BO approximation284–286

and nonadiabatic dynamics15,18,19,141,281,282,287–289. In this re-
spect, the exact factorization appears to be an extremely well
adapted formalism to gain new insights into the correlated
PEN dynamics and to develop simulation algorithms, in the
spirit of similar efforts using surface hopping and the Ehren-
fest scheme.

Maitra and coworkers138, as well as Tokatly and
coworkers137, laid the basis for the conception of the
exact-factorization formalism to treat the PEN wavefunc-
tion. Specifically, the factored form of the wavefunction
Ψ(x,X, t) = χ(X, t)Φ(x, t;X) has been used to analyze var-
ious kinds of problems, like photon-electron dynamics, by
interpreting X = q as the photon displacement and x = r as
the electronic coordinate, or the full PEN dynamics, by inter-
preting X = R as the nuclear coordinates and x = r,q as the
polaritonic coordinates. Maitra’s preliminary work demon-
strates that different factorizations yield complementary in-
formation on the fundamental interpretation of the PEN prob-
lem139–141,290, as well as, perhaps most importantly, on the
directions to follow to introduce approximations for an effi-
cient computational treatment. For instance, employing the
factorization Ψ(r,q, t)= χ(q, t)Φ(r, t;q), it was observed that
even though the free-photon Hamiltonian is harmonic in the
photon displacement coordinate and the light-matter coupling
is bilinear in the nonrelativistic dipole approximation, the q-
TDPES is far from harmonic. Therefore, a quasi-classical
trajectory-based representation of the photon displacements
and conjugated momenta should be carefully assessed and
does not guarantee reproducing correctly the quantum dynam-
ics. Specifically, the limitations of the multi-trajectory Ehren-
fest approach have been discussed in the light of the differ-
ent forces guiding the photon-displacement dynamics within
such a mean-field theory and the exact factorization141. Fur-
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thermore, the factorization Ψ(r,R,q, t) = χ(R, t)Φ(r,q, t;R)
was used to introduced the TDPES as an alternative tool to
the polaritonic surfaces to interpret how photochemical re-
activity is affected by the cavity in a model proton coupled-
electron transfer139,290. Such an exact factorization naturally
inspires simulations based on the coupled-trajectory schemes
presented in previous sections, similarly to what the commu-
nity already proposed using, for instance, surface hopping287

or ab initio multiple spawning291 and in the spirit of the
Floquet-based CTMQC147 method discussed briefly in Sec-
tion III A. Nonetheless, this possibility has not been yet in-
vestigated.

Despite Maitra’s observations on the difficulties in cap-
turing correctly the photon dynamics using classical Ehren-
fest trajectories, the exact factorization has the potential to
shed light into alternative approximations of the PEN quan-
tum dynamics where the photon displacements and momenta
are treated with trajectories, perhaps within a CTMQC-like
scheme. In the presence of many cavity modes140 or even
when envisaging to employ the formalism of the exact factor-
ization to study the vibrational strong-coupling regime292–294,
such a treatment might represent the only valuable route for
efficient and accurate simulations, at the cost of rethinking
the underlying approximations of CTMQC and similar algo-
rithms. Developments in this direction are currently ongoing
in our group and will be reported elsewhere295.

VI. CONCLUSIONS

This Perspective provided an overview of the application
of the exact factorization of the electron-nuclear wavefunc-
tion in the domain of photochemistry. After a brief presen-
tation of the fundamental theory at the quantum-mechanical
level, we introduced the concept of classical-like trajectories
to be used to approximate the nuclear dynamics coupled to
the quantum electronic dynamics and to derive algorithms for
quantum molecular dynamics. Key concepts arising in the ex-
act factorization are the time-dependent vector potential and
time-dependent potential energy surface that completely ac-
count for the effect of the electronic ground and excited states
on the nuclear dynamics. These time-dependent potentials
can be interpreted classically such that the concept of clas-
sical nuclear force naturally arises. Another key ingredient
of the exact-factorization equations is the quantum momen-
tum, that tracks the spatial delocalization of the nuclear den-
sity, or equivalently of the distribution of classical trajectories,
such that quantum-decoherence effects can be reproduced in
the coupled-trajectory or auxiliary-trajectory schemes derived
from the exact factorization. In this respect, we discussed
previous work where the time-dependent potentials and the
quantum momentum have shown their power in interpreting
and simulating dynamical processes in the presence of strong
nonadiabatic effects.

We concluded this Perspective with some observations on
the future of the exact factorization. In particular, we dis-
cussed some recent work in the field of polaritonic chem-
istry based on the introduction of the photon-electron-nuclear

wavefunction together with some avenues for the extension to
photochemistry in cavities of the algorithms discussed in the
course of this Perspective.
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200J. Janoš and P. Slavíček, “What controls the quality of photodynamical
simulations? Electronic structure versus nonadiabatic algorithm,” J.Chem.
Theory Comput. 19, 8273–8284 (2023).

201P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev.
136, B 864 (1964).

202W. Kohn and L. J. Sham, “Self-consistent equations including exchange
and correlation effects,” Phys. Rev. 140, A 1133 (1965).

203S. Kube, C. Lasser, and M. Weber, “Monte Carlo sampling of Wigner
functions and surface hopping quantum dynamics,” J. Comput. Phys. 228,
1947–1962 (2009).

204M. Barbatti and K. Sen, “Effects of different initial condition samplings
on photodynamics and spectrum of pyrrole,” Int. J. Quantum Chem. 116,
762–771 (2015).

205T. Plé, S. Huppert, F. Finocchi, P. Depondt, and S. Bonella, “Sampling the
thermal Wigner density via a generalized Langevin dynamics,” J. Chem.
Phys. 151, 114114 (2019).

206F. Krö"ninger, C. Lasser, and J. J. L. Vaní’ček, “Sampling strategies for the
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