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ABSTRACT: The Ehrenfest mean field dynamics and trajectory surface hopping have 

been widely used in nonadiabatic dynamics simulations. Based on the time-dependent 

variational principle (TDVP), the multiconfigurational Ehrenfest (MCE) method has 

also been developed and can be regarded as a multiconfigurational extension of the 

traditional Ehrenfest dynamics. However, it is not straightforward to apply the TDVP 

to surface hopping trajectories because there exists momentum jump during surface 

hops. To solve this problem, we here propose a multiconfigurational surface hopping 

(MCSH) method, where continuous momenta are obtained by linear interpolation and 

the interpolated trajectories are used to construct the basis functions for TDVP in a post-

processing manner. As demonstrated in a series of representative spin-boson models, 

MCSH achieves high accuracy with only several hundred trajectory bases and can 

uniformly improve the performance of surface hopping. In principle, MCSH can be 

combined with all kinds of mixed quantum-classical trajectories, and thus has the 

potential to properly describe general nonadiabatic dynamics. 
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1. INTRODUCTION 

Nonadiabatic dynamics involves significant coupling between quantum particles 

and the environment, which is ubiquitous in many different research fields, such as 

condensed-matter physics,1–3 photochemistry,4–6 biology,7–9 and materials science.10–14 

Appropriate methods are required to attain a reliable description of these nonadiabatic 

processes. Although fully quantum dynamics methods give highly accurate results, the 

problem of the “curse of dimensionality” has prevented them from being applied to 

large complex systems.15–27 Since heavy nuclei often behave classically, treating all the 

degrees of freedom with quantum mechanics is unnecessary. As a result, the mixed 

quantum-classical dynamics (MQCD) methods can potentially achieve good accuracy 

and efficiency through properly dividing the whole system into quantum and classical 

subsystems and describing them with different levels of theory. As representative 

independent-trajectory MQCD methods, the trajectory surface hopping (TSH)28 and 

Ehrenfest mean field (EMF)29 methods have been widely employed for nonadiabatic 

dynamics simulations due to their ease of implementation and compatibility with 

electronic structure calculations.30–45 In particular, many theoretical advances have been 

made to further improve the performance of TSH and EMF.46–52 

The accuracy of MQCD simulations relies on the description of quantum-classical 

(i.e., electron-nuclei) correlation. In the EMF dynamics, an effective wave packet (WP) 

moving on the average potential energy surface (PES) is used to describe the dynamics, 

and the quantum-classical correlation is governed by a simple mean field Hamiltonian. 

However, the mean field approximation has intrinsic problems. For instance, the EMF 
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dynamics cannot reproduce the spatial splitting of WPs and obtain all the dynamics 

channels. In TSH, the nuclei always move on an active adiabatic PES with stochastic 

transitions between different PESs. Although the active states in the trajectory ensemble 

better reproduces the fully quantum dynamics, the time evolution of the electronic wave 

function along each trajectory remains coherent due to the absence of intertrajectory 

correlation. In recent years, such an overcoherence problem has attracted extensive 

attention, and significant improvements have been made based on decoherence time 

formulas,53–61 pure dephasing,62 quantum measurement,63,64 exact factorization,65–68 

trajectory branching,69–79 and so on. 

The time-dependent variational principle (TDVP) provides effective solutions to 

the time-dependent Schrödinger equation (TDSE) as long as the basis set is complete 

enough for the given problem.80,81 Shalashilin and coworkers proposed two versions of 

the multiconfigurational Ehrenfest (MCE) method with different ansatz based on EMF-

like time-dependent trajectory basis functions (TBFs) defined by coherent states 

(CSs).82,83 In the first version of MCE (MCEv1),82 the TDVP is carried out “on the fly” 

in the complete vibronic amplitude manifold. Although high accuracy can be attained, 

the TBFs must be generated along with the time-dependent evolution of amplitudes. In 

comparison, the second version of MCE (MCEv2) adopts a “post-processing” 

approach.83 Namely, the amplitudes are only coupled within individual configurations, 

and thus the variation of configuration coefficients can be realized after the variation of 

vibronic amplitudes. Although high efficiency can be realized, it is more difficult to 

converge to the exact quantum solution because there is no coupling between vibronic 
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amplitudes in different configurations. 

In principle, the TDVP can be applied to any basis set. It is well known that the 

trajectories by TSH are often better than those by EMF because TSH can describe WP 

splitting and has better detailed balance. Therefore, we may expect that using TSH 

instead of EMF to generate the TBFs for TDVP may achieve better performance. To 

this end, we here propose a multiconfigurational surface hopping (MCSH) method. 

Linear interpolation is utilized to solve the momentum jump problem due to surface 

hops, and the interpolated TSH trajectories are taken as the new TBFs embedded into 

the MCEv1 ansatz to achieve a “post-processing” variation of the configurations. To 

show that MCSH could compensate for the insufficient quantum description of nuclei 

in TSH simulations and improve the accuracy, MCSH is systematically benchmarked 

in spin-boson models using the exact quantum solutions and FSSH results as references. 

2. THEORY 

A. Fewest Switches Surface Hopping 

In nonadiabatic dynamics simulations with the traditional fewest switches surface 

hopping (FSSH),28 the adiabatic representation is generally preferred. For a system 

composed of both electronic and nuclear degrees of freedom, the Hamiltonian reads 

ˆ ˆ ˆ ( ; )en lH T H= + r q ,                        (1) 

where r and q are the electronic and nuclear coordinates, ˆ
nT  and ˆ ( ; )elH r q  are the 

nuclear kinetic energy operator and the electronic Hamiltonian, respectively. In each 

FSSH trajectory, the initial electronic wave function, active state, nuclear coordinates 
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and momenta are set according to the problem under investigation. At each time t, by 

solving the time-independent Schrödinger equation, 

( ) ( )ˆ ( ; ( )) ; ( ) ( ( )) ; ( )l i ie iH t t E t t =r q r q q r q ,               (2) 

we can obtain all the adiabatic eigenenergies  ( ( ))iE tq   and the corresponding 

eigenstates  ( ; ( ))i t r q  at the nuclear configuration q(t). The nuclear motion on the 

active PES a follows the classical Newton equation, 

a

d
E

dt
= −q

p
,                           (3) 

where p indicates the nuclear momenta and aE   is energy of the active PES. The 

electronic wave function ( , ) t r  can be linearly expanded as 

( )( , ) ( ; ( ))i i

i

 t c t t =r r q ,                   (4) 

where {ci(t)} are expansion coefficients. To propagate the electronic wave function, eq. 

4 is substituted into the time-dependent Schrödinger equation, 

( , ) ˆ ( ; ( )) ( , )el

 t
i H t  t

t





=



r
r q r ,                 (5) 

which results in 

( ) ( )i i i j ij

j

d
i c c E i c

dt
= − q q d q ,                  (6) 

where ( ) ( ; ) ( ; )ij i j = qd q r q r q   is the nonadiabatic coupling vector between 

adiabatic states i and j. The adiabatic electronic populations are calculated as *

ii i ic c = . 

Based on eq. 6, the time evolution of the population on each electronic state i is 

( )

ii
ij

j i

d
b

dt





=  ,                           (7) 

where 
*2Re( )ij ij ijb = − dq . In the standard FSSH, during each time interval [t, t + dt], 
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the hopping probability from the active state a to another state k is defined as 

dak
ak

aa

b t
g


= − ,                           (8) 

which is reset to zero if negative. At each time step, we generate a uniformly distributed 

random number  [0,1], and the surface hop from a to k is assigned if 
1

1

k

aii
g 

−

=


1

k

aii
g

=
 , and the nuclear momenta are rescaled along the direction of dak to conserve 

the total energy. If the energy conservation is violated, frustrated hopping happens and 

the surface hop is canceled. The above steps are repeated and a swarm of independent 

trajectories are obtained until the predefined criterion is satisfied. 

B. MCEv1 and MCEv2 

As an extension of the traditional Ehrenfest dynamics, Shalashilin and coworkers 

proposed two versions of the MCE method for quantum dynamics, namely MCEv182 

and MCEv2.83 In both versions, an Ehrenfest configuration is represented as 

system bath( ) ( )( ) tt t  z= ,                     (9) 

where system ( )t  is the wave function of the electronic system, and bath ( )tz  is the 

multidimensional wave function of the nuclear bath. If there are M vibrational modes 

in the bath, we can express bath ( )tz  as the product of individual CS for each mode m, 

1

( ) ( )
M

m

bath

m

t z tz
=

= .                       (10) 

Here, each one-dimensional CS ( )mz t  is a frozen Gaussian WP with fixed width 𝛾 

under the coordinate representation, 

1/4

2( )
2

exp ( )
2

m m
m m m mx x

ip
qz

q
x q pi

 




 
− 



 
= − + − +

  
,         (11) 

where qm and pm are the expectation value of the coordinate and momentum for mode 
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m. Note that ( )mz t   is the eigenstate of the annihilation operator for the m-th 

harmonic vibration, and the eigenvalue zm is expressed as 

1/21/2
1

2 2

m mm i
z q p





  
= +   
   

.                    (12) 

Different ansatzes are utilized in MCEv1 and MCEv2 to realize a multiconfigurational 

description of the system-bath wave function. Namely, MCEv1 uses 

( )

1 1

( ) ( )( ) ( )s

j j j

N N

j j s

t a t t st 
= =

 = =  z ,              (13) 

and MCEv2 takes the form 

1

( )

1

( ) ( ) ( ) () ( )( )
N N

j s j

s

j j j j jC t a t t s C t tt 
= =

 = =  z ,          (14) 

where  s  is an orthonormal diabatic basis of the system and does not rely on the 

bath variables. In MCEv1, all the vibronic amplitudes 
( ){ }j

sa  are coupled to each other 

and the whole wave function is normalized (i.e., 1  = ). The equation of motion 

for 
( ){ }j

sa  can be obtained from the TDVP, 

( (

1

)( ) )

1 1

ˆ| |
N N N

s s' s

l j j l ss' j j l j j

j j s' j

i a a iH a
= = =

= −  z z z z z z ,       (15) 

where ˆ ˆ
ss' s H s'H =  are matrix elements of the total system-bath Hamiltonian. In 

MCEv2, each configuration j is normalized, i.e., ( ) ( ) 1j jt t  = . By applying the 

TDVP to each configuration j in eq. 14, we obtain 

( ) ( ) ( )ˆ s' s

s

s

j j j'

s'

s j j j ji a H a i az z z z= − .           (16) 

Then, the configuration interactions are described by the coupled equations 

1 1 1

ˆ| |j j

N N N

l j j j jl l

j j j

C H Ci i C     
= = =

= −   .         (17) 

Both MCEv1 and MCEv2 use Ehrenfest-like trajectories propagated through 
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*

ˆ
j

j

j

j

MF

j
i

H
z

z z

z
−


=


,                     (18) 

where ˆ MF

jH  is the corresponding mean field Hamiltonian operator defined as 

( )*

(

,

( )

)
2

ˆ

ˆ s

s

F

s'

j j s'

s'

j

s

s

M

j
s

a a H

H
a

=




.                      (19) 

Thereby, the most significant difference between the two MCE ansatzes is the 

description of configuration interactions. The fully correlated configurations in MCEv1 

can explore a larger configuration space but must propagate simultaneously. The 

configurations in MCEv2 are independent and interact with each other in a post-

processing manner, making MCEv2 more suitable for ab initio quantum dynamics. 

C. Multiconfigurational Surface Hopping 

Since the “on the fly” ansatz in MCEv1 can well characterize the correlation 

between configurations, high accuracy is generally achieved while losing a certain 

extent of flexibility in choosing the time-dependent trajectory basis. In contrast, the 

MCEv2 ansatz in the “post-processing” form is based on independent TBFs, achieving 

high efficiency while sacrificing its accuracy in some cases. As TSH has proven its 

reliability in many studies, we may expect that trajectories produced by TSH dynamics 

may be better than those by EMF. Therefore, we here propose a novel MCSH method 

based on FSSH and MCEv1. In detail, we embed independent trajectories of FSSH into 

the MCEv1 ansatz to achieve the “post-processing” variation of multiconfigurational 

correlations and describe the entangled system-bath dynamics. 

In MCEv1, the time evolution of the vibronic amplitudes (i.e., eq. 15) describes 

the multiconfigurational correlation and the Ehrenfest trajectories (i.e., eq. 18) are used 
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to define the CSs. As the CS used in the multiconfigurational dynamics is a frozen 

Gaussian WP defined by the complex vector z which can be considered as a point in 

the phase space, we can maintain the form of eq. 15 and propagate surface hopping 

trajectories in the adiabatic representation to obtain  jz   and  jz  . Instead of 

using eq. 18, jz  and its time derivative jz  for the j-th CS are given by 

1/21/2

, ,

1

2 2
j SH j SH j

i



  
= +   
   

z q p ,                  (20) 

1/21/2

, ,

1

2 2
j SH j SH j

i



  
= +   
   

z pq ,                  (21) 

where ,SH jq  and ,SH jp  are the nuclear coordinates and momenta in the j-th surface 

hopping trajectory. Eqs. 20 and 21 are substituted into eq. 15 to describe the 

configuration interaction and realize the post-processing variation of the independent 

surface hopping trajectories. 

The step-by-step outline of the MCSH algorithm is as follows: 

(1) At time zero, Nconf FSSH trajectories are generated and their initial conditions 

are set according to the problem under investigation. 

(2) At each time t, the nuclei and electrons for each FSSH trajectory are evolved 

according to eqs. 3 and 6 in the adiabatic representation, respectively. 

(3) The Nconf CSs are constructed and their time derivatives are calculated using 

eqs. 20 and 21 based on the corresponding FSSH trajectory. The vibronic amplitudes 

are propagated by solving eq. 15. 

(4) When a surface hop occurs in a FSSH trajectory, the corresponding TBF 

becomes discontinuous due to the momentum jump. To solve this problem, we here 
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introduce the linear interpolation of nuclear coordinates and momenta. As shown in 

Figure 1, suppose the active state and the nuclear momenta change during the time 

interval [t - dt, t]. We reset the nuclear coordinates and momenta as well as the 

configuration amplitudes to those at the previous time step t – dt, and then all the 

involved quantities are linearly interpolated between t - dt and t. Suppose Ninterp is the 

number of interpolation steps. The linear interpolation is equivalent to using a smaller 

time step size of dt/Ninterp to evolve the nuclear momenta pinterp,j and coordinates qinterp,j 

along each trajectory j with 

,

inte

,

rp,

( ) ( d )

d

SH j S

j

H jt t t

t

− −
=

p p
p ,                 (22) 

,

inte

,

rp,

( ) ( d )

d

SH j S

j

H jt t t

t

− −
=

q q
q ,                 (23) 

and the variation of vibronic amplitudes still follows eq. 15. 

(5) Steps 2 – 4 are repeated until the predefined criterion is achieved. 

3. RESULTS AND DISCUSSION 

A. Spin-Boson Model 

The spin-boson model has been widely utilized to study the nonadiabatic dynamics 

in condensed phase.84 The Hamiltonian is expressed as ˆ ˆ ˆ ˆ
s b sbH H H H= + + . Here, ˆ

sH  

is the two-level system Hamiltonian with energy bias ε and constant coupling Δ between 

the two diabatic electronic states, 

ˆ ˆ ˆ
z xsH  = + ,                        (24) 

where ˆ
x   and ˆ

z  are the corresponding Pauli operators. ˆ
bH   and ˆ

sbH   are 

respectively Hamiltonians of the bath composed of M harmonic oscillators and the 
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system-bath coupling, 

†ˆ 1ˆ
2

ˆ
M

m m

m

m

b bH b
 

= + 
 

 ,                     (25) 

( )†ˆ ˆˆ ˆ
2

z
m

mM
m m

sb

m

c
H b b


= + ,                   (26) 

where 
†ˆmb  and ˆmb  are the bosonic creation and annihilation operators for the m-th 

harmonic oscillator, respectively. In this study, we adopt the Ohmic spectral density to 

depict the system-bath coupling,85 

/

2
( ) c

kJ e
 

   −
= ,                       (27) 

where αk is the Kondo parameter related to the system-bath coupling strength, and ωc 

is the characteristic frequency. Note that the continuum spectral density can be 

generally discretized as 

2( )
( ) ( )

2

m
m

m
m

c
J


   


= − ,                  (28) 

where {cm} are the coupling parameters and {ωm} are the bath frequencies. To express 

eq. 27 with eq. 28, we may adopt the widely used approach, which could accurately 

reproduce the reorganization energy.86 Namely, {cm} and {ωm} are calculated as 

/
)1( max cm m ckc e

M

 


 −
= − ,                    (29) 

( )/
1ln 1 max cm

c e
M

j    − 
= − − −

 
,                 (30) 

where max  is generally set as 5 c . 

B. Initial Condition 
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The multiconfigurational dynamics described above is only applicable at zero 

temperature. To realize finite-temperature simulations, we here adopt a Monte Carlo 

method to set initial conditions.87,88 Suppose the initial density matrix of the total 

system is 

)ˆ ˆ(0) ˆ (0tot b

q

s

e  = ,                      (31) 

where (0) 1 1ˆ
s   is the initial reduced density matrix of the system subspace , and 

ˆ q

b

e   is the equilibrium bath density operator at temperature T, i.e., 
ˆ

ˆ /b

b

Heq e Z


−
=  . 

Here, 1/ ( )bk T =  is the inverse temperature divided by the Boltzmann constant kb 

and Z is the partition function of the bath, ˆ
bH    is set as ˆ

bH   and ˆ
bH +  

† ˆ( ) /ˆ 2m m m m

m
c bb +   for the bare local state and the dressed local state cases, 

respectively. In the CS representation, ˆ q

b

e  can be exactly written as the product of 

one-dimensional density operators,87,88 

2 2

init
init init init init init init

1

ˆ ( ) ( )
mM

eq m m minit
b bb M

m

d d z
z z z  

 

z
z z z

=

= =  ,     (32) 

where init

mz  is the CS for each mode m in the bath. Eq. 32 can be regarded as sampling 

of init

mz  from the Gaussian distribution,89 

2 2
init init(Re( (Im( ( 1)) ) ) )

init

1
( )

m
mm m

x ym ez z

b

e
z e


 




+ + +− −


−
= .            (33) 

It is worth noting that we need to generate a set of Nrep initz  with different initial 

conditions of bath based on the quantum Boltzmann distribution and propagate the 

corresponding wave function independently to get the converged results.82 To realize 

multiconfigurational dynamics, each initz  should be expanded using the CS basis set 

 jz , which is sampled from a Gaussian distribution biased to the center of init

mz  to 
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cover the initial wave function of bath initz ,90 

2

comp init( ) exp( | | )m m m

j jF z z z − − ,                 (34) 

where αcomp is the compression parameter related to the density of the initial CS basis 

set. A large compression parameter corresponds to dense sampling, which can cover the 

initial bath wave function better and have a lower initial expansion error. In this study, 

we uniformly set αcomp = 2500. 

The initial wave function can be written as 

( )0 init 1 1 0 2(0) z = + .                   (35) 

For the multiconfiguration expansion, we set the 
(2) 0ja =  for the initial wave function 

in MCSH to match the initial condition, 

( )(1) (2) (1)

1 1

0 1 2( 1) j j j j j

N N

j j

t a a a
= =

 = = + = z z .          (36) 

To decompose the initial wave function in the CS subspace, we define the error function 

2

0I =  −   and get the initial amplitudes 
(1){ }ja  by minimizing the expansion 

error. In MCSH, the initial momenta and coordinates of the FSSH trajectories are 

obtained according to the initial CSs. Moreover, we choose the initial active states 

randomly according to the adiabatic electronic populations after representation 

transformation. The time evolution of initz  is described by the motion of the CS basis 

and their time-dependent amplitudes. 

C. Numerical Results 

The spin-boson models with different parameters have been widely utilized to 

represent different dynamical situations, and fully quantum dynamics results can be 

obtained. Thereby, they can be used to benchmark the performance of new nonadiabatic 

https://doi.org/10.26434/chemrxiv-2024-k1nn4 ORCID: https://orcid.org/0009-0005-7695-7786 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-k1nn4
https://orcid.org/0009-0005-7695-7786
https://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

dynamics methods. For simplicity and without loss of generality, we use the diabatic 

coupling Δ as the unit of energy. As listed in Table 1, we consider nine representative 

spin-boson models (i.e., SBM-1 ~ SBM-9),16,86,91–93 which have included both 

symmetric (ε = 0) and asymmetric (ε ≠ 0) cases at low and high temperatures starting 

from bare and dressed local states. The effective temperature β∆ is between 0.1 and 

1000, the Kondo parameter αk is in the range of 0.09 and 4, and the characteristic 

frequency ωc/Δ is between 1 and 10. The MCEv1 and MCEv2 results are provided in 

the supporting information (SI). In all investigated systems, the MCSH results are much 

better than those of MCEv2. MCSH generally gives similar results as MCEv1, but 

performs better in some systems (see details in the SI). In the following discussions, we 

will focus on the performance of FSSH and MCSH. In Table 1, we also give the number 

trajectories in FSSH simulations (Ntraj) and the number of configurations (Nconf) in 

MCSH calculations for each model. In these models, MCSH obtains converged results 

with only a few hundred configurations while FSSH needs thousands of trajectories. 

It is well known that asymmetric models at low temperature are more difficult to 

deal with. Thereby, we first use SBM-1 as an illustration and explore the performance 

of MCSH with different Ninterp. In Figure 2, we show the time-dependent population 

difference between the two diabatic electronic states with Ninterp = 10, 20, 50, 100, 200, 

and 500. αcomp = 2500 gives 
61 1 10   , implying that the initial wave 

function is perfectly expanded by the CS bases. For the exact quantum dynamics, the 

population gradually transfers from diabatic state   to the diabatic state  . The 

results with different Ninterp are highly consistent with the exact quantum results, 
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indicating that the MCSH results converge quickly with the choice of Ninterp. Thereby, 

we have proved that the TDVP can be applied to momentum-jump trajectories with our 

linear interpolation approach, thus significantly expanding the possibility of using more 

accurate and efficient TBFs for MCSH simulations. 

In Figure 3, we systematically compare the performance of FSSH, MCSH, MCEv1, 

and MCEv2 methods in SBM-1. It is apparent that FSSH only captures the first 

oscillation of the diabatic population difference and the equilibrium population is 

significantly overestimated. The MCEv2 results show excessive oscillations of the 

population difference although the oscillating phases are captured (see Figure S1). This 

may be attributed to the lack of WP splitting in the individual mean-field trajectories, 

and the uncorrelated mean-field configurations are insufficient to describe the system-

bath coupling. Similar to MCEv1, our MCSH method reproduces the quantum results 

both in short-term and long-term dynamics. Thereby, the correlated variation of 

vibronic amplitudes is crucial to make improvements on FSSH trajectories. 

Similar to MCSH, we can also embed the EMF29 trajectories into the MCEv1 

ansatz to get a post-processing method, which is named as multiconfigurational mean 

field (MCMF) dynamics. Compared with MCEv1, although MCMF is also based on 

Ehrenfest TBFs, MCMF belongs to the post-processing variation between independent 

TBFs. Compared with MCEv2, although MCMF is also based on the independent mean 

field TBFs, the vibronic amplitudes are fully correlated through the MCEv1 ansatz, that 

is, eq. 15 is used instead of eqs. 16 and 17. As shown in Figure 3, MCMF with the same 

Nconf gives too large long-term oscillations and population differences. Therefore, the 
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post-processing variation with mean field trajectories is indeed inferior to that with 

surface hopping trajectories, justifying our motivation of the MCSH method. 

In Figure 4, we study SBM-2, which is a symmetric model at low temperature. In 

this case, both FSSH and MCSH give the same long-term populations for the two 

electronic states, indicating that both dynamics have reached thermal equilibrium in 

accord with the exact quantum dynamics. Although FSSH properly captures the 

oscillation phases, it underestimates the oscillation amplitudes. In contrast, MCSH 

gives almost identical populations as the quantum results. As shown in Figure S2, 

MCSH even better captures the oscillation phases than MCEv1 at t∆ > 9, implying that 

using surface hopping trajectories for post-processing variation may have special 

advantages in certain long-time dynamics. 

At lower temperatures, the nuclear quantum effect is more significant, and FSSH 

may have larger errors due to its MQCD feature. In Figure 5, we investigate SBM-3 at 

almost zero temperature. The detailed parameters are αk = 1.5, β∆ = 1000, ωc = 10∆, 

ε/∆ = 0 and M = 500. In this model, although there is no bias between the two electronic 

states, most of the long-time population is still on the initial state due to the extremely 

low temperature, large number of vibrational modes, high cutoff frequency, and strong 

system-bath coupling. The FSSH results show a quasi-linear decay and fail to reproduce 

the population localization. For MCEv2, the population localization is obtained, but 

there exist artificial population oscillations (see Figure S3). Encouragingly, MCSH still 

successfully reproduces the exact quantum results despite small deviations. In all the 

three low-temperature models (i.e., SBM-1, SBM-2 and SBM-3) investigated above, 
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MCSH consistently shows high performance and makes significant improvements 

compared with FSSH. This indicates that the surface hopping trajectories combined 

with the “post-processing” variation of correlated vibronic amplitudes can well describe 

the nonadiabatic dynamics in complex systems. 

We also examine spin-boson models at high temperatures. In Figure 6, we show 

the time-dependent diabatic population difference in the symmetric SBM-4 model. The 

exact quantum results exhibit some oscillations during the decay dynamics. Although 

at a relatively high temperature, a stronger system-bath coupling is also present in 

SBM-4, and thus FSSH still shows some errors. Namely, FSSH only tracks the first part 

of the decay and the population decreases monotonically with time. In contrast, MCSH 

closely reproduces the time evolution of exact populations, which again shows that the 

“post-processing” variation of surface hopping trajectories is reliable. 

SBM-5 is an asymmetric model at high temperature. In this case, the nuclear 

quantum effect of the bath is relatively weak. As shown in Figure 7, the quantum results 

experience a few small oscillations and then show a long-term asymptotic decay. It is 

evident that FSSH performs quite well as other methods. In terms of details, although 

all investigated methods reproduce the oscillation features and subsequent decay over 

time of the population difference, MCSH shows the best performance. Therefore, 

regardless of the performance of FSSH, the “post-processing” variation of correlated 

vibronic amplitudes based on surface hopping TBFs can always provide an accurate 

description of the system-bath entangled dynamics. 

To give a more comprehensive evaluation of the performance of MCSH, we study 
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four additional models (i.e., SBM-6, SBM-7, SBM-8, and SBM-9), which have also 

been extensively studied in the literature (see Figure S6). In the low-temperature models, 

there exist coherent oscillations of the population difference in the exact quantum 

dynamics, and MCEv2 generally shows too large oscillation amplitudes (see Figures 

S6a and S6b). While FSSH exhibits different performance in different models, it well 

reproduces the coherent oscillation of population in SBM-7 (see Figure S6b) and the 

incoherent damping of population in SBM-9 (see Figure S6d). In contrast, MCSH gives 

much stable results and is generally more consistent with the exact results. In particular, 

MCSH even shows better long-time performance than MCEv1 in SBM-7 (see Figure 

S6b). Note that SBM-8 presents a significant system-bath coupling and energy bias 

between the two electronic states. As a result, the decoherence in this system is much 

stronger than other cases. As the ansatz in this study possesses a coherent superposition 

of vibronic amplitudes, it may be not suitable to efficiently describe such strong 

decoherence. Therefore, this model is challenging for all investigated methods, which 

have shown similar results (see Figure S6c) and may need a large number of 

configurations to obtain the exact results. 

4. CONCLUSION 

In summary, we have proposed a novel MCSH method for nonadiabatic dynamics 

simulations. The correlation between configurations based on independent and 

interpolated surface hopping TBFs has been realized, and the advantages of both 

multiconfigurational and surface hopping dynamics have been taken. We have 

benchmarked the performance of MCSH in a series of spin-boson models, where 
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complex dynamics emerges from the interaction between nuclear and electronic 

degrees of freedom and can be easily tuned by the model parameters. MCSH uses linear 

interpolation to solve the momentum-jump problem due to surface hops, and the results 

converge rapidly with the number of interpolations. MCSH has provided results that 

are in high agreement with the exact solutions and systematically improves over FSSH. 

The surface hopping TBFs with momentum jump can be regarded as an efficient choice 

of basis set and open a new perspective for multiconfigurational dynamics. In addition, 

due to the independence of surface hopping trajectories, we can make parallel 

computing to get the TBFs, which is vital for improving the efficiency of nonadiabatic 

dynamic simulations. From this perspective, our MCSH method has great potential to 

be combined with electronic structure calculations for realistic applications. 

Finally, the choices of TBFs are essential for MCSH and merit further discussion. 

Better trajectories might make the time-dependent variation of the vibronic amplitudes 

converge more quickly with respect to the number of TBFs.94,95 Generating better 

trajectories with other methods instead of the traditional surface hopping scheme needs 

further investigations. For instance, the global flux surface hopping (GFSH) method is 

a useful variant of FSSH. GFSH not only has higher performance in superexchange 

dynamics but also shows better detailed balance.96,97 In addition, GFSH is more suitable 

for nonadiabatic dynamic simulations with complex surface crossings because its 

hopping probabilities do not rely on the nonadiabatic couplings.98 Therefore, the GFSH 

trajectories can be used as TBFs in MCSH simulations to study the nonadiabatic 

dynamics in more complex systems. These studies are currently underway. 
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Figure 1. Schematic representation of the linear interpolation of nuclear momenta in 

MCSH when a surface hop occurs. The two adiabatic PESs are shown by light blue and 

light red solid lines, respectively. The nuclear trajectory on the active PES is represented 

by the black dashed line. The movement directions of the nuclei are marked with arrows. 
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Figure 2. Diabatic population difference as a function of time obtained by MCSH with 

different numbers of interpolation points Ninterp for the SBM-1 asymmetric spin-boson 

model at low temperature. The exact quantum solutions are shown by black open circles. 

The MCSH results with different Ninterp are represented by solid lines in different colors. 
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Figure 3. Diabatic population difference as a function of time for the SBM-1 

asymmetric spin-boson model at low temperature. The results of exact quantum 

dynamics, FSSH, MCMF, and MCSH are shown by black open circles, light red crosses, 

grey solid lines, and dark red solid lines, respectively. 
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Figure 4. Diabatic population difference as a function of time for the SBM-2 symmetric 

spin-boson model at low temperature. The exact quantum solutions are shown by black 

open circles. The results of FSSH and MCSH are represented by the same styles as 

those in Figure 3. 

  

https://doi.org/10.26434/chemrxiv-2024-k1nn4 ORCID: https://orcid.org/0009-0005-7695-7786 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-k1nn4
https://orcid.org/0009-0005-7695-7786
https://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

 

Figure 5. Diabatic population difference as a function of time for the SBM-3 symmetric 

spin-boson model at almost zero temperature. The exact quantum solutions are shown 

by black open circles. The results of FSSH and MCSH are represented as the same 

styles as those in Figure 3. 

  

https://doi.org/10.26434/chemrxiv-2024-k1nn4 ORCID: https://orcid.org/0009-0005-7695-7786 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-k1nn4
https://orcid.org/0009-0005-7695-7786
https://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

 

Figure 6. Diabatic population difference as a function of time for the SBM-4 symmetric 

spin-boson model at high temperature. The exact quantum solutions are shown by black 

open circles. The results of FSSH and MCSH are represented as the same styles as those 

in Figure 3. 
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Figure 7. Diabatic population difference as a function of time for the SBM-5 

asymmetric spin-boson model at high temperature. The exact quantum solutions are 

shown by black open circles. The results of FSSH and MCSH are represented as the 

same styles as those in Figure 3. 
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Table 1. Summary of the parameters, the number of trajectories Ntraj in FSSH 

simulations, the number of configurations Nconf in MCSH calculations and the initial 

bath state for all investigated spin-boson models. Nconf in MCEv1, MCEv2, and MCMF 

are the same as that of in MCSH.The initial nuclear momenta and coordinates of the 

bath are sampled by the Wigner distribution in FSSH simulations. 

Model αk β∆ ωc/∆ ε/∆ M 
FSSH 

Ntraj 

MCSH 

Nconf 
ˆ q

b

e  

SBM-1 0.1 5 7.5 1 50 5000 100 
bare 

local state 

SBM-2 0.1 5 7.5 0 60 5000 100 
bare 

local state 

SBM-3 1.5 1000 10 0 500 1000 100 
bare 

local state 

SBM-4 2 1 1 0 100 10000 100 
dressed 

local state 

SBM-5 0.1 0.25 1 1 100 10000 100 
dressed 

local state 

SBM-6 0.1 5 2.5 1 100 5000 200 
dressed 

local state 

SBM-7 0.09 5 2.5 0 100 5000 100 
dressed 

local state 

SBM-8 4 0.1 2 5 100 10000 100 
dressed 

local state 

SBM-9 1.2 0.2 2.5 0 15 5000 100 
bare 

local state 
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