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ABSTRACT: Intramolecular C−H functionalization was achieved using rhodium-catalysis with -alkyl--diazoesters. Dirhodium 

tetratriphenylacetate (Rh2(TPA)4), a sterically bulky achiral catalyst was found to enable the formation of lactones. Alkyl -lactones 

were synthesized in excellent yields and diastereoselectivity, and a diverse array of disubstituted lactones (-, -, -) were synthesized 

with good yields and diastereoselectivity. This chemistry was extended to intramolecular C−H insertion in late-stage functionalization 

with an excellent regio- and diastereoselectivity. 

Lactones are cyclic esters that are crucial structural motif 

across a multitude of areas of chemistry.1 Lactones have found 

abundant applications in medicinal chemistry2, the cosmetic in-

dustry3, and polymer synthesis.4 While there are numerous syn-

thetic strategies to generate complex lactones,1-5  C−H function-

alization offers a unique, direct access point from simple, read-

ily available alcohols to complex, valuable structures.6 Diazo 

compounds, a reactive precursor, along with an appropriate cat-

alyst can perform the intramolecular reaction to give lactones 

selectively (regio- and stereo-) through the intermediacy of a 

carbene.  

Lactone synthesis the intramolecular C–H functionalization 

using metal carbenes has been well studied. However, these 

studies have been limited to diazoacetates7 and aryl/alkenyldi-

azoacetates8 (Scheme 1A and Scheme 1B). Recently, the Ar-

nold group synthesized a set of diverse lactones using a metal 

enzyme catalyzed intramolecular functionalization using diazo-

acetates.9 Despite this previous work, the use of -alkyl--di-

azoesters is limited. This is likely due to the unwanted side re-

action that generates an alkene via a -hydride shift (Scheme 

2).10,11  Our group has recently synthesized electron deficient -

alkyl--diazoesters which slows down this -hydride migration 

and may allow for further development of the use of -alkyl--

diazoesters.12 In this work, we demonstrate the ability of these 

diazoesters to undergo intramolecular C−H insertions using 

rhodium (II) catalysts to produce lactones in fair to excellent 

yields with good diasteroselectivity (Scheme 1C). We were not 

only able to synthesize -lactones but also lactones of greater 

ring sizes (- and -).  

Scheme 1. Intramolecular C−H Insertion to Yield Lactones 

 

Scheme 2. Limitation of -Alkyl--diazoesters  
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During our cyclopropanation studies of fluorinated diazoace-

tates, we had observed a lack of selectivity using tert-butyl ester 

substrates.12 While attempting to understand this lack of selec-

tivity, we observed a very efficient intramolecular C–H inser-

tion of the carbene generated from tert-butyl 4,4,4-trifluoro-2-

diazobutanoate (1) onto the tert-butyl ester to give -lactone 2. 

Our optimal conditions (Table 1, entry 1) were at reflux in 

CH2Cl2 with high conversion and very little observed alkene (3) 

formation.  

Based on these results, we hypothesized that an electron with-

drawing group could inhibit alkene formation and enable lac-

tone formation. This can be further observed in the C–H inser-

tion of diazopropionate which resulted in low conversion and 

low yield demonstrating the alkyl structure influences reactiv-

ity. Also of note, a less sterically encumbered catalyst, 

(Rh2(OAc)4), resulted in an increase in the formation of alkene. 

Our working hypothesis is summarized in Figure 1. The con-

formation of the Rh-carbene is guided by the steric repulsion 

between the CF3 group and the catalyst-ligand structure, which 

limits the overlap of the alkyl C–H bond with the carbene. Also, 

the electronics of the CF3 discourage the buildup of positive 

charge that would occur during the unwanted hydride shift. 

When the Rh2(TPA)4 was replaced by Rh2(DOSP)4, the lactone 

to alkene ratio was 1: 0.57 (Table 1).  

With our optimized conditions, -lactones were synthesized 

using various -alkyl--diazoesters with electron withdrawing 

groups on the alkyl chain (Scheme 3). We began with a variety 

of fluorinated compounds to give lactone products (2a-d). 

While these were high yielding reactions by NMR, but the lac-

tones were co-polar with the catalyst and were difficult to pu-

rify. Thus, we then reduced the lactones to diols using lithium 

aluminum hydride and isolated the diols as a white solids in 

good yields (60-71%) over two steps (Scheme 3). After the suc-

cessful synthesis of lactones using the fluorinated derivatives, 

we then changed the electron withdrawing group to an ester. We 

investigated intramolecular insertions using various ester 

groups in -position. We were able to obtain the -lactones (2e-

h) in good to excellent yields (65-85%) (Scheme 2). This pro-

tocol tolerated numerous esters with the potential for orthogonal 

functionalization.  

We next began to probe esters other than tert-butyl groups 

(Scheme 4). Surprisingly, the -lactone formed from isopropyl 

derivative was high yielding (96 %) with a single diastereomer 

as the major product (5a). Both the 3- and 5- substituents in lac-

tone 5a were cis to each other which was confirmed by J-cou-

pling values of the methylene unit between them. This selectiv-

ity is hypothesized to arise from the avoidance of a syn-pentane 

like interaction between the large catalyst and the methyl of the 

isopropyl group. There was a decrease in yield and higher 

amounts of alkenes were observed when we moved to a hexyl 

ester or iso-butyl ester (5b and 5c). Excitingly, a single diastere-

omer (5d) was isolated in good yield (74 %) from the cyclo-

hexyl ester confirmed as the trans-trans isomer by NMR (see SI 

for details) which likely arises from insertion into an equatorial 

carbon-hydrogen bond. Both lactones 5e and 5f were formed 

from cyclohexyl 2-diazopropionate, and unlike previous results 

with a cyclohexyl ester substituent, this reaction resulted in a 

cis-cis fused ring system as the major product, likely due to the 

small size of the methyl group allowing the insertion to take 

place via the chair conformer with the ester in an axial position. 

A single diastereromer was also observed with the adamantyl 

chain (5g, 32 %) in a lower yield with increased alkene for-

mation, potentially due to the rigidity of the adamantyl group.  

 

Table 1. Deviations from Optimized Conditiona 

 

 

entry Catalyst R 2:3b Yield (%)c 

1 Rh2(TPA)4 CF3 1:0.01 99 

2 Rh2(TPA)4 H 1:0.16 <10% 

3 Rh2(OAc)4 CF3 1:1.18 15 

4d Rh2(S-DOSP)4 CF3 1:0.57 13 
aReaction conditions: 0.3 mmol diazo ester in CH2Cl2 (1.5 mL) 

was added dropwise over a period of 1.5 h into the refluxing 

solution of catalyst (1 mol%) in CH2Cl2 (1.5 mL) and refluxed 

for next 1.5 h, bRatio determined by NMR, cNMR yield of lac-

tone 2 measured using trimethoxybenzene as an internal stand-

ard, dpentane used. 
 

 

Figure 1.  Proposed Newmann Projection for the Metal Car-

bene with Rationalization for Successful Lactone Synthesis. 

Scheme 3: Synthesis of -lactones using tert-butyl estersa 

 

aReactions run on 0.3 scale. Isolated yields. bIsolated yield after 

reduction with LiAlH4. 
cLactone:alkene ratio determined by 

crude NMR. TCE = 2,2,2-trichloroethyl. 
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Scheme 4: Synthesis of substituted -lactonesa  

 

aReactions run on 0.3 scale. Isolated yields. bLactone:alkene ra-

tio determined by crude NMR. cRatio determined by NMR. 

 

We next began to investigate the chemistry of esters with ter-

minal aryl groups with the intention of forming diverse lactones 

(Scheme 5). For the synthesis of these diverse lactones (7a-f), 

the terminal aryl group was anticipated to guide selective inser-

tion into the benzylic position with varying methylene units in 

the ester chain. Beginning with the -lactone system, we ob-

tained -lactone 7a in a moderate yield of 57% with the cis iso-

mer as the major isomer (7:3 dr). Similarly, only the cis-isomer 

of -lactones was isolated from the p-methoxyphenylpropyl es-

ter derivative with a lower yield of 30%. The cis-trans isomer 

was confirmed by treating the lactone 7b with DBU which gave 

a mixture of stereoisomers with an excess of trans lactone with 

a ratio of 86:14 (trans: cis). We do not currently have a model 

for this change in diastereoselectivity.  However, when -lac-

tones were synthesized from phenylbutyl units, only the trans-

isomer of the product (7c-7e) were obtained. This was con-

firmed by the J-coupling values from 1H-NMR of compound 

7e. Also, the treatment of compound 7c with DBU gave no 

change. Lastly, the benzyl ester chain was tested for the for-

mation of -lactones. However, we obtained the alkene as a ma-

jor product with a 10 % yield of a -lactone (7f), a 5,7-bicyclic 

compound, the product of a Buchner ring expansion of the ben-

zene ring.13 

With our understanding from our intramolecular C−H func-

tionalization scope, we looked towards its application in late-

stage functionalization. Cholesterol was chosen due to its rela-

tive availability and the diazo compound (9) was synthesized 

from two steps starting from dioxanone 8. A single diastereo-

meric lactone product (10) with a yield of 56 % was achieved. 

The stereochemistry was confirmed by nOe and J-coupling and 

was shown to match that of cyclohexyl derivative 5d. The regi-

oselectivity is likely due to the mixture of sterics of the ring 

junction and relative electronic deactivation by the neighboring 

sp2-hybrized carbon as the the equatorial C–H is orthogonal to 

the π-system.7e 

 

Scheme 5: Synthesis of diverse (-, -, -) lactonesa  

 
aReactions run on 0.3 scale. Isolated yields. bLactone:alkene ra-

tio determined by crude NMR. 

 

Scheme 6: Intramolecular C−H functionalization of choles-

terol derivativea 

 

 
aIsolated Yields. bLactone:alkene ratio determined by crude 

NMR. 

 

In conclusion, we have demonstrated intramolecular C−H in-

sertion reactions of electron deficient -alkyl--diazoesters to 

give diverse lactones with fair to excellent yield. For the syn-

thesis of poly-substituted lactones, the reactions were shown to 
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be diastereoselective. The trans-isomer for an aliphatic chain 

and cis-isomer for the aryl group (5- and 6- membered) was fa-

vored, whereas the 7-membered lactones were predominantly 

trans. Also, the late-stage diversification of a natural product 

derivative was demonstrated to be diastereoselective and regi-

oselective. Further investigations into understanding design 

principles for the diazoesters and the catalyst for improved 

yields, enantioselectivity, and expanded substrate scopes are 

underway.  
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