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Abstract 
A hybrid modeling framework has been developed for electrodialysis (ED) and resin-wafer 

electrodeionization (EDI) in brackish water desalination, integrating compositional modeling with 

machine learning techniques. Initially, a physics-based compositional model is utilized to 

characterize the behavior of the unit. Synthetic data is then generated to train a machine learning-

based surrogate model capable of handling multiple outputs. This model is further refined using a 

limited set of experimental data. The effectiveness of this approach is demonstrated by its ability 

to accurately predict experimental results, indicating a faithful representation of the system's 

behavior. Through analysis of feature importance facilitated by the machine learning model, a 

nuanced understanding of the interaction between the chosen ion-exchange resin wafer type and 

ED/EDI operational parameters is obtained. Notably, it is found that the applied cell voltage has a 

predominant impact on both separation efficiency and energy consumption. By employing multi-

objective optimization techniques, experimental conditions are identified that achieve 99% 

separation efficiency while keeping energy consumption below 1 kWh/kg. 
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1. Introduction 

Electrochemical separation processes are established separation technologies for water 

desalination and are emerging as a separation platform for many different sectors including 

nutrient and critical minerals recovery and purification of chemicals generated from processed 

biomass (e.g., organic acids) [1,2]. The mainstay of electrochemical separation platforms includes 

electrodialysis (ED), electrodeionization (EDI, and capacitive deionization (CDI) and membrane 

capacitive deionization (MCDI). These electrochemical units use electric field as the driving force 

to remove ions from a liquid process stream [3,4]. In emerging applications, electrochemical 

separations greatest have the ability to perform selective ion separations for metal ion removal 

from hydrometallurgical streams and recycled black mass [5–8], ammonium and phosphate 

capture (i.e., nutrient recovery) from waste streams such as agricultural run-off, and organic acids 

recovery from processed biomass [9,10].  

ED, EDI, CDI, and MCDI are mature platforms for water desalination, but are the not the 

most widespread technologies for desalination because of their higher costs and great energy use 

when compared to reverse osmosis (RO). However, they do have some advantages over RO 

because they do not need high pressure piping for desalination. Plus, their modular natural makes 

them conducive for distributed water treatment and they can be more energy efficient when 

purifying water with lower concentrations of dissolved salts (for instance, brackish water with less 

than 5,000 mg/L) [3,11–17]. Generally, electrochemical deionization processes are poised to play 

an important role in addressing water scarcity for certain scenarios (e.g., brackish water at the 

lower concentration range) and securing mineral supply chains and managing nutrient cycles.  

The electric field is the driving force for removing ions from water in ED and EDI 

processes. The potential gradient in ED and EDI occurs across a series of alternating ion-exchange 

membranes (IEMs) partitioning the concentrated and diluate saline streams. The different 

compartments in the said processes are arranged in a way that allows the cations (i.e., positive 

ions) in the diluate stream to migrate towards the cation exchange membrane (CEM) so that they 

permeate across the CEM and collect into the concentrate compartment. Likewise, the anions (i.e., 

negative ions) selectively pass through the AEM when moving from the diluate compartment to 

the concentrate compartment. In the concentrate compartment, the anions cannot migrate through 

the CEM and the cations cannot migrate through the AEM due to Donnan exclusion [1,3].  It is 

important to point out that ED is similar to EDI except that the diluate stream compartment 
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contains ion exchange resins (IEX) particles or ion-exchange resin wafers (i.e., immobilized ion-

exchange resin particles in a porous wafer configuration) as a way to augment the solution 

conductivity [18,19].  The IEX particles and resin wafers (RWs) can regenerate the resin particles 

without the application of acids and bases and provide ions for solution conductivity under very 

dilute conditions. This occurs via water dissociation at the interface of the oppositely charged 

particles in the IEX and resin wafer. Water dissociation generates hydroxide ions (OH-) and 

protons (H+) to regenerate the resins or to augment the process stream ionic conductivity [18–20]. 

Fig. 1 shows a simplified pictorial representation of ED and EDI devices.  

 

Fig. 1. Simplified process diagrams of electrodialysis (ED) and electrodeionization (EDI). The red 

and yellow particles depict the cation exchange and anion exchange resins, respectively. 

The design of electrochemical deionization units considers many factors: applied cell pair 

voltage or current density of the stack, concentration of ions in the feed stream, the type of ions in 

the feed stream, and the properties of the IEMs, IEX particles, and RWs. Furthermore, there is 

often a tradeoff between the size of the unit, which manifests as a capital expenditure cost, versus 

energy consumption, an operating expenditure cost. Mathematical models that accurately capture 

electrochemical deionization system performance with the said considerations is vital to arriving 

at the highest performing and lowest cost electrochemical separation system.  

Regarding ED modeling, several authors [21–23] have proposed mathematical models 

involving mass balance accounting for ion transport due to convection, migration and diffusion 
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across IEMs for exchange between the diluate and concentrate compartments. In modeling the ion 

transport in EDI, most mathematical models describe ion transport along the surface of ion-

exchange resins in addition to ion transport via exchange with the resin beads [20,24–26]. The 

various models are effective for accurately predicting effluent concentrations and voltage/ current 

profiles that agree with experimental data.  

Though mathematical models are a powerful tool for understanding and predicting the 

behavior of electrochemical systems, they have several limitations that can make them unsuitable 

for some applications. One limitation of mathematical models is that they are often based on 

simplifying assumptions that may not be valid in all cases. Also, solving mathematical models is 

sometimes computationally intensive. As a result of these limitations, there is a need for robust 

data-driven techniques like machine learning because they do not need to use simplifying 

assumptions and can be trained on a large set of data that captures the real-world behavior of the 

system. Machine learning has been applied to a variety of technical fields including various types 

of chemical processes. More recently, it has been used in the design of polymer membranes for 

separations [27,28] and fuel cell systems –the latter being an electrochemical process like EDI 

[29–31].  However, fuel cells and EDI differ from conventional large scale chemical processes that 

are rich in data because the said electrochemical processes often have smaller amounts of data. 

Hence, it is difficult to achieve accurate and robust predictions for polymer electrolyte membranes 

and electrochemical processes using machine learning when there are limited data sets.  

Transfer learning (TL) is a useful technique for addressing the challenge of limited data 

[32–34]. TL involves using a pre-trained task specific data-driven machine learning model 

(obtained from a large dataset) as a foundation for training a new model (usually a small dataset) 

[31,34,35]. Given a source domain 𝒟!, and learning task 𝒯!, a target domain 𝒟" and a learning 

task 𝒯", transfer learning aims to help the learning of the target predictive function 𝑓"(∙) for the 

target domain using the knowledge in 𝒟! and 𝒯!, where 𝒟! ≠ 𝒟" and 𝒯! ≠ 𝒯". This technique 

often enhance a model's accuracy, particularly when the source and target domains are closely 

related [36,37] and has demonstrated remarkable success in various fields, including materials 

informatics [35,38,39] and the design of electrochemical systems [31,40].  

Herein, we report a hybrid modeling framework that exploits compositional modeling and 

transfer learning to develop physics-aware models for ED and EDI. First, a mathematical model 

based on compositional mathematical modeling was used to generate large realization of data to 

https://doi.org/10.26434/chemrxiv-2024-8mvwp ORCID: https://orcid.org/0000-0002-7619-5495 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-8mvwp
https://orcid.org/0000-0002-7619-5495
https://creativecommons.org/licenses/by-nc-nd/4.0/


Page 5 of 33 

pretrain a ML i.e., source model. Second, the target ML model with close approximation to 

experimental data was developed by adjusting the parameters of the pretrained source model with 

the available experimental data. Thirdly, we identify important factors, such as device operating 

parameters and material properties, that affect selected performance metrics. Finally, we 

performed simulations to verify the physical trends obtained from the optimization in relation to 

experimental intuition. Overall, a hybrid modeling approach was devised from a combination of 

data-driven and knowledge-based modeling which rendered a powerful tool to accelerate the 

development of ED and EDI technologies with 99% separation efficiency and <1KWh/kg energy 

consumed. 

2. Methodology 

In this study, a two-step modeling procedure that exploits compositional modeling and 

Machine Learning to develop TL-based models for deionization systems as shown in Fig. 2 are 

presented. First, a compositional model is obtained using a base model (e.g., mass balances 

described by coupled differential equations) and the potential drop equation across the 

compartments. The resulting model is then utilized to generate synthetic training data for a 

Machine Learning-based surrogate model (HybridEOS). Finally, the ML model is refined using 

Transfer Learning (TL) following the approach previously reported by our team [31].  A significant 

advantage of using a HybridEOS is the ability to perform TL using experimental data to improve 

the model performance, which can help overcome the limitations of the original compositional 

model. 
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Fig. 2. Two-step modeling approach for the development of physics-aware Machine Learning 
models. 

2.1. Experimental Data 

The experimental data used in this study were obtained from the work of Palakkal et al. [4], 

where they investigated the performance of electrodeionization (EDI) using resin wafers (RWs) 

formulated with ionomer and non-ionic polymer binders (i.e., polyethylene). The authors produced 

five types of resin wafers namely Conventional RW with polyethylene binder, RW with cation-

exchange ionomer (CEI) binder, RW with anion-exchange ionomer (AEI) binder, Mixed Resin 

with CEI binder, and Mixed resin with AEI binder. They adopted a single wafer or mixed wafer 

as the single wafer + oppositely charged ionomer was envisaged to maximize the number of bipolar 

junction points in the RW to improve the rate of water-splitting because the mixed RWs with and 

without ionomer binder have a smaller probability that fixed cationic groups meet fixed anionic 

groups separated by a small gap on the nanoscale. However, they reported EDI data for only three 

resin wafers namely i) conventional RW with polyethylene binder, ii) RW with cation-exchange 

ionomer (CEI) binder, and iii) RW with anion-exchange ionomer (AEI) binder. The experimental 

data and information for the resin wafers include: the chemical structure, average porosity of the 

resin wafer, and the ion exchange capacity of the RW, and the ionic conductivity of the resin wafer 

with different concentrations of saline solutions flowing through them. EDI operating parameters 

and effluent concentration and current density data for brackish water desalination is also available 

for the three different RWs.[4] It is important to note that the experiments were performed in batch 
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mode using an initial concentration of 5 g/L NaCl for both the feed and concentrate solutions, a 

feed flow rate of 25 mL/min, a concentrate flow rate of 50 mL/min, and a cell voltage of 

approximately 1 V/cell pair. Fig. 3 shows the chemical structures, their corresponding ionic 

conductivity in a saline solution and the effluent concentration profile during the EDI process. 

Further details on the experimental setup and findings can be found in the original reference [4]. 

 

 
Fig. 3. a) Chemical structures of polyethylene and ionomer binders used in RWs. b) Ionic 
conductivity (κ) of resin wafers with different binders and ion-exchange resin particles at different 
sodium chloride concentrations. c) The NaCl concentration profiles of recirculated concentrate and 
diluate streams over time for EDI demonstrations. These figures were published in[4] and are 
presented here with permission from Springer Nature. 
 

2.2. Compositional Modeling 

We expanded upon the methodologies proposed by Ortiz et al.[21] and Wright et al.[22] for 

ED to devise a mathematical model tailored for EDI. In our model, we envision the EDI process 

akin to a reservoir tank, exhibiting characteristics reminiscent of an electric circuit when subjected 

to an electric field.. The total mass of the salt solution contained in the dilaute and concentrate tank 

separated by either an AEM or CEM is the sum of bulk flow (i.e., net convective flow of the inlet-

outlet stream 𝐽#$%&,(), migration (𝐽)(*,() and diffusion (𝐽+(,,,() of ions 𝑖 through the AEM and CEM 

membranes. Herein, accordingly, the mass balance in the tank for an electrodialysis device with 

two chambers (dilaute, dil; concentrate, con), shown in Fig. 4, is given as follows: 
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Fig. 4. Schematic of the concentration profiles in bulk and across the boundary layer. 
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Where 𝐶+(%, 𝐶89/, 𝐶+(%(/%0., 𝐶89/(/%0. represents the bulk concentrations (mol/m3) of the diluate 

compartment outlet, concentrate compartment outlet, diluate inlet and concentrate inlet streams, 

respectively; N is the number of cell pairs; 𝜙 is the current efficiency; 𝑧, the charge number; 𝐹, 

Faraday constant (C/mol); 𝐷;, 𝐷8 represent the diffusion coefficient of ions in the AEM and CEM, 

respectively; 𝐴, active membrane area (m2); 𝐶89/:8 , 𝐶+(%:8, 𝐶89/:; , 𝐶+(%:; depicts the concentration at the 

CEM/concentrate interface, CEM/diluate side, AEM/concentrate side, AEM/ diluate side, 

respectively; 𝑙;, 𝑙8 thickness of the AEM and CEM membrane; 𝑄89/, 𝑄+(% the volumetric flow rate 

through the concentrate and diluate stream. 

Because EDI differs from ED, the mass balance equations shown in (1) – (2) are modified 

to account for the addition of ion-exchange RWs. In an EDI cell, ion removal occurs in two phases: 

(i) cation/anion diffuse to the cation/anion resin surface and get exchanged with counterions of the 
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resin; and (ii) ions conduct through the solid phase to the membrane interface then across the 

membrane and then into the concentrate compartment [20,24,41].  In the diluate compartment, the 

ionic current primarily flows through the resin because the interstitial solution is depleted of 

mobile ions and has considerably lower ionic conductivity compared to the charged resin. It is 

reasonable to assume that the resin phase dictates the ion-transport process. Thus, inside the resin 

compartment, the mass balance [20,25,26] is described as: 

𝑉#0+
+-!"#

(

+.
= 𝐴0𝐽(,)(*<;.(9/ + 𝐽(,+(,,$!(9/2       (3) 

Assuming diffusion-controlled process, eq. 3 becomes: 

+-!"#
(

+.
= 𝑎!𝐽(,+(,,$!(9/ = 𝑎!𝐷(

=-!"#>-!"#
( ?

∆A
= 𝐷( ∙

BCDE
<)*(G>C)

∙ (𝐶+(% − 𝐶+(%I )    (4) 

In eq. 4, the area specific ratio of IEX 𝑎! and film thickness ∆𝑥 are given as BCDE
<)

 and 

𝑟J(1 − 𝜖), respectively. For a packed bed where 𝜖 represents the packing ratio (the proportion of 

solid volume to the total volume) and 𝑟J denotes the radius of the particle. It's presumed that β 

signifies the fraction of the IEX surface available for ion exchange and γ is the ratio of CER to 

AER within the IEX resin bed. Also, it is assumed that the incorporation of the IEX would change 

the flow dynamics in the diluate compartment, the migration of ions from solution to resin particle 

and then to IEM. Thus, the mass balance in the diluate chamber is revised as follows:  

𝑁𝜖𝑉&,+(%
+-!"#
+.
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+-!"#
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The mass balance for an EDI unit with a recirculation tank is given as: 

+-!"#
"'#+,

+.
= K!"#

L!"#
- 0𝐶+(% − 𝐶+(%(/%0.2         (6) 

+-!"#
"'#+,

+.
= K!"#

L!"#
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For the electric voltage applied across the device, we assumed that the device was analogous to a 

DC circuit. Herein, the total voltage is given in eq. 8 as the sum of the ohmic drops in a diluate 
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compartment (𝐸9M)+(%  ), ohmic drop in the concentrate compartment (𝐸9M)89/ ), ohmic drop due to 

membrane overpotential (𝐸)0)), ohmic drop due to diffusion overpotential (𝐸+(,,), ohmic drop 

in resin (𝐸<0!(/!) and ohmic drop in electrode chambers (𝐸;/9+0 − 𝐸8;.M9+0). 

𝑉 = (𝐸;/9+0 − 𝐸8;.M9+0) + 𝑁0𝐸9M)+(% + 𝐸9M)89/ + 𝐸)0) + 𝐸+(,, + 𝐸<0!(/!2   (8) 

𝑉80%% = 𝑉 − (𝐸;/9+0 − 𝐸8;.M9+0) = 𝑁0𝐸9M)+(% + 𝐸9M)89/ + 𝐸)0) + 𝐸+(,, + 𝐸<0!(/!2  (9) 

𝐸<0!(/! = 𝐸<0!(/!/)0) + 𝑗 ∗ 𝐴 ∗ 𝑅<0!(/!       (10) 

2.3. Model library 

In an EDI unit operating at a constant voltage, it becomes imperative to calculate the electric 

current flowing through the cell since the mass balance expressions are intrinsically linked to this 

current. After modifying equation (8-10), we obtain the current density j (A/m2) as presented in 

eq. 11. The formula simplifies the membrane potential by combining the Donnan potential with 

the voltage drop stemming from area resistance of IEMs. Also, the ohmic drop in resin layer is 

given as the sum of total stack resin resistance and overpotential due to migration from resin to 

membrane surface.  

𝑗 = L%+##>1∙=P.+.QP/+0"'QP!"11?

1∙6∙=<&2.
!"# Q<&2.

%&' Q<$Q<%Q</+0"'?
        (11) 

In modeling the ohmic resistance due to resin particles (𝑟<0!(/), we embraced the methodology 

which considers the dependency of resistance on solution concentration and conductivity and 

material properties such as ion exchange capacity, packing porosity and density. It's worth 

mentioning that, in contrast to the EDI device, the resins' ohmic resistance in ED is virtually non-

existent. Table 1 details the model fragments utilized in deriving both current density and effluent 

concentrations. 

Table 1. Model library considered in this study. 

Model fragment Functional forms 
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Ohmic resistances 
𝐸9M)(  where i = con, dil 

𝐸9M)( = 𝑗 ∙ 𝐴 ∙ 𝑟9M)(  

𝑟9M)( =
𝐿
𝐴

1
𝐶( ∙ Λ(
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coefficient, 𝛾( − ln(𝛾() =

0.5065√𝐶 ∗ 10>B

1 + 1.298√𝐶 ∗ 10>B
− 0. 

Interface concentrations 𝐶89/:; = 𝐶89/ +
𝑗𝜙

𝑧𝐹𝑘)
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𝑧𝐹𝑘)
(𝑡8Q − 𝑡Q) 

𝑡(
;/8 = 0.5(𝛼( + 1) 

 

As outlined in Table 1, symbols 𝑡;/8
Q/> and 𝑡Q/> describe the transport number of counterions 

in IEM and solutions, respectively. Also, 𝛼8/;, 𝑘) and ⋀ designates the IEMs perm-selectivity, 

mass transfer coefficient of ions at the membrane-solution interface, and the molar salt solution 

conductivity, respectively.  

The eq. 1 - 11 previously determine the cell current density (j) versus time under a constant 

applied voltage as well as the ion concentration profile over time in the diluate and concentrate 

compartments. The calculations were made in a Python-based program and the simulation results 

were compared with experimental data to assess the model's accuracy. 
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2.4. Machine Learning Model 

 

Fig. 5. Featurization and Transfer learning-based strategy implemented in this work. Operational 

data from the ED/EDI include the cell potential (Ecell), number of cell pairs (Ncells),   inlet 

concentration in feed/diluate stream (Cdilin), inlet concentration in concentrate stream (Cconcin), total 

operation time (t) and material information extracted from the resin include ion exchange capacity 

(IEC), porosity (ϕ), packing density (𝜌), solution concentration (Csol) and conductivity (Lsol). 

A transfer learning (TL)-based approach as shown in Fig. 5 was adopted, and it uses a 

knowledge-based explicit equation model to generate data based on several combinations of the 

input variables (using a full 3-level factorial experimental design) and pretrain a source model 

which is a fully connected neural network (FCN). In creating the experimental design, we 

considered the following levels: 5 resin wafers (conventional RW with polyethylene binder, RW 

with CEI binder, RW with AEI binder, mixed resin with CEI binder, and mixed resin with AEI 

binder) as adopted in the available experimental result [4], feed/diluate stream inlet concentration 

(1, 2.5, 3.5, 5g/L NaCl), concentrate stream inlet concentration (1, 2.5, 3.5, 5g/L NaCl), number 

of cells (1, 3, 7, 10), total operation time (30, 60, 90, 120 minutes), and cell potential (0.1, 0.4, 1.0, 

2.0). For each RW, their corresponding ion exchange capacity, porosity, and density were 

extracted. After creating the design space, the corresponding salt removal efficiency (eq. 14) [4], 

energy consumed per mass (eq. 13) [4], and maximum theoretical thermodynamic efficiency (eq. 

14) [42] for each combination were computed.  

Salt removal efficiency, 𝑆𝑅 = 1 − -3
-4

        (12) 

Energy consumed, EC (KWh/kg): 𝐸𝐶 = 2.78 ∙ 10>T ∙ L ∫ 3∙+.
)

    (13) 
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Maximum theoretical thermodynamic efficiency, TEEmax 

𝑇𝐸𝐸);A =
∆L(VVVVVV(WI,XI)

567575675
567∙695

∙(-: ∙%/
;9<(∙(;9>()
(;9<()∙(;9>()

       (14) 

Where 𝐶Y is the brine concentration (i.e. final concentration in the concentrate stream),  𝐶R is the 

feed concentration (i.e. inlet concentration into diluate stream), 𝐶7 is the diluate stream 

concentration, m is the mass of ion removed, ∆𝑉I`̀ `̀ `(𝑊𝑅, 𝑆𝑅) is the minimum mean voltage for a 

reversible separation, 𝑣 is the total charge 𝑣 = 	𝑣	Q − 	𝑣	>, 𝑒 is the charge on the electron (1.602 * 

10-19 C), R is the universal gas constant (8.314 J/mol-K), kB is the Boltzmann constant (1.38 * 10-

23 J/K) and F is the Faraday constant (96,485 C/mol). 

𝑚 = 𝑄+(% ∙ ∫[𝐶R − 𝐶7(𝑡)] ∙ 𝑑𝑡        (15)  

𝑊𝑅 = -@>-4
-@>-3

           (16) 

∆𝑉I`̀ `̀ `(𝑊𝑅, 𝑆𝑅) = Z
|Z9∙\9|

∙ &@"
0
∙ G
XI
j G
WI

𝑙𝑛 lG>WI∙(G>XI)
G>WI

m − (1 − 𝑆𝑅) ∙ 𝑙𝑛 l G>WI∙(G>XI)
(G>XI)∙(G>WI)

mn (17) 

In creating the ML model, the input variables in synthetic and experimental data were scaled 

to using a min–max approach. To obtain the best model architecture, the scaled synthetic data was 

fed to the fully connected neural network (FCN) model with parameters (namely number of layers, 

neurons per layer, and learning rate) tuned with the Bayesian algorithm, facilitated by the 

KerasTuner [43] optimizer running on TensorFlow [44]—was employed to optimize parameters 

using mean squared error as the objective function. Herein, the hyperparameters considered 

include number of layers (1 – 5), neurons per layer (1 – 50), and learning rate (10-3, 10-4, 10-5, 10-

6). Using the optimized ML architecture, a source model was trained with the synthetic data and 

then fine-tuned (i.e. target model) using the 30 available experimental datasets to improve its 

performance and correct any anomaly arising from the limitations of the explicit equation.  

2.5. Insights from ML model  

Extracting insights from developed ML models can be difficult, especially for complex 

models like neural networks. To deal with this, we adopted the method ‘Shapley additive 

explanation, SHAP’ proposed by Lundberg and Lee [45] to express the importance of variables. 
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SHAP has been used in wide ranging research namely electrochemical design [30,31], wastewater 

treatment plants [46], gas separation [47], and bioprocesses [48]. The approach in SHAP rests on 

the idea of obtaining an explanation model g for each individual prediction, that is a linear 

combination of the binary variables z' ∈ {0, 1}M where M is the number of input features.  

𝑔(𝑧]) = 𝛷R +∑ 𝛷(^
(_G 𝑧(]        (18) 

As shown in eq. 18, the final prediction will then be the additive result of the individual 

influences Φi ∈ IR. To calculate the SHAP values for each input, an explanation model with all 

the inputs is evaluated and compared to the evaluations of all possible explanation models that do 

not include the variable of interest. The final value for a given input is then a weighted average of 

all the differences. The SHAP values serve as quantifiers of the magnitude of influence exerted by 

each feature on the model's prediction. A greater positive or negative value in these SHAP scores 

signifies a correspondingly more substantial impact of the respective feature. 

2.6. Optimization 

Predictive models help understand the current limitations of electrochemical devices while 

also identifying pathways for improving performance. Here, we explore the input space of the 

models to find combinations that lead to maximize the performance metrics. Such a problem can 

be formulated as a constrained multi-objective optimization task as defined in eq. 19. Here SR, 

EC, TEE represent the salt removal efficiency, energy consumed per mass, and maximum 

theoretical thermodynamic efficiency, respectively estimated using surrogate model, dist is the 

kNN distance between a candidate solution and the samples in the training space, and li and ui are 

the lower and upper bounds of each decision variable (inputs in the ML model) set by their physical 

realizability. Also, experimentally, SR and TEE range between 0 and 1 while EC is non-negative. 

By maximizing the SR and TEEmax while minimizing the EC and kNN distance, the optimization 

is guided away from point of extrapolation and towards more trustworthy solutions. The 

optimization problem defined in eq. (16) was solved using NSGA-II with 100 population size and 

100 generations. 

        

 

𝑓)(𝑥) = [𝑆𝑅, 𝐸𝐶, 𝑇𝐸𝐸, 𝑑𝑖𝑠𝑡] 𝑚𝑖𝑛/𝑚𝑎𝑥 

𝑥 ∈ ℝ/	
𝑙( < 𝑥( < 𝑢( 	 ∈ 	ℝ, 	𝑖 = 1,… . , 𝑛	

𝑠. 𝑡.	 0.1 < 𝑆𝑅 < 0.99	
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(19) 

 

3. Results and discussion 

3.1. Model Library 

In the algebraic expression for the EDI unit defined in eq. (9 - 11), the applied voltage 

depends on the current density and resistance contributions from the material (membrane and 

resin) and solution (diluate and concentrate) streams. The diluate stream contains the ion-exchange 

resin wafer – which consists of cation and/or anion exchange resins immobilized with polymer 

binder (e.g., polyethylene, cation exchange ionomer, and anion exchange ionomer). For the resin 

particles, there exists no expression that maps the properties of the resins to the resistance (i.e. 

inverse of conductivity). To model the conductivity of the resin wafers, a machine learning model 

utilized ionic exchange capacity (IECresin), porosity (ϕ), solution concentration (Csol) and solution 

conductivity (Ʌsol) as inputs while resin wafer ionic conductivity was an output (Fig S1). The 

solution conductivity was obtained based on the mathematical expression provided in Table 1. 

The experimental data used in training the model was obtained from the works of Palakal et al[4] 

and summarized in Table 1. Initially, the input matrix was transformed into a standard distribution 

and afterwards, the testing set containing 20% of the 50 data points was randomly separated from 

the data set. The remaining 80% of the data set (i.e., the training set) was used for ML model 

development and optimization. First, the regression models for resin conductivity were generated 

using the automated ML pipeline provided by AutoML [49]. The pipeline automatically selects 

XGBoost as the best algorithm outperformed other algorithms including elastic net, extra trees, 

gradient boosting, AdaBoost, decision tree, K-neighbors, lasso lars, linear SVR, random forest, 

ridge regression and SGD regression, known for its strong fitting and generalization capabilities. 

Afterwards, the XGBoost based model was further studied and the results presented here. Using 

this input matrix, an XGBoost (gradient boosting network) with 4 inputs and 1 output was trained 

for 1000 epochs with early stopping criterion and the mean squared error as the loss function. After 

training the model for 1000 epochs as shown in Fig. 6a, the model was evaluated, and Fig. 6b 

shows the performance between the models’ predictions and experimental training and testing 

data. The determined parameters for the XGBoost model are as follows: learning_rate = 0.1, 

0.2 < 𝑇𝐸𝐸 < 0.68	
𝐸𝐶 ≥ 0	
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max_depth = 5, n_estimators = 150, while the remaining parameters are set to their default values. 

Based on the regression analysis, the ML model gives an accurate prediction of the excellent 

performance having a train accuracy (R2) of 0.99 and RMSE of 0.35 mS/cm. Furthermore, the 

model was applied to the remaining 20% test data and resulted in R2 and RMSE of 0.92 and 1.02 

mS/cm, respectively. The accuracy of the ML model is comparable to the experimental data and 

demonstrated the suitability of the developed ML as a tool to compute the resistance of the diluate 

stream in an EDI device.  

Furthermore, we utilized Shapley values to quantify the influence of the four inputs 

(IECresin, ϕ, Csol, Ʌsol) on the model output (i.e. resin conductivity, Ʌresin), aiming to gain a 

comprehensive understanding of their respective contributions to this property. Each graph's y-

axis represents the feature list, arranged in descending order according to their impact on the 

overall prediction, with the most influential feature occupying the top position, followed by the 

less influential ones. Notably, our analysis revealed that the pivotal determinants of resin 

conductivity are the solution concentration (Csol), solution conductivity (Lsol), and packing 

porosity (ϕ), emerging as the most dominant factors impacting this property. This finding concurs 

with the established knowledge in the realm of IEMs. Specifically, the concentration/conductivity 

of ions within the solution and the available interstitial spaces for ion transport stand out as 

paramount determinants of electric field conduction. Additionally, it's worth noting that while the 

IEC of the resin (IECresin) does influence Ʌresin, its effect is overshadowed by the aforementioned 

factors. Additionally, it's worth noting that while the IEC of the resin does influence resin 

conductivity, its effect is overshadowed by the other parameters namely Csol, Lsol, and ϕ. In an 

electrochemical system, the concentration of ions within the resin, which is intricately linked to 

the IEC, ultimately depends on bulk concentration levels. This observation from the trained 

regression model help rationalized the contribution of solution and material properties on the 

resulting resin conductivity. 
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Fig. 6. Performance and feature importance of the ML model to estimate the ionic conductivity of 
the ion-exchange resin wafers (RWs) (a) error curve showing the RMSE over training epochs (b) 
trends of experimental resin conductivity versus predicted resin conductivity (c) impact of features 
on the resin conductivity using SHAP algorithm. 
 
 

3.2. Compositional Model 

To develop a numerical model capable of accurately representing the ion transport behavior 

in EDI processes, we integrated the resin model discussed in Section 3.1 with the governing 

equations detailed in Sections 2.2 to 2.3. We obtained the outlet concentration profiles for both the 

diluate and concentrate streams, as well as the current density profile, by solving the coupled ODEs 

using a Python ODE solver [50]. For reference, we considered an experimental EDI study [4] with 

an inlet concentration of 5 g/L NaCl (i.e., brackish water) for both the feed and concentrate 
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solutions, a feed/diluate flow rate of 25 mL/min, a concentrate flow rate of 50 mL/min, a cell 

voltage of 1 V/cell pair, and a configuration with 4 cell pairs. The membrane utilized is the 

Neosepta CMX and AMX while the resin is combination of Purolite PFC100E (cation-exchange 

resins, CER), Purolite PFA400 (anion-exchange resins, AER) and various binders, leading to the 

properties listed in Table S1. 

Fig. 8 and Fig. S2 depict the concentration profiles of bulk concentrations in the diluate 

and concentrate channels. The model predictions for EDI concentration profiles for the EDI unit 

using resin wafers with anion and cation exchange resin particles (i.e., mixed resin) bound with a 

cation exchange ionomer (i.e., sulfonated poly(arylene ether ether ketone) (SPEEK)) binder and 

anion exchange resin (ARE) with SPEEK binder showed close agreement with experimental 

values. Additionally, we conducted a statistical analysis of the fitting procedure, presenting the 

results in Table 2. We assessed the prediction accuracy of the compositional model using mean 

absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). For 

the mixed resin with SPEEK (CEI) binder, the MAE values for model predictions were found to 

be 0.22, 0.19, and 0.02 for concentration in concentrate streams, concentration in diluate streams, 

and current density, respectively. Correspondingly, the RMSE values were 0.26, 0.24, and 0.02. 

These levels of prediction accuracy closely align with experimental data, illustrating that the 

numerical model does not falsely inflate accuracy due to data leakage. Table 2 demonstrates that 

the MAEs of the numerical model predictions are as low as ~0.01 A and ~0.16 g/L, while the 

RMSEs are ~0.02 A and ~0.20 g/L for current and concentrations, respectively. These results 

underscore the capability of the proposed numerical model to accurately represent ion transport 

behavior in electrochemical setups like electrodialysis and electrodeionization. 
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Fig. 8. Training results for the continuum EDI model. (left) predicted (label ‘Model’) and 
experimental (‘Exp’) effluent concentration on the concentrate (label ‘c’) and diluate (label ‘d’) 
compartment. (right) predicted (Model) and experimental (Exp) current from Pallakal et al.[4] (a) 
Mixed Resin with SPEEK(CEI)-binder (b) AER with SPEEK(CEI) binder. 
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Table 2. Performance of the Compositional Model for the available experimental data from ref.[4] 

Data Concentrate (c) Diluate (d) Current 
Mixed Resin-SPEEK (CEI)-binder RMSE = 0.26 

R2 = 0.93 
MAE = 0.22 

RMSE = 0.24 
R2 = 0.94 
MAE = 0.19 

RMSE = 0.02 
R2 = 0.87 
MAE = 0.02 

AER with SPEEK (CEI) binder RMSE = 0.29 
R2= 0.92 
MAE = 0.24 

RMSE = 0.25 
R2= 0.94 
MAE = 0.22 
 

RMSE = 0.02 
R2 = 0.90 
MAE = 0.02 

Mixed Resin with PE binder RMSE = 0.20 
R2 = 0.96 
MAE = 0.16 

RMSE = 0.28 
R2= 0.92 
MAE = 0.22 

RMSE = 0.02 
R2 = 0.70 
MAE = 0.01 

After validating the model for brackish water deionization, we conducted sensitivity 

analyses for parameters including the number of cell pairs, applied cell voltage (V/cell), feed + 

concentrate concentration, and active membrane area. Fig. 9 illustrates the effects of varying these 

parameters on the concentration profiles in the diluate and concentrate channels, as well as the 

resulting current. Additionally, Fig. S3 presents changes in flowrates, volume of the recirculation 

stream, and concentration of the concentrate and diluate. Our findings indicate that increasing the 

number of cell pairs leads to lower current flow and greater ion removal. Likewise, increasing the 

applied voltage results in higher current flow and greater ion removal within the deionization 

chamber. 

 

  

https://doi.org/10.26434/chemrxiv-2024-8mvwp ORCID: https://orcid.org/0000-0002-7619-5495 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-8mvwp
https://orcid.org/0000-0002-7619-5495
https://creativecommons.org/licenses/by-nc-nd/4.0/


Page 21 of 33 

 

 

 

 

Fig. 9. Effect of number of cells (N), applied cell voltage (V), feed concentration, and active 
membrane area (area) on the device performance. (left) predicted current (right) predicted effluent 
concentration on the concentrate and dilute sides. 
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3.3. ML-based Surrogate Model 

Once the compositional model is obtained, synthetic data is generated by simulating system 

responses to changes in the input variables. In generating the data, we consider the following 

materials for the EDI process: 5 RWs, 1 type of an AEM, and 1 type of a CEMs. These materials 

are described in Table S1 and S2, respectively. These three components of the EDI process 

resulted in 9 variables which includes operational variables such as cell voltage, feed/diluate 

concentration, concentrate concentration, number of cells and total operational time, and resin 

properties such as ion exchange capacity, porosity, and diameter. To attain a well-balanced dataset, 

we meticulously structured the values for the input variables by employing a comprehensive 3-

level factorial experimental design encompassing 9 variables. This rigorous approach is chosen 

with the intention of achieving both a uniform distribution of data and an ample number of 

instances for training, thereby mitigating any potential limitations stemming from a shortage of 

pretraining data in subsequent stages of the analysis. Using the generated data, an ML-based 

surrogate model “HybridEOS'' can be trained to capture the information contained in the 

compositional model. The architecture and training scheme for a fully connected ANN was 

optimized to minimize the prediction using the number of layers, number of nodes, learning rate 

and batch size as decision variables and training, testing and validation error as objective functions. 

The HybridEOS was trained to predict three outputs, namely the salt removal efficiency (SR), 

energy consumed per mass (EC), and maximum theoretical thermodynamic efficiency (TEEmax). 

The training and validation sets consists of 5683 data points and the test set consists of 299 data 

points that were kept from the model during training and used for model evaluation only. 

Afterwards, these parameters were added to the data to create a dataset with dimensionality in the 

order of the experimental data used in the transfer learning phase. Afterwards, the model was 

trained and the selected architecture after optimization with Bayesian Optimizer was an ANN with 

4 layers with architecture 9:50:42:29:50 and a learning rate of 0.001. Fig. 9(a) and Fig. S4 present 

the training results of the ML model, showing a remarkable overlap between the HybridEOS 

predictions and the actual values. These outcomes affirm the successful training of the HybridEOS 

models, allowing for accurate estimation of SR, EC, and TEEmax in other material outlet streams. 

In Fig. 9(b) and Table 2, the performance metrics (RMSE, MAE, R2) of the ML model estimates 

are depicted, demonstrating their strong performance in terms of estimation accuracy. 

https://doi.org/10.26434/chemrxiv-2024-8mvwp ORCID: https://orcid.org/0000-0002-7619-5495 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-8mvwp
https://orcid.org/0000-0002-7619-5495
https://creativecommons.org/licenses/by-nc-nd/4.0/


Page 23 of 33 

 

Fig. 9. Training results for the source model using simulated data from a knowledge-based 
model and optimized ANN architectures. The nested plot displays the convergence of the MSE 
error curve. 
 
 

Once the source model was built and trained, TL was used to refine the model using the 

available experimental data consisting of 30 samples were obtained of which 27 were used during 

training/ validation and the rest as test set. A proper TL scheme was obtained by conducting 3 

steps namely (i) freezing the layers in the source model (ii) retrain the new model with learning 

rate of 0.001 for 2000 epochs (iii) unfreeze the source model layers in (ii) at low learning rate 

(0.00001) and train for a short time (2 epochs).  Fig. 10 shows the performance of the TL scheme. 

The cross-validation shows a small improvement in the validation error after the TL step and an 

increase in the variance of the training and testing errors. Our TL model was trained on the same 

descriptors as the source model detailed above, including the hyperparameter procedure. Using 

these features, we were able to develop an TL model that reproduces experimental values with 

high accuracy including the validation data. This result supports the consensus on the advantages 

associated with the TL scheme.  
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Fig. 10. Training results for the target model using experimental data. The nested plot displays the 
convergence of the MSE error curve. 
 

Table 3. Performance metrics of the source and target model. 
 
Dataset 

Source Model  Target Model  

RMSE MAE R2 RMSE MAE R2 
Train 0.02 0.01 0.99 0.02 0.01 1.00 
Val 0.08 0.01 0.94 0.03 0.02 0.99 
Test 0.01 0.01 1.00 0.03 0.03 0.99 

 

3.4. Model Interpretation 

To understand the learning mechanism of the ML model for the selected EDI performance 

metrics (salt removal efficiency, SR; energy consumed EC; maximum theoretical thermodynamic 

efficiency, TEEmax), the TL-based NN model was employed for predictive analysis. The 

investigation delved into the intricate relationship between input parameters and model outputs. 

Subsequently, SHapley Additive exPlanations (SHAP) values were computed from a carefully 

selected dataset within the simulated parameter space. The derived importance scores were 

visualized through SHAP summary plots (Fig. 11, S5 and S6), shedding light on the influence of 

individual inputs on model predictions. In Fig. 11 (left), the importance of each input element is 

ranked from most to least while in Fig. 11 (right), the diagram displays the value of each input 

element through a range of colors, while the x-axis SHAP value denotes the effect of each factor. 
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Fig. 11. Investigation of the acquired knowledge using the surrogate model, comprising (a) a SHAP 
summary plot and (b) the SHAP importance regarding the model's predictive capacity for salt 
removal efficiency (SR). The color scale signifies variable values, with red indicating high values 
and blue representing low values. 
 

As observed in Fig. 11, the applied cell voltage (Ecell) was shown to have a significant factor 

with both favorable and detrimental impacts on the removal efficiency of ED/EDI device. The 

second crucial factor was found to be operational time (Timetotal) with both positive and negative 

effects. Resin properties rank as the third, fourth and fifth most important factors. For example, the 

influence of resin particle diameter (dpresin) was determined to be more negative; however, a 

positive correlation was also noted. These findings suggest that there exists an optimum limit for 

Ecell, Timetotal, and dpresin, at which the ED/EDI device had the peak salt removal efficiency. The 

effects of the three properties are in tandem with experimental reports showing that increasing the 

applied voltage, operational time and resin properties leads to changes in the removal efficiency. 

For the energy consumption data presented in Fig. S5, the cell voltage ranks as the most important 

factor contribution to energy consumption in ED/EDI device while the number of cells in the 

ED/EDI stack contributes most to the thermodynamic efficiency. Generally, the different feature 

studied showed wide ranging impact of the three different device metrics and requiring a well 

guided approach to select the optimal values thus necessitating a need for optimization algorithm 

as posited in Section 3.5. Also, though we have small dataset for the fine-tuning stage, it is advisable 

to revisit the conclusion with an experimental database with more varied features especially the 

device parameters, which is suggested for future research in this area. 
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3.5. Device optimization 

Monitoring whether the model is extrapolating when predicting a new configuration in 

device optimization is important for the modeling framework to be useful in the development of 

new technologies. Herein, to get a better understanding of the synthetic data used to train the source 

model, we explored the use of 2D spatial distribution of the data and determination of the pareto 

optimal and nearest neighbor distance. Fig. 12(a) shows the PaCMAP projection for the data used 

to train the source surrogate model. PaCMAP was selected because it is known to preserve both the 

local and global structure of the data in the original space. As shown in Fig. 12(a), the pretraining 

data is evenly distributed across the space defined by the factorial design used to generate it. 

However, some empty space can be found within the range of the reduced dimensions. In terms of 

extrapolation, points located in these empty regions, as well as points outside the range, could be 

designated as points of extrapolation applying the kNN distance threshold criteria. Furthermore, 

from the pretraining data, a kNN distance threshold was obtained using the knee method [51] and 

shown in Fig. 12(b). The threshold is then defined to be the inflection point in the kNN distance 

versus sample number and approximates the kNN distance for the outermost point that belongs to 

a cluster in the training set and all points beyond this distance are considered POEs. As it will be 

shown in the following section, the extrapolation information is passed to the optimization 

algorithm to encourage it to find good solutions while minimizing the degree of extrapolation. 

 

https://doi.org/10.26434/chemrxiv-2024-8mvwp ORCID: https://orcid.org/0000-0002-7619-5495 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-8mvwp
https://orcid.org/0000-0002-7619-5495
https://creativecommons.org/licenses/by-nc-nd/4.0/


Page 27 of 33 

Fig. 12. Extrapolation analysis of the dataset and surrogate model in optimization task (a): PaCMAP 
2D projection for the pretraining data with different colors representing different HDBSCAN-based 
clusters. (b) Computed distances between samples and threshold distance based on k-Nearest 
Neighbor algorithm. 
 

During device optimization, a given candidate solution would be considered a point of 

extrapolation if its k-nearest neighbor distance with respect to the source training data is greater 

than a predetermined threshold shown in Fig. 12(b). To help in the development of better 

electrochemical desalination processes, this goal takes the form of exploring the input space of the 

models to find combinations that lead to good performance metrics. To facilitate this analysis, we 

once again consider the surrogate model and a Pareto front analysis (as shown in Fig. 13) targeting 

high separation efficiency, low energy consumption and high thermodynamic efficiency. The 

surrogate model shows that high removal efficiency (> 90%) is generally associated with low 

thermal energy efficiency and high energy consumption. This observation between the removal 

efficiency and thermodynamic energy efficiency agrees with reported values (Fig. S10) in ref [42] 

where the author reported low characteristic thermodynamic efficiency with increasing separation 

efficiency at any water recovery rate. To conclude, we found a maximum of separation efficiency 

at 99% at energy consumption level lower than 1 kWh/kg using the proposed methodology. 

 

Fig. 13. Pareto front showing optimal trade-offs between different combinations of high removal 
efficiency, low energy consumption and high thermodynamic efficiency. The Pareto points are 
colored by their KNN distance.  
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4. Conclusions 

A hybrid machine learning approach has been devised to model electrodialysis (ED) and 

electrodeionization (EDI) employing different resin wafer (RW) materials for brackish water 

desalination. This approach not only delves into the diverse EDI operating parameters affecting 

desalination performance but also lays emphasis on the initial data generation using a knowledge-

based model. The process initiates with the creation of a source model through pretraining, 

culminating in a final target model capable of accurately predicting experimental results. The 

efficacy of this methodology is underpinned by thorough analyses of model accuracy, 

interpretation, as well as optimization and extrapolation monitoring exercises. This automated 

model synthesis strategy holds promise for conducting preliminary analyses of selected material 

and operational parameters for electrochemical separation devices. 

Abbreviations 

Parameter Interpretation 
𝑀𝐿 Machine Learning 
𝑇𝐿 Transfer Learning 
𝐽#$%&,( net convective flow of component i in and out of the compartment (mol/s.m3) 
𝐽)(*,( migration of ions 𝑖 through the AEM and CEM membranes (mol/s.m3) 
𝐽+(,,,( diffusion of ions 𝑖 from bulk to AEM/CEM interface (mol/.m3) 
𝐶+(% outlet bulk concentration (mol/m3) of the diluate compartment  
𝐶89/ outlet bulk concentration (mol/m3) of the concentrate compartment  
𝐶+(%(/%0. inlet bulk concentrations (mol/m3) of the diluate compartment  
𝐶89/8(/%0. inlet bulk concentrations (mol/m3) of the concentrate compartment  
𝐶89/:8  concentration at the CEM/concentrate interface (mol/m3) 
𝐶+(%:8 concentration at the CEM/diluate interface (mol/m3) 
𝐶89/:;  concentration at AEM/concentrate interface (mol/m3) 
𝐶+(%:; concentration at AEM/diluate interface (mol/m3) 
𝑙; AEM thickness (m) 
𝑙8 CEM thickness (m) 
𝑁 Number of cell pairs 
𝑉 Applied voltage 
𝑗 Current density (A/m2) 
𝜙 current efficiency 
𝛼( Perm-selectivity of ion (i) in membrane 
𝑧 charge number 
𝐷; diffusion coefficient of ions in AEM (m2/s) 
𝐷8 diffusion coefficient of ions in CEM (m2/s) 
𝐴 active membrane area (m2) 
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𝐶R Inlet concentration into diluate stream (mol/m3) 
𝐶Y Final concentration in the concentrate stream (mol/m3) 
𝐶7 Final outlet concentration in the diluate stream (mol/m3) 
𝑚 mass of ion removed (kg) 
𝑊𝑅 Water recovery 
𝑆𝑅 Salt removal efficiency 
𝐸𝐶 Energy consumed (KWh/kg) 

𝑇𝐸𝐸);A Maximum theoretical thermodynamic efficiency 
∆𝑉I`̀ `̀ `(𝑊𝑅, 𝑆𝑅)  minimum mean voltage for a reversible separation 

𝑣 the 𝑣 is the total charge 
𝑒 charge on the electron 
𝑘Y Boltzmann constant (J/K) 
𝐹 Faraday constant (C/mol) 
𝑅 Universal Gas constant (J/mol-K) 
𝑃𝑂𝐸 Point of extrapolation 

𝐸𝐷/𝐸𝐷𝐼 Electrodialysis / Electrodeionization 
𝑀𝐿 Machine Learning 
𝑇𝐿 Transfer Learning 
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