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ABSTRACT: Cyclic peptides are highly valued synthetic targets in organic and medicinal 
chemistry. The development of new synthetic methodologies for peptide macrocyclization, 
different from classical lactamization, is essential for the progress of the field. Herein, we 
report an efficient diastereoselective macrocyclization strategy for the synthesis of cyclic 
peptides using 1,3-dipolar cycloaddition of azomethine ylides. Linear precursors of different 
length and bearing diverse amino acids have shown to be compatible with this method (26 
examples), giving good yields and almost complete diastereoselectivity. The DFT 
calculations suggest a stepwise mechanism in which Cu plays a key role in reagents 
preorganization. 

Cyclic peptides are intriguing molecules widely present in nature with applications 
ranging from drug development to nanomaterials or food additives.1 Compared to their 
linear counterparts, cyclic peptides provide a more versatile platform for exploring 
chemical space enabled by the possibility of adjusting the conformation using the 
appropriate technique for their chemical synthesis. Therefore, expanding the toolkit for 
peptide cyclization is highly demanding for discovering new macrocycles endowed with 
unique properties.2,3  

Nonetheless, cyclization of linear peptides remains a challenge since the activated 
peptide must adopt an entropically disfavoured pre-cyclization conformation before the 
desired intramolecular reaction can occur. Traditional methods for peptide cyclization rely 
on the intramolecular formation of ester, amide or disulphide bonds.4 Alternatively, more 
recently, new approaches based on the use of Mannich,5 Ugi,6 Horner-Wadsworth-
Emmons,7 transition metal catalyzed processes,8 and photocatalyzed transformations9 
have been developed. 

Toward the generation of new engineered cyclic peptides, the introduction of non-
peptide units in the cyclic structure has been used as a strategy for enhancing 
conformational rigidity and metabolic stability.1d For instance, several research groups 
have demonstrated that the incorporation of heterocyclic moieties into cyclic peptides 
has a positive influence on reaching the required binding conformation for biological 
interactions.10 However, this type of cyclic peptides can be challenging to prepare using 
classical approaches. Therefore, methodologies that simultaneously cyclize and 
introduce one or more non-canonical backbone structures are highly appealing. 
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In this context, 1,3-dipolar cycloaddition, one of the most attractive synthetic routes to 
five membered heterocycles, displays a unique potential for the preparation of cyclic 
peptides containing heterocyclic scaffolds. However, as far as we are aware, only azide-
alkyne 1,3-dipolar cycloaddition has been broadly used as a tool for peptide cyclization.11 

Azomethine ylides have received particular attention as 1,3-dipoles because of the 
significance of the pyrrolidine ring which constitute the central structure of the proline 
amino acid and it is present in a plethora of natural products and catalysts.12 Specifically, 
the metal catalyzed intramolecular 1,3-dipolar cycloaddition of azomethine ylide has 
emerged as a valuable tool for the preparation of pyrrolidine containing polycyclic natural 
products.13  

In 2020 Guéret and Waldmann14 developed an efficient methodology for the 
preparation of natural product-inspired cyclic peptide- hybrids on solid support by 
macrocyclization of the peptide chain via imine formation. The subsequent 1,3-dipolar 
cycloaddition in the presence of lithium bromide and Et3N efficiently delivered the 
corresponding adducts (Scheme 1).  

On these grounds, building on the previous experience of our research group in 1,3-
dipolar cycloadditions,15 we set out the development of a new methodology for accessing 
to modified cyclic peptides based on a metal-catalyzed azomethine ylide intramolecular 
1,3-dipolar cycloaddition process. 

Scheme 1. Late-stage functionalization of peptides via a 1,3-dipolar cycloaddition process 
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To attain this goal, we were aware that two challenges needed to be addressed: (a) 
The effective coordination of the metal to the imino amide precursor of the azomethine 
ylide in the presence of numerous basic centres existing in the linear counterpart. (b) 
Achieved precise asymmetric control dictated by the stereogenic centres present in the 
peptide chain. 

To reach our goal, we chose as model substrate the linear tripeptide 1a decorated with 
an activated double bond at the side chain of the C-terminus and an azomethine ylide 
precursor at N-terminus.16 Initially, we tested several of the most common conditions for 
1,3-dipolar cycloadditions of azomethine ylide precursors (Table 1).17 In these initial 
experiments, we were delighted to find that in the presence AgOAc as catalyst, 1,1′-
bis(diphenylphosphino)ferrocene (dppf) as ligand and Et3N as base in CH2Cl2 (0,06 M), 
the 11-membered-cyclopeptide 2a was obtained in 51% isolated yield (entry 1). 
Remarkably, the reaction proceeded with excellent regio and stereocontrol since only the 
peptide 2a with 2,3,5-cis configuration in the resulting pyrrolidine unit was obtained. In 
addition, the unreacted linear peptide was recovered unaltered and no oligomerisation 
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product was detected in the analysis of the reaction crude. Although result was slightly 
improved in the presence the monodentate ligand PPh3 (61%, entry 2), the most 
significant increase in reactivity was observed using [(CH3CN)4Cu]PF6 as the metal 
source (90%, entry 3). Similar results were obtained using KOtBu as base (entry 4), but 
other bases or solvents gave poorer results.18 Control experiments showed that ligand, 
base, and copper source were necessary to obtain high conversions (entries 5-7). 

 
Table 1. Optimization studies 
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Entry Metal L T (ºC ) Yield (%)a 

1 AgOAc dppf rt 51 

2 AgOAc PPh3 rt 61 

3 [(CH3CN)4Cu]PF6 PPh3 rt 90 

4b [(CH3CN)4Cu]PF6 PPh3 rt 88 

5 [(CH3CN)4Cu]PF6 -- rt 33 

6c [(CH3CN)4Cu]PF6 PPh3 rt 30 

7 -- PPh3 rt 0 

8 -- PPh3 80 0 

9d [(CH3CN)4Cu]PF6 PPh3 rt 85 

a Isolated yield after chromatographic purification. bKOtBu as 
base. c No base. d5 mol% of catalyst. dppf = 1,1'-
bis(diphenylphosphino)ferrocene. 

 
No reactivity was observed even when the reaction was carried out at higher 

temperature (80 ºC) in the absence of the copper catalyst (entry 7). A slight drop in the 
yield was observed when the catalyst loading was reduced to 5 mol% (85%, entry 8). 
The configuration of cyclopeptide 2a was unequivocally stablished by X-ray 
crystallographic analysis.19 

With the optimized reaction conditions in hands, we next explored the generality of this 
intramolecular cycloaddition process regarding the substitution at the azomethine ylide 
precursor. A wide range of imino amides derived from aromatic aldehydes were 
examined (Scheme 2). The cycloaddition afforded selectively the corresponding 
cyclopeptides 2b-d with good yields (87-92%) using imino amides either with electron-
donating or electron-withdrawing substituents at the aromatic ring. Aromatic azomethine 
ylide precursors 1e-g with ortho-, meta- or para- substituents provided similar results 
(cycloadducts 2e-g). Substrates incorporating polycyclic aromatic hydrocarbons such as 
naphtyl 1h and pyrenyl 1i were found to by compatible in the cycloaddition process. 
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Notably, the fluorescence exhibit by the resulting polyaromatic-cyclopeptides highlight 
their potential utility as structural probes.20 

The cycloaddition was equally effective with heteroaromatic-substituted imino amides 
such as indenyl 1j, thienyl 1k, and pyridyl 1l (cycloadducts 2j-l). Remarkably, 
cyclopeptides decorated with pyrrolidines containing a quaternary stereocenter in 
position 2 can also be prepared using this methodology. Thus, cycloadducts bearing 
proline derivatives with either methyl (2m), benzyl (2n) or (methylthio)ethyl (2o) 
substituents at C-2 were isolated with high yield and diastereoselectivity. 

 
Scheme 2. Scope regarding azomethine ylide precursora 
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a Isolated yield after chromatographic purification. b KOtBu instead of Et3N. 

 
Next, we turned our attention to establish the scope of the methodology regarding the 

peptide chain. As shown in Scheme 3, the switch of threonine for serine results in 
excellent reaction efficacy and diastereoselectivity (cyclopeptide 4a, 82%). Likewise, its 
switch for 4-hydroxyproline smoothly led to the cyclic peptide 4b containing three proline 
units, although with lower yield (48%).  

The presence of turn-induce elements such as proline in the peptide chain is usually 
critical for preorganized peptides for the cyclization. In fact, the reaction of linear peptide 
3d with a glycine instead of proline did not afford the macrocyclization product (4c). 
However, we were pleased to find that when the sarcosine was used instead of glycine 
the reaction took place with excellent yield (4d, 78%). The use of substrates containing 
Phe and Val residues resulted in efficient macrocyclization [4e (85%) and 4f (80%)]. 
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Scheme 3. Scope regarding the peptide chaina 
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a Isolated yield after chromatographic purification. 

 
Next, we studied the compatibility of the procedure regarding other dipolarophiles 

(Scheme 4). The use of a linear peptide precursor with a trans diactivated olefin derived 
from fumarate (5a) provided the corresponding macrocycle 6a in 86% yield. The reaction 
also showed compatibility with a phenyl group in the β-position of the α,β-unsaturated 
ester (6b, 89% yield). Additionally, the sulfonyl precursor 5c proved to be an excellent 
substrate, affording the corresponding adduct with almost complete diastereoselectivity 
and an excellent yield (6c, 84%). 

 
Scheme 4. Scope with respect to the dipolarophilea 
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Finally, we explored the range of different ring size that could be assembled using this 
methodology (Scheme 5). We found that this methodology is not suitable for the 
cyclization of shorter peptide chains (8 atoms) (Scheme 5, 8a) which aligns with the 
inherent stability of the amide trans-conformation. However, in addition to the 11-
membered cycles shown in Schemes 2-4, peptides sequences containing 14, 17 and 23 
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atoms (7b-d, respectively) effectively underwent the cycloaddition reaction using the 
optimized reaction conditions [8b (62%), 8c (68%), and 8d (76%)].  

Scheme 5. Scope regarding peptide macrocycle ring sizea 
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a Isolated yield after chromatographic purification. 

To elucidate the mechanistic details of the cyclization step, DFT calculations were 
performed by employing the linear tripeptide 1a and the ligand PPh3 to model the 
possible reaction intermediates by coordination to a CuI atom from the catalyst (Figure 
1). Most likely, the bidentate coordination (through N and O1) of 1a to the Cu(I) would 
favor the in situ generation of the azomethine ylide leading to complex I. In this complex, 
due to the simultaneous coordination of PPh3, that generates both steric and π-stacking 
interactions with the tripeptide, the linear structure adopts an optimal conformation 
allowing the coordination of the carbonyl group (through O2) at the sidechain of the C-
terminus to the CuI center, fixing the endo approach (distances around Cu atom remain 
almost constant throughout the process, see SI for details). This preorganization would 
arrange the dipolarophile moiety at an angle and a distance appropriate for the 1,3-
dipolar reaction to proceed efficiently. Thus, the formation of the C1–C2 bond between 
the benzylic position of the ylide part and the alkene unit via TS-I-II (12.8 kcal·mol-1) 
would lead to the formation of the zwitterionic intermediate II (6.9 kcal·mol-1), followed by 
subsequent cyclization [the second C3–C4 bond formed via TS II-III (7.9 kcal·mol-1)] to 
afford the cycloaddition product III (-5.6 kcal·mol-1). Therefore, according to these 
computational studies, the cyclization should proceed through a stepwise mechanism. 
The low activation barriers and the structure of complexes account for the relatively fast 
reaction and complete endo-diastereoselectivity experimentally observed. 

In summary, we present an efficient and selective methodology for cyclizing peptides 
via intramolecular Cu-catalyzed (3+2) cycloaddition of azomethine ylides. This approach 
allows the incorporation of proline moieties with up to four new chiral centers into the 
macrocycle, achieving excellent yields and complete diastereocontrol. The cycloaddition 
is compatible with a range of natural amino acids, various macrocyclic sizes, and different 
dipolarophiles. 
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Figure 1. Free energy profile for the Cu-catalyzed 1,3-dipolar 
cycloaddition of 1a. (M06/6-311++G(d,p) (C,H,N,O,P), LANL2TZ(f) 
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