
Machine-learning prediction of protein function from the portrait of its
intramolecular electric field

Santiago Vargas a, Shobhit S. Chaturvedi a, Anastassia N. Alexandrova a,*

a Department of Chemistry and Biochemistry, University of California, Los Angeles, California
90095, United States.

* Corresponding author email: ana@chem.ucla.edu

Abstract
We introduce a machine learning framework designed to predict enzyme functionality directly
from the heterogeneous electric fields inherent to protein active sites. We apply this method to a
curated  dataset  of  Heme-Iron  Oxidoreductases,  spanning  three  enzyme  classes:
monooxygenases,  peroxidases,  and catalases.  Conventional  analysis,  focused on simplistic,
point  electric  fields  along the Fe-O bond,  are shown to be inadequate  for  accurate  activity
prediction. Our model demonstrates that the enzyme's heterogenous 3-D electric field, alone,
can accurately  predict  its  function,  without  relying  on additional  protein-specific  information.
Through  feature  selection,  we  uncover  key  electric  field  components  that  not  only  validate
previous  studies  but  also  underscore  the  crucial  role  of  multiple  components  beyond  the
traditionally  emphasized  electric  field  along  the  Fe-O bond  in  heme  enzymes.  Further,  by
integrating  protein  dynamics,  principal  component  analysis,  clustering,  and  QM/MM
calculations,  we reveal that  while  dynamic complexities  in  protein structures can complicate
predictions, accounting for this increased dynamic variability can substantially enhance model
performance. This research significantly advances our understanding of how protein scaffolds
possess signature electric fields that are tailored to their functions at the active site. Moreover, it
presents  a  novel  electrostatics-based  tool  to  harness  these  signature  electric  fields  for
predicting enzyme function.

Introduction
Warshel’s groundbreaking analysis on enzymology asserts that catalysis in enzymes is

partly  governed  by  the  charge  distribution  within  the  protein.1,2 This  concept,  electrostatic
preorganization,  asserts  that  protein  charges  imbue  an  electrostatic  potential  favorable  to
reaction transition states (TS) over reactants and, thus, catalyzes a reaction. Despite the fact
that electrostatic potentials are largely local, it was postulated that the large, complex structure
of proteins serves the dual purpose of positioning neighboring atoms (charges) optimally while
shielding  the  active  site  from  the  environment.  One  way  to  quantify  the  electrostatic
preorganization is by analyzing the electric fields generated by enzymes.3

The  notion  that  electric  fields  can  act  as  catalytic  components  deviates  from  the
framework that catalysts must be purely chemical. Numerous studies have demonstrated that
electric fields significantly influence both chemical reactivity and selectivity across a wide range
of proteins, both metal-free and metal-dependent.4–18 Ketosteroid isomerases (KSI) became a
key example  demonstrating  this  effect  through several  in  silico studies.19–21 Following these
numerous computational demonstrations, Boxer provided experimental validation by showing
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that  in  ketosteroid  isomerases,  the electric  field  acting on the charged enolate intermediate
correlated with the reaction's free energy barrier.10 Subsequently, the quantum theory of atoms
in molecules (QTAIM) was employed to examine how electric fields impact the reactivity of KSI,
where it revealed that fields manipulate electron density throughout the substrate. 16,22,23

In  the  realm of  metal-containing  enzymes,  significant  attention  has been devoted to
exploring electric fields within Fe-heme containing enzymes and their model systems.24–27 Even
with identical Fe-heme coordination, mere variation in axial ligands such as cysteine, histidine,
and tyrosine, heme enzymes exhibit diverse reactivity. Our prior research unearthed a pivotal
revelation: beyond the axial ligand, the electric field from the surrounding protein (excluding the
heme and the axial ligand) strongly influences reactivity.24 This underscores the heme scaffold's
role as a molecular capacitor, where specific configurations of charged amino acids generate a
characteristic electric field along the Fe(IV)=O bond in Compound I (Fz). Notably, we predicted
that a heme equipped with the suitable axial ligand for its intended function yet situated within a
protein environment typical of a different class of oxidoreductases may acquire an unintended
function, such as off-pathway oxidation.24 In a recent study of laboratory evolved protoglobin for
the  catalysis  of  carbene  transfer  reactions,  we  furthermore  showed  that  it  is  the  catalytic
component of the electric field in the active site that the evolution develops in its course.26 We
infer the impact of fields within protein active sites on chemical reactivity, and thus offer another
avenue in the pursuit of effective protein design.28 Such insights could bridge the existing gap
between computationally designed proteins and genuinely effective enzymes, whether naturally
occurring or laboratory evolved.

Since electric fields are so prominent in governing enzyme reactivity, here we flip the
problem and explore whether machine learning can predict enzyme reactivity solely based on
the electric field of the protein scaffold. For this purpose, we use the previously reported dataset
of ~200 Hemoglobin proteins24 and, with the electric field as a sole input, classify these proteins
as catalases, peroxidases, or monooxygenases (Figure 1). In other words, we train a ML model
that would predict the heme Fe reactivity strictly from the heterogeneous field that the protein
produces. Indeed, the task is analogous to a classic image recognition problem where spatial
field components act as pixel components for machine learning algorithms.
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Figure  1.  The  dataset  includes  three  classes  of  hemes:  oxygenases,  catalases,  and
peroxidases, each with distinct axial ligands. The total number of examples for each class is
indicated on the figure, highlighting the representation of each class within the dataset.

Methods
Despite the broad success of theoretical analyses of electrostatic preorganization, they

often  have  two  shortcomings:  firstly,  they  lack  dynamic  information,  in  the  sense  of  the
dynamics of  the field  itself.  Naturally,  the  structural  dynamics  of  the  protein is  included  via
molecular dynamics (MD) simulations and subsequent averaging of computed properties, such
as reaction barriers and electric fields. Some exceptions exist; for example, the effects of KSI
conformational  changes  on  the  electric  field  have  been  tracked  to  explain  transition  state
stability.29 Secondly, analysis is generally reduced to a field at a single point in an enzyme. The
reason that  the  single  point  analysis  is  incomplete  is  that,  for  many systems,  the  reaction
mechanism is not localized to a single bond. For example, the ubiquitous Diels-Alder reaction as
an example where reactivity is delocalized across a number of atoms and bonds. Recently, a
second dimension was added to field analysis, mitigating the problem to an extent.9,18 Here, we
analyze the field in the active site in its entirety, considering also field dynamics, and then use
the fundamental components of the field from dimensional reduction and machine learning, for
protein function recognition. 

The issue of ingesting raw heterogeneous electric fields is dimensionally daunting -  a
coarse sampling of electric field values can lead to tens of thousands of input dimensions as
each spatial  point  is associated with three directional  components.  This scaling leads to an
intractable problem for manual analysis where we simply cannot separate signal from noise in
such a high dimensional space. In addition, even statistical/machine-learned (ML) methods can
struggle to find meaningful descriptors without a large enough dataset for either supervised or
unsupervised machine learning tasks. We address this by using dimensionality reduction, via
principal component analysis (PCA), to create a more manageable, data-informed set of input
dimensions. PCA is often used as a preprocessing step before supervised machine learning
tasks to reduce noise in data and simplify learning tasks. For our use case, PCA was highly
attractive as it is a data-first representation scheme where prior knowledge of a system is not
necessary. This establishes our framework as a universal scheme that could be used to study
and explain families of proteins where domain knowledge is lacking or where representative
fields  are  simply  too complex  to construct  a priori.  We envision  using  this  methodology  to
recognize the functions of active sites of newly discovered proteins, distinguish active sites from
areas in proteins that look like active sites but are not, and attributing selectivity to an enzyme
without lengthy mechanistic investigations. 

System set up and field calculations and analysis
To  represent  each  protein,  we  take  crystal  structures  from  the  Protein  Data  Bank,

remove co-crystalized water molecules and ions, and zero the charges on the axial ligands, and
the hemoglobin itself. First, we develop and ML algorithms that operate on the point field at the
Fe, then – the 3-D field in a volume around the Fe without dynamics, and then extend this study
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to include the dynamics and clustering of the field. The fields are computed classically using the
point charges of the protein, and thus excluding the Fe(IV)=O moiety, the heme, and the axial
ligand. The 3-D fields were constructed on the grid over a cubic box centered at the Fe atom in
the CpdI intermediate (Figure 2), the box (dimensions: 3 Å x 3 Å x 3 Å) is visualized in Figure
2. The grid spacing was 21 sampling points along each dimension for a total of  ~9,200 points.
In the context of molecular dynamics, the fields are compared to each other using the global
distribution of streamlines method. 

In detail, our group previously adapted a distance metric from fluid dynamics to study the
differences between complex, heterogenous electric fields.16 This method constructs a global
distribution of slipstreams within a vector field, yielding histograms that describe an electric field.
The  formulation  enjoys  important  mathematical  properties  such  as  rotational,  scalar,  and
translational invariance. Here, within the 3 x 3 x 3 Å cube, random points are sampled to create
linearizations, known as slipstreams. Random points along a given slipstream are selected to
compute mean curvature and distance of a line where curvature is defined as 

κ=
||r ' ( t )x r ' ' ( t )||

||r ' (t )||3

A histogram of L2 distance to curvature can thereby be compiled and the distance between two
discrete distributions can be computed via the χ2 distance: 

χ2 :D ( f , g )=1
2∑i=1

N (f [ i ]−g [i ] )2

f [i ]+g [ i ]

With a defined distance comparing electric fields, we can then create a graph where the edge
weights are the distances between two electric fields. This graph encoding is ripe for graph
compression  algorithms,  notably  affinity  propagation,  to  aid  in  the  selection  of  a  few
representative frames entirely on the basis of the 3-D heterogeneous electric field. Our group
has previously used this protocol to interpret the dynamic heterogeneous field differences along
a directed evolution pathway of catalytic protoglobin complexes.26 We used these compressed
representations of the electric field along the entire MD trajectory to further study the effects of
the 3-D electric field on electronic populations within the active site. With this, we demonstrate
the relationship between induced fields at the active site and the overall protein activity.
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Figure 2. (a) The cubic box centered on Fe, used for computing the electric field on the grid. (b)
An example of typical principal component computed on the dataset, plotted on the exponential
scale for clarity. 

PCA
To determine the proper number of PCA components, we swept the number of PCA

components of the electric field in the model from 5 to 25 PCA components and used cross-fold
validation  to select  the optimal  number  of  components.  We found that  9 components  were
optimal for performance on validation data. For validation and testing, we split our dataset into
an  80-20  train-test  set  and  used  k-folds  (k=5)  training-validation  splits  to  tune  model
parameters, PCA components were constructed entirely from the training split  to avoid data
leakage into the test set.

Molecular Dynamics
We parametrized the Fe-containing heme active site for MD simulation with the Metal

Centre Parameter Builder  (MCPB.py).30 We modeled the remainder  of the protein using the
Amber FF19SB force field.31 The leap  module  in  AMBER 22 was  utilized  to  introduce Na+

counterions to neutralize protein systems.32 These systems were then placed in a rectangular
box,  surrounded by  OPC water  molecules33 extending  at  least  10 Å beyond the outermost
boundary of the protein. We applied periodic boundary conditions throughout the simulations.
The particle mesh Ewald method was used to calculate long-range electrostatic interactions,
with both the direct space and the van der Waals interactions capped at a 10 Å cutoff. The
protein  systems was minimizated,  initially  with 5,000 steps of  steepest  descent  followed by
another 5,000 steps using the conjugate gradient method, all under a 100 kcal mol -1 Å2 restraint
on the solute molecules.  This was succeeded by another  round of  full  system minimization
employing the same descent and gradient steps. Subsequently,  the systems were gradually
heated from 0 to  300 K in  an NVT ensemble,  controlled  by  a  Langevin  thermostat  with  a
collision frequency of 1 ps-1 over 250 ps, while the solute molecules were held under a 50 kcal
mol-1  Å2  harmonic  restraint.  Bonds  involving  hydrogen  were  constrained  by  the  SHAKE
algorithm.34 Following this, a 1 ns lightly restrained MD simulation was conducted to stabilize the
density under periodic boundary conditions. All systems were equilibrated at 300 K for 3 ns in
an  NPT  ensemble,  using  the  Berendsen  barostat  to  maintain  pressure  at  1  bar,  without
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restraints.  A 100 ns  productive  MD simulation  was carried  out  for  each system in  an NPT
ensemble, maintaining a constant pressure of 1 bar with a 2 ps pressure coupling, using the
GPU-accelerated  version  of  AMBER  22.32 The  trajectories  are  subjected  to  field  topology
calculation (using the CPET code)16 via embedding the active site in the point charges. The
fields were then compared to each other along the trajectory and clustered by the topology
similarity.26 

Quantum Mechanics/Molecular Mechanics (QM/MM) calculations
Quantum mechanics/molecular mechanics (QM/MM) calculations were conducted using

the ChemShell35 software suite,  integrating Turbomole36 for  quantum mechanics calculations
and DL_POLY37 for molecular mechanics. For these calculations, water molecules beyond a 10
Å solvation layer surrounding the protein were removed using CPPTRAJ,38 leaving the protein
optimally hydrated. The QM region encompassed the heme iron center, the intermediate oxo or
hydroxo groups, and the axial ligand located at the active site, similar to our earlier study.24 The
unrestricted B3LYP functional,39 as previously shown to be reasonable for these systems,24 was
employed for the QM calculations. The molecular mechanics region was defined as the protein
area within 8 Å of the QM zone, while the remaining system components were held static. The
Amber FF19SB force field was applied to the molecular mechanics region. Hydrogen link atoms
capped the QM/MM boundaries, and a charge shift model was utilized. Electrostatic embedding
accounted for the polarizing effects of the protein environment on the QM region. Geometry
optimization and frequency analyses utilized the def2-TZVP basis set, with the exception that
hydrogens were treated using the def2-SVP basis set. The CpdI Fe(IV)=O (Por+•) complex was
modelled as a doublet while the CpdII Fe(IV)-OH was modelled as a triplet for all systems.

Results and Discussion
Single point fields. We used a host of traditional machine learning models due to the relatively
middling  amount  of  data,  including,  XGBoost,  Random Forests,  Ridge  Regression,  and  K-
nearest Neighbors (Figure 2A). To tackle imbalanced data, present by the underrepresentation
of   catalases  (21  proteins  in  training  vs.  roughly  triple  the  number  of  monooxygenases,
peroxidases) — we trained Balanced Random Forests algorithms.40 For hyperparameter tuning,
we employed a 5-fold cross-validation method combined with an 80-20 train-test split for both
single point and complete, heterogeneous training. To optimize parameter selection further, we
used Bayesian optimization techniques in WanDB.41 The detailed model parameter dictionaries
can be found in the supplementary information. 

Model F1 Score Accuracy

XGBoost (Single Point, 3-Comp) 0.42 0.44

Balanced Random Forest (3-D Fields, PCA) 0.75 0.82

XGBoost (3-D Fields, PCA) 0.84 0.84

Table 1. Performance of the two top performing ML models benchmarked against the top model
to predict  on a single point  (x,y,z  components at  the Fe in  Heme).  This  is  a proxy for  the
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previous mapping of Fz at the Fe to axial ligand. Note the dramatic improvement in performance
with a richer set of electric field features.

Figure  3.  (A)  Workflow  for  predicting  protein  function  using  Machine  Learning  models  (B)
Surrogate model to test ML machinery with applied fields. (C) Principal components selected by
permutation importance and Boruta. Visualized structures (PC7, PC3, PC6, and PC4) were also
flagged by Boruta as important. 

Performance evaluations  were conducted using accuracy and F1-scores,  providing a
holistic view of model effectiveness (Table 1). Considering our dataset's label ratio of roughly
4:3:1,  we  prioritized  the  F1-score  as  a  fairer  performance  metric.  All  the  above-mentioned
models were applied  to single-point  electric  field  data,  with  XGBoost  emerging as the best
performer among them. Focusing on the three components:  Fx,  Fy,  and Fz at  the Fe atom,
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XGBoost achieved an underwhelming F1-score of 0.42 and an accuracy of 0.44, illustrating the
limitations when relying solely on point electric fields for predicting protein functions. The results
indicate that while point electric fields offer a straightforward interpretation, they are insufficient
for capturing the comprehensive detail required for accurate model predictions.

3-D fields. In stark contrast, incorporating a full 3-D heterogeneous electric field representation,
through PCA, significantly enhances model performance, achieving accuracy and F1 scores of
up to 84% and 0.84 respectively. This contrasting difference underlines the inadequacy of point
electric fields as simplistic, whereas 3-D heterogeneous electric fields offer more representative
depictions of the enzymatic environment (Table 1). Moreover, the ability of a machine learning
model to predict functions from electric field data of a protein scaffold suggests that the scaffold
is evolutionarily optimized to provide the specific fields necessary for efficient catalysis. 

Applied Uniform Fields. Given a machine-learning model trained on compressed electric field
representations, we aim to identify which components from the heterogeneous electric field are
critical for the model predictions. For this, we utilized the trained, heterogeneous electric field
models to predict changes in predicted heme activity with externally applied fields. We aimed to
test a crucial hypothesis: whether the magnitude of the applied Fz electric field is decisive in
determining their catalytic function. Specifically, we sought to understand if changes along the
Fz direction alone could flip the predicted activity of the enzyme. To explore this, we positioned
positive and negative charges 20 Å away from the Fe center of the active site, aligned along the
Fz axis on each side of the heme plane (Figure 3B). Here we selected a Tyr-ligated complex
(PDB code 2j2m) as a test subject, allowing us to determine if the model could be biased to
predict  Cys-ligated/oxygenases  for  positive  fields  of  large  magnitudes  and
His-ligated/peroxidases for significant negative electric fields. This choice of protein, an unseen
test example, also belongs to the category of Tyr-ligated proteins that exhibit intermediate, near-
zero Fz values. We tested four distinct electric field strengths: +50, +10, -10, and -50 MV/cm
along the iron-oxy bond, with the direction of the field indicated by the black arrow in Figure 3B.
These field intensities were informed by our prior research,24 which categorized Cys, Tyr, and
His-ligated heme Fe proteins, under average vertical fields of 28.5 MV/cm, 3 MV/cm, and -8.7
MV/cm, respectively. 

Applied Field (MV/cm) Predicted Ligand/Activity

+50 Cys-ligated Oxygenases

+10 Tyr-ligated Catalases

0 (Original) Tyr-ligated Catalases

-10 His-ligated Peroxidases

-50 Cys-ligated Oxygenases

Table 2: Table illustrates how inducing an electric field along the oxy-iron bond modifies the
predicted  activity  of  the  protein.  Notably,  large  negative  fields  along  the  bond  led  to
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categorization  as  C/oxygenases—an  outcome  that  seems  unlikely  based  on  our  previous
studies and thus suggesting a limitation of the low-dimensional, uniform electric field applied.

Our most effective model seemingly shows mixed success in predicting enzyme activity
with  applied  electric  fields,  as  illustrated  by  the  results  presented  in  Table  2. The  model
correctly altered its predictions for most cases: a large (+50 MV/cm) positive field switched the
accurate prediction from a Tyr-ligated catalase to a Cys-ligated oxygenase, while a moderate (-
10 MV/cm) negative field led to a prediction of a His-ligated peroxidase. However, the model's
limitations  became  apparent  in  certain  cases;  notably,  a  strong  negative  field  along  the
Fe(IV)=O bond incorrectly predicted a Cys-ligated oxygenase—an outcome that seems unlikely
considering the typically moderate Fz component magnitudes observed in this family of proteins.
These discrepancies suggest that the model might be utilizing more than just the Fz electric field
component from the heterogeneous 3-D electric field of the protein in making its predictions.

Feature Importance. Therefore, we conducted a feature importance analysis to identify all the
crucial features (i.e., the key principal components) involved in the model's accurate decision-
making process. A naive approach would be to consider the % explained variance of each PCA
component and assert that the most variable components impact activity more. This is imperfect
for several reasons. First, correlation is not causation and this signifies that components with a
large variance determine ligand specificity. Looking at the correlation or variance in a single
component  also  ignores  the  effects  that  multiple  vector  field  components  might  have  in
conjunction.  Finally,  PCA  does  not  intake  labels  in  a  supervised  manner,  thus  these
components have no mapping to function directly.  To address this,  we utilized Boruta42 and
permutation  importance43 feature  selection.  Boruta  is  built  on  top  of  permutation  feature
importance, where individual variables are shuffled between examples and the resulting change
in performance gives a quantitative measure of how important that feature was to a model’s
prediction. Boruta extends this idea by constructing “shadow features” that are Gaussian noise
with the same mean and variance as true variables in the input of a model. These features,
which by construction are random, serve as a benchmark of importance for other variables; if a
variable is more important in permutation importance than a shadow feature it is more likely to
be of importance in predicting a target label. This process is repeated a fixed number of times
and these trials, in conjunction, creating a binomial distribution where features eventually fall
into the tails of the distribution - important or not important. The resulting components from this
feature selection step were studied by backtracking PCA components to their original electric
field motifs.

Between Boruta and permutation importance, PC0, PC3, PC4, PC6, and PC7 were the
most informative to the model. Visualizing these features (Figure 3C), we can summarize that a
rich host of electric field features inform model predictions. Important components such as the
field along the iron-oxy bond emerge, corroborating previous findings and supporting the notion
that fields will shift electron distribution along this bond to promote the activation of substrates
and  control  the  selectivity.  Combined,  PC0  and  PC3  have  strong  components  along  the
Fe(IV)=O bonds, but opposite lateral components - suggesting that they together could explain
the  strong  “vertical”  component  also  previously  proposed.  PC4  is  an  entirely  lateral  field
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component - not previously established as an important motif in Heme selectivity. PC4 might
contribute to the placement and delocalization of the radical on the porphyrin (versus on the
nearby Trp residue),  particularly  in  the His-ligated proteins.  Components PC6 and PC7 are
harder to decipher visually - they have strong compressive/expansive features that shift electric
fields into or out of the heme center and might control the access to the active site.  These
components are undoubtedly complex and underscore the difficulty of fully interpreting the effect
of  electric  field  processes  a priori  without  a  statistical,  high-throughput  approach.  It  is  also
noteworthy  that  the  most  variable  field  components,  as  indicated  by  percentage  explained
variability,  were  not  necessarily  the  most  informative  for  the  models.  Thus,  our  findings
demonstrate that features of the 3-D electric field, extending beyond just the Fz component, are
crucial  for  enhancing  the  accuracy  of  model  predictions  related  to  enzyme  activity.  This
underscores that enzymes utilize these diverse directionalities within the 3-D field at the active
site to drive their catalytic functions.

Dynamic 3-D fields. To build upon our static, single-frame analysis, we expanded our approach
to incorporate temporal information via molecular dynamics (MD) trajectories of known proteins
from each class. The premise here is that the field, as much as the protein producing it, is not
static and that particularly functional fields may emerge dynamically. We selected a training set
consisting  of  the  proteins  1dgh  and  1gwf  (Tyr-ligated),  1ebe  and  1hch  (His-ligated),  and
4g3j(Cys-ligated),  and  designated  one  protein  from each  class  for  the  test  set:  1u5u  (Tyr-
ligated),  3xvi  (His-ligated),  and  1jio  (Cys-ligated)  –  again,  ligation  being  linked  to  catalase,
peroxidases, and monoxygenase activity, respectively. Employing the same suite of models, we
optimized parameters using subsets of the electric fields from the training set and implemented
a simple majority voting system to determine the protein class/activity. The results reveal that
while the models performed well in the static single-frame analysis with a high F1-score of 0.84
using  3-D  fields,  their  performance  declined  in  the  dynamic  setting,  as  evidenced  by  the
XGBoost model achieving an F1-score of 0.35 and an accuracy of 0.43 (Table 4), signifying a
drop in the ability of the models to generalize to the dynamic regime. We do note that taking a
majority-vote approach to predicting activity from MD trajectories, we are able to predict  the
activity of 2 out of 3 protein classes correctly. 

MD Trials Test F1 Test Acc

XGBoost, MD 0.35 0.43

XGBoost,  MD  (Combined
PCAs)

0.59 0.59

Table  4.  The  data  illustrates  the  performance  outcomes  for  XGBoost  models  tailored  to
molecular dynamics simulations.

Protein Ground Value Majority Prediction Majority
Prediction(Combine
d PCAs)
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1u5u Y/catalase Y/catalase Y/catalase
3abb C/oxygenase Y/catalase C/oxygenases

1apx H/peroxidase H/peroxidase H/peroxidase

Table  5:  Predicted  activities  for  proteins  in  our  test  set,  utilizing  two  distinct  approaches:
predictions made with PCA components just from the training set and those using combined
PCA  components  constructed  from  the  training  and  testing  set.  The  comparative  analysis
highlights that employing combined PCA components leads to improved prediction accuracy.
This improvement suggests that the previously observed poor performance was likely due to
the dynamics introducing a broader variety of components.

To better understand why models extended on 3-D electric fields from MD simulations
did not perform as expected, we examined the differences between electric fields derived from
crystal  structures  and  those  obtained  from  MD  simulations.  Figure  4A presents  the  PCA
explained  variability,  which  measures  the  amount  of  variance  each  principal  component
captures from the dataset. This metric is commonly used to assess dataset dimensionality and
complexity. Our analysis revealed significant  differences in the cumulative variance between
PCA results from crystal  structures and those from dynamic simulations.  This suggests that
dynamic electric fields encapsulate more complex patterns and interactions, which are not as
prevalent  in  the  static  fields  derived  from  crystal  structures.  The  increased  complexity  in
dynamic fields likely reflects the continual conformational changes and interactions within the
protein environment.

Further  complicating  our  model  training,  there  was  a  noticeable  difference  in  the
explained  variance  between  the  PCA  components  derived  from  our  training  set  (MD
simulations)  and our  test  set.  Specifically,  the training set  demonstrated a higher  explained
variance, with fewer PCA components, compared to the test set. This indicates that the PCA
components  from the  training  set  may  be  over  fit  to  a  small  set  of  dynamical  degrees-of-
freedom. Consequently, when these PCA components  used to reduce dimensionality in the test
set, they may not adequately capture the essential features needed for accurate predictions,
leading to a mismatch in the model's ability to generalize. The model trained on less variable
and comparatively simpler data from the MD training set struggles to accurately interpret and
predict  the  behavior  of  complex  test  data.  This  issue  highlights  the  need  for  developing
strategies that can better account for and adapt to the variations in electric field complexity
between different sets of molecular dynamics data.

To enhance the interpretability of our MD based 3-D electric field analysis and reduce its
complexity, we have recently developed a protocol that captures dynamic information regarding
the electric  fields  experienced by  the active  site  of  a protein,26 as  illustrated in  Figure 4B,
followed by  mapping  these  clusters  onto  the principal  components  identified  as  critical.  By
capturing the complex dynamic fluctuations within the enzyme's active site, we aim to elucidate
how these variations complicate the model's ability to accurately predict enzyme activity.
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Figure 4. (A) Cumulative explained variance between PCAs constructed from crystal structure
fields show these fields require fewer components to explain dataset variability. (B) An outline of
our method for selecting representative frames based on electric field topologies. 

Here  we  focused  on  the  components  that  Boruta  and  permutation  importance
determined to be critical: PC0, PC3, PC4, PC6, and PC7. PC0, recognized as the most vertical
component along the Fe-O bond, exhibited clustering trends that align with our previous studies.
The ordering of His < Tyr < Cys within these clusters suggests that cysteine-binding proteins
tend to exhibit  the most  positive  electric  field  components  along  this  direction  (Figure S2).
However, the presence of both Tyr and His-ligated complexes in the most positive clusters of
this  component  might  affect  model’s  accuracy.  PC4  exhibits  a  strong  vertical  orientation.
Notably, clusters representing 1jio are among the most positively positioned on PC4 (Figure
S3). While the overall trend of His < Tyr < Cys is maintained, there is significant overlap among
the data points of the three protein classes in the projection onto this principal component. In the
case of  PC7,  which introduces a vertical  component with some compressive characteristics
toward the active site,  1jio  is distinctly  the most  positive,  suggesting preorganization  of  the
electric field to enhance activity at the active site (Figure S4). Contrarily, 1u5u and 3vxi show
mixed  projections  on  this  component,  aligning  with  prior  observations  of  comparable  Fz

components between these protein categories. Our analysis on PC6 revealed a lack of clear
separation between protein types, indicating that this component is less interpretable compared
to others (Figure S5). PC3, characterized by its predominantly horizontal orientation orthogonal
to many other significant components, uniquely identified the most positive cluster associated
with 1jio(C) (Figure S6). This specificity did not extend to 1u5u and 3vxi, which did not separate
distinctly along this component. This structured approach of clustering and principal component
mapping has revealed  that  among the most  important  principal  components  for  the  model,
certain  components,  such as  PC0,  can distinctly  separate  the three protein  systems within
dynamic  data,  while  other  components  like  PC6  and  PC3  complicate  the  clarity  of  these
separations. 

System Description EH
o  (kcal/mol)
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1jio  (Cys/Oxygenase  –  2
Clusters)

68.5 – 92.3

1u5u  (Tyr/Catalase  –  3
Clusters)

64.7 – 68.5

3vxi  (His/Peroxidase  –  4
Clusters)

27.6 – 83.7

Table 6. Proton-coupled electron transfer potential ( EH
o  ) ranges for enzyme systems analyzed

using QM/MM methods,  highlighting  variations across different  clusters within each enzyme
category.

Finally, we aim to explore whether the dynamic complexity, identified through PCA, truly
influences factors critical to enzyme activity. To this end, we decipher how the dynamic 3-D
heterogeneous electric field affects the electronic structure of the CpdI Fe(IV)=O (Por+•) and
CpdII  Fe(IV)-OH complex by employing quantum mechanics/molecular  mechanics  (QM/MM)
calculations.  For  these  calculations,  we  have  chosen  specific  model  systems  that  are
representative  of  the  enzyme  classes  under  study:  1jio  for  monoxygenases,  3vxi  for
peroxidases,  and  1u5u  for  catalases.  The  selection  of  structures  such  that  they  represent
unique electric field configurations, is vital. Random or field-agnostic selection methods may fail
to capture variations  caused by heterogeneous electric  fields,  potentially  overlooking critical
dynamic interactions that influence enzyme activity. Therefore, we used above identified cluster
centers,  via  electric  field  clustering,  for  these  calculations.  For  each  major  cluster  (>10%
representation),  we computed the free energies of  the CpdI  Fe(IV)=O and CpdII  Fe(IV)-OH
variants to assess the relative activity of each cluster along the putative reaction pathway. The
computed  proton-coupled  electron  transfer  potential  (EH

o )  ranges  for  these  clusters  are  as
follows: 68.5 – 92.3 kcal/mol for the Cys-ligated oxygenase system 1jio, 64.7 – 68.5 kcal/mol for
1u5u, and 27.6 – 83.7 kcal/mol for 3vxi (Table 6). These values align with the expected trend
where Cys-ligated oxygenases exhibit higher reactivity compared to Tyr-ligated catalases and
His-ligated peroxidases. Thus, the results indicate that the range of  EH

o  values becomes less
distinct between the three systems, suggesting that the introduction of dynamics extends the
ranges of catalytically relevant properties and diminishes the clear segregation between them.
This blurring effect might help explain why dynamics affects the machine learning model's ability
to accurately classify the different systems using 3-D electric fields. 

In response to these findings, we hypothesized that a model constructed with combined
principal components from both the test and training datasets, providing a broader spectrum of
variability  for  the  model  to  learn  from,  might  enhance  classification  accuracy.  Indeed,  this
approach resulted in improved performance, where our F1 and test accuracy improved to 0.59
and majority vote approach correctly predicts all three test protein categories (Table 4 and 5).
Here, we note that mixing train and test components between the sets is neither completely
valid nor entirely invalid. On one hand, it introduces bias that can obscure the evaluation of the
model's generalization. Therefore, our initial approach avoided this combination. On the other
hand, in practical applications, combining electric fields to construct PCAs does not require prior
knowledge of protein activity. Consequently, this approach remains a valuable tool for protein
analysis via electric fields.
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For future improvements in handling dynamic electric field data, the implementation of
highly efficient, sparse neural network architectures and advanced signal processing techniques
could be beneficial. Equivariant neural networks, which have rapidly gained traction in scientific
fields,  are  particularly  promising  due  to  their  efficiency  in  learning  with  less  data.  When
integrated with robust data augmentation schemes, these networks can directly process raw
electric  fields,  minimizing  data  demands  while  ensuring  that  key  physical  symmetries  are
preserved. Additionally, embracing methods that intrinsically manage structured, temporal data
will be essential for extending the analysis to include dynamics natively. Architectures borrowed
from natural  language  processing,  such as  Long  Short-Term Memory  (LSTM)  networks,  or
those that  incorporate geometric learning,  like message-passing graph neural networks,  are
well-suited for this purpose. These techniques can effectively interpret the temporal variations
observed in MD trajectories, potentially enhancing the ability to predict protein behavior based
on dynamic electric fields.

Conclusions
In this study, we have developed a machine-learning pipeline that ingests electric fields,

reduces dimensionality via PCA, and applies these fields in a supervised learning task. Our
tests  on  a  well-studied  family  of  Fe  heme  enzymes  demonstrated  that  traditional  lower-
dimensional  analyses of electric fields along the Fe(IV)=O bond are insufficient for accurate
activity prediction. This underscores the necessity for analytical techniques capable of parsing
the more complex, heterogeneous fields that are actually present at protein active sites. Our
findings  reveal  that  point  electric  field  calculations,  despite  their  simplicity  and  ease  of
interpretation,  do  not  accurately  reflect  the  true  nature  of  electric  fields  within  these  sites.
Additionally, when we applied a uniform electric field using our trained model, it failed to induce
the predicted changes in a test protein, highlighting the importance of multidirectional fields in
enzyme  function.  Importantly,  our  trained  machine  learning  model  demonstrated  that  the
enzyme's  3-D heterogeneous  electric  field  alone  can  predict  its  function  without  any  other
protein-specific  information.  Through  feature  selection  techniques  such  as  Boruta  and
permutation importance, we identified key electric field components that not only corroborated
previous studies but also emphasized the critical influence of several components alongside the
Fz value along the Fe-O bond. Expanding our analysis to include MD trajectories and employing
PCA, clustering, and QM/MM calculations, we observed that the inherent complexity in protein
dynamics can complicate model predictions. However, we show that if the model is exposed to
sufficient dynamic variability, its performance can improve significantly. 

This research marks a significant advancement in our understanding of electrostatics in
proteins. We have shown that natural enzyme scaffolds have evolved to optimize the electric
field at the active site, tailored to their function. This insight offers a powerful tool for predicting
potential enzyme functions based solely on their electric fields. Although our analysis focused
on heme Fe proteins, the methodology is broadly applicable to any study involving electric fields
at  largely  conserved  active  sites,  even  where  there  is  no  prior  knowledge  of  crucial  field
components. Overall,  the approach presented here provides a robust framework for not only
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understanding but also predicting enzyme functions across diverse biological systems based
solely on electric field analysis.
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