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Abstract  

Bioactivity prediction is essential in computational drug discovery, particularly within virtual 

screening campaigns. Despite advancements in model architectures and features, the 

sparsity and quality of relevant training data remain a major bottleneck. Notably, genetic 

variance annotation, crucial for understanding variant-specific bioactivity, is often neglected. 

Key efforts to tackle these issues are conducted by public bioactivity databases such as 

ChEMBL, but these are not free of challenges. Here, a comprehensive analysis of the extent 

and distribution of bioactivity data tested on genetic variants across organisms, protein 

families, individual targets, and specific variants, for the first time characterises in detail the 

genetic variability landscape in the ChEMBL database and sheds light on the range and 

consequences of protein amino acid substitutions in bioactivity data distribution and modelling. 

Furthermore, an extensive set of analysis resources (Python package and notebooks) and a 

variant-annotated bioactivity dataset are made available to help replicate the analyses 

described here for any protein of interest and make informed decisions regarding the quality 

of data for modelling. Finally, the potential to extract variants and subsets of the chemical 

space with desirable inter-variant bioactivity profiles is demonstrated for data-rich proteins. 

This approach contributes to more reliable bioactivity modelling, aids noise reduction and 

informs decision-making in computational drug discovery. 
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Introduction 

Bioactivity prediction is one of the key techniques in the computational drug discovery pipeline, 

mostly applied in virtual screening campaigns1,2. Quantitative structure-activity relationship 

(QSAR) modelling has been around for a long time and can be used to predict ligand bioactivity 

for a target of interest based on the compound’s chemical structural characteristics3. Over time 

other bioactivity prediction strategies have emerged that include information other than 

chemistry-derived features4–8. An example is proteochemometric (PCM) modelling, where the 

protein characteristics are considered in addition to ligand molecular structure, allowing for 

bioactivity predictions on several targets simultaneously8–10.  

Every year an increasing number of articles showcase improvements in machine learning and 

artificial intelligence (AI/ML) bioactivity modelling in the form of novel model architectures or 

chemical and protein descriptors, among other innovations.11–16 Still, previous literature shows 

that one of the main bottlenecks in bioactivity prediction is the amount and quality of the 

available data for model training and testing17,18. Several databases, such as ChEMBL and 

PubChem, aim to compile as much data as possible by extracting it from the literature or 

accepting deposited datasets, which on its own can introduce errors19,20. Certain annotations 

like assay cell type, tissue, or genetic variants are not present in all articles or are described 

differently. In turn, this can result in inconsistencies in information content that affect the quality 

and comprehensiveness of the data21,22. 

Variant annotation in particular is one of the key aspects that should be considered when 

analysing bioactivity data23. The same compound can have a very different bioactivity on 

different genetic variants of the same protein24–27. In fact, some compounds are explicitly 

designed to have differential bioactivity across variants to, for example, reduce side effects by 

avoiding targeting the wild-type (WT) protein in anti-cancer therapies, or to target escape 

variants in antibiotics or antivirals28,29. However, variant annotation tends to be overlooked in 

bioactivity databases where, in many cases, it is not present or lacks validation. Moreover, 

even when variants are annotated - as is the case in the ChEMBL database - they are often  

ignored when constructing a bioactivity dataset, which only recently has been explicitly 

described as a potential source of noise30,31. The advantage of modelling variant-annotated 

data has been demonstrated in variant-rich organisms, such as HIV32, and the implications in 

human proteins could be similarly important.  

Here, we thoroughly evaluate the risks and opportunities presented by variant annotation in 

bioactivity databases by extensively characterising variant-annotated bioactivity data in the 

ChEMBL 31 database. Through an assessment of annotation fidelity, the non-triviality of this 

task is highlighted, and adjustments are proposed to improve the ChEMBL variant annotation 
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pipeline for future releases. A revised bioactivity dataset with protein amino acid substitution 

annotations is derived from this work and enriched with curated data from literature33 

(Christmann subset) previously curated as part of the Papyrus dataset34. The additional data 

is aggregated in this work with the ChEMBL annotated data following the pipeline with rigorous 

data curation and filtering, and standardization of molecular structures that were applied to 

obtain the Papyrus dataset. Furthermore, we investigate the distribution of variant-annotated 

bioactivity data points in the combined dataset across organisms, protein families, individual 

targets, and specific variants; and evaluate the effect of variants in bioactivity distribution and 

modelling. These findings not only contribute to advancing our understanding of the effects of 

amino acid substitutions in bioactivity but also provide invaluable insights for refining bioactivity 

data curation practices, particularly concerning variants, for enhanced predictive modelling 

purposes. Our work also highlights the importance of reporting comprehensively the full 

sequences of proteins used in bioassays and bioactivity measurements, in both the literature 

and when depositing data directly into databases.  

Results 

Variant annotation in bioactivity databases is far from trivial 

Genetic variants are currently annotated in the ChEMBL database by manually extracting this 

information from the original articles for data originating from the scientific literature. Since 

ChEMBL 22 this information has been mapped to protein targets (alongside their UniProt 

accessions) and made available in a structured format via the variant_sequences table. In this 

work, an orthogonal approach has been used to evaluate the fidelity and comprehensiveness 

of these annotations and to include as many variants as possible for the analysis of 

bioactivities against proteins carrying amino acid substitutions (Figure 1, steps 1-7). This 

approach is expert knowledge-agnostic and embodies an automatic pipeline based 

exclusively on data previously extracted from the database. Its first step consisted of the 

automatic extraction of amino acid substitution patterns from the assay descriptions of unique 

pairs of assays and protein targets, and their subsequent validation against the WT protein 

sequence (Figure 1, step 2). The extracted substitutions were then compared to the ChEMBL 

variant annotations in a feedback loop in which mismatches were semi-automatically classified 

and used to rescue or revert annotations (Figure 1c, step 3). Finally, variant targets were 

annotated based on this feedback and mapped to ChEMBL bioactivity data. The final variant-

enhanced bioactivity dataset (VEBD) was constructed by keeping exclusively bioactivity data 

for proteins with at least one variant annotated and was lastly enriched with variant-annotated 

bioactivity data from the Christmann dataset. 
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Figure 1. Pipeline to construct the variant-enhanced bioactivity dataset (VEBD) from ChEMBL and 
Papyrus data. (1) Unique assay-target pairs with bioactivity data are extracted from ChEMBL 31. (2) 
Regular expressions are used to extract amino acid substitution patterns, which are validated by 
introducing exceptions and mapping them to wild-type (WT) sequences. (3) Extracted substitutions are 
compared to ChEMBL annotated variants, and the classification of mismatches is used to determine 
the final annotations. More details of this step are available in Supplementary Figure 1. (4) A variant 
target identifier is defined based on the final variant annotations. (5) The variant target identifier is 
mapped back to the ChEMBL bioactivity dataset. (6) Proteins with only WT data are filtered out. (7) The 
bioactivity dataset is standardized and curated similarly to, and enriched with variant data from the 
Papyrus dataset.  

Regular expressions were used to extract amino acid substitution patterns from assay 

descriptions, starting from 376,233 assay-protein target pairs in the ChEMBL 31 database with 

data suitable for regression modelling. Assay descriptions are extracted and curated in 

ChEMBL from the primary literature sources in a combined manual and semi-automated 

pipeline. Of note, genetic alterations other than amino acid substitutions were deemed out of 
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the scope for the initial stage of this project. As exemplified in Figure 1 (step 2) for the assay-

target pair CHEMBL832660 - P47900, these expression patterns could extract true 

substitutions, such as Y306F, but also incorrect patterns from the assay description, like P2Y. 

This first step yielded potential substitutions in 52,922 assay-target pairs. Therefore, 

exceptions were defined from other fields related to the assay and the target protein, in 

particular cell type, target preferred name, and target synonyms. This helped to refine the 

pipeline by rejecting extracted patterns such as P2Y that map to a part of the name of the 

assay target (purinoceptor P2Y1 in this case, UniProt accession P47900) and does not refer 

to a proline to tyrosine substitution. Indeed, 34,676 assay-target pair substitutions raised at 

least one exception flag. Of note, these exceptions are less of an issue in the original ChEMBL 

variant annotation pipeline, since some manual curation is performed. The substitution 

patterns that had not been flagged as exceptions were validated in the next step by checking 

the existence of the WT amino acid at the specified position in the target sequence. For 

example, in the case of the aforementioned Y306F substitution pattern, P2Y1 has indeed a 

tyrosine residue at position 306 of its sequence, hence this extracted substitution was 

validated. At this point, several additional exceptions were introduced by extracting patterns 

that were likely to be falsely validated, such as M1, as substitutions are unlikely to appear at 

the first position of the sequence, yet they would be given a false valid status as the starting 

codon AUG codes for methionine. This resulted in 8,455 assay-target pairs with WT sequence-

validated extracted substitutions.  

Next, the extracted and validated substitutions were compared to the originally annotated 

ChEMBL variants for all assay-target pairs (Figure 1, step 3, Supplementary Figure 1). This 

step, which we refer to as the annotation feedback loop, was included for three reasons, 

namely 1) to pinpoint highlights and pitfalls, 2) suggest improvements to the ChEMBL variant 

annotation pipeline, and 3) to include additional ChEMBL variants and collect the most 

complete dataset with variant annotated data in the scope of this project. Additionally, it served 

as a reminder of the non-triviality of the variant annotation process. Given its complexity, the 

feedback loop is now under review and remains subject to revision. The updated results will 

be incorporated in a revised version, therefore it is advisable to approach the following 

preliminary results with caution. Out of the 8,455 assay-target pairs with extracted 

substitutions, 7,622 (90%) had an identical annotation in ChEMBL. The remaining 833 were 

missing in ChEMBL, either completely (651) or because they had been flagged as “Undefined 

mutation” (182). Mismatching variants were further classified to determine their suitability for 

the VEBD (Supplementary Table 1, Supplementary Figure 1). Assays assessing more than 

one target were rejected for this analysis, as well as assays testing targets with variation 

corresponding to alterations or genotypes with ambiguous definitions. If a multiple substituted 
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protein was only partially validated; the annotations were rejected. If a validated amino acid 

substitution was combined with an insertion/deletion/truncation then the substitution was 

included for this analysis. Finally, non-substitution patterns that had been incorrectly validated 

against the WT sequence were identified as potential novel exceptions for improving the 

pipeline. Subsequently, these 833 entries were manually classified into 648 true positives that 

represent potential novel annotations missed by ChEMBL, and 185 false positives that arise 

from substitution extraction errors and will be used to refine the current pipeline. The true 

positive group was included in the final VEBD. Of note, among these were assay-target pairs 

with either completely novel extracted substitutions or rescues from previously undefined 

variants that were not fully annotated but were deemed inside the scope of this project. For 

example, we deemed as within scope, variants with co-occurring amino acid substitutions and 

deletions/duplications, flagged by ChEMBL as undefined variants and “rescued” for this 

project.  

Apart from the 8,455 assay-target pairs with extracted substitutions, 1,600 pairs were found 

to be annotated only in ChEMBL and not identified by the current variant annotation pipeline. 

These ChEMBL-only annotated pairs were further evaluated in light of the underlying reasons 

that led to their exclusion from the current variant annotation pipeline (Supplementary Table 

2, Supplementary Figure 1). ChEMBL substitutions missed by the regular expression, such 

as those with unconventional definitions, were incorporated into this analysis unless their initial 

annotation was "undefined" or a deletion. Extracted substitutions failing validation against the 

WT sequence were categorised into three groups: 1) If the extracted substitutions matched 

those in ChEMBL in all aspects except the residue number, the original substitutions were 

considered a sequence number shift exception and included. 2) If the extracted substitutions 

fully matched the original ChEMBL annotation but were not valid according to the WT 

sequence, they were either a) excluded (i.e. if the associated target was a protein family) or 

b) classified as ambiguous due to a sequence mismatch. 3) Finally, if the extracted 

substitutions did not align with the original annotation, they were deemed ambiguous due to 

substitution mismatch or omission and are under review. This analysis led to the classification 

of ChEMBL-only variants into true negatives (686 misclassified ChEMBL annotations), false 

negatives (798 ChEMBL expert annotations), and ambiguous (416 ChEMBL-only 

annotations). True negatives were excluded from the final dataset, while false negatives were 

rescued from ChEMBL and included. Pairs in the ambiguous group were flagged as undefined 

variants and included in the final dataset. After the annotation feedback loop, 9,229 assay-

target pairs (774 additional assays) were annotated with variants. These were annotated with 

a variant target identifier as done in the Papyrus dataset by adding the amino acid substitutions 

as a suffix to the UniProt accession code of the protein. Similarly, bioactivity data points tested 
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on WT proteins were identified by the suffix “WT” after the accession code. Note that the final 

number of annotated pairs relies on the feedback loop, which is currently under revision; thus, 

the ultimate count is subject to change in an updated version.  

To construct the VEBD, the variant target identifiers were mapped to ChEMBL bioactivity data 

based on assay-target pairs. Duplicated data from several assays for the same variant target 

were joined into one single point by dropping data with questioned validity, considered low-

quality, and calculating the mean pChEMBL value or the most common activity flag. This 

resulted in 1,870,748 compound-target pairs across 6,777 targets, of which 25,259 contained 

variant targets - 736 with undefined variants - and the rest were WT. The ChEMBL 31 

annotated set was merged with the fraction of the Papyrus dataset version 5.5 originating from 

the Christmann subset, keeping only targets with at least one variant defined for the follow-up 

analysis of variant-annotated bioactivity. The final combined VEBD for bioactivity analysis 

contained 455,839 compound-target pairs across 335 proteins, of which 25,086 data points 

represented data on variant proteins. Of these, 22,992 compound-target pairs originated from 

ChEMBL 31, 672 from the Papyrus Christmann subset, which were not present in ChEMBL, 

and 1,422 from both sources. In the following sections, we explore in detail the VEBD.  

Variants are heterogeneously represented in bioactivity datasets across protein families 

The first observation from review of the VEBD was that bioactivity data points were not 

homogeneously distributed across protein families. Proteins were assigned to their 

corresponding protein families using the levels L1-L5 in the protein family classification table 

in ChEMBL. Out of the 455,839 bioactivity data points in the VEBD, more than half were in 

enzymes (266,328), followed by membrane receptors (96,037) and then the remaining protein 

families (Figure 2a, Supplementary Table 3). The percentage of variant-tested bioactivity 

data with respect to the total amount of bioactivity data – hereby referred to as variant 

bioactivity percentage – was highest for secreted proteins (10.8%) followed by enzymes 

(7.8%), but in both cases, it was in the same order of magnitude as the variant bioactivity 

percentage for the whole dataset (5.5%). Of note, the secreted proteins family included only 

one protein while the enzymes family included 195. Compared to the highest classification 

level of protein families, the variant load drastically differed between protein subfamilies. For 

example, the variant bioactivity percentage across subfamilies of the kinase enzyme family 

ranged from 0.1% for the CMGC protein kinase group to 35% for the TKL protein kinase group 

(Figure 2c, Supplementary Table 4).  
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Figure 2. Distribution of variant bioactivity data across protein families in targets with at least one 
annotated variant. a) Bioactivity data in the VEBD for all protein families (L1 classification). b) 
Comparison of originally ChEMBL-annotated and novel variant data for all protein families (L1 
classification). c) Bioactivity data in the VEBD for subfamilies of the Kinase enzymes family (L4 
classification for L2 = Kinase). d) Comparison of originally ChEMBL-annotated and novel variant data 
for subfamilies of the Kinase enzymes family (L4 classification for L2 = Kinase). Bar heights represent 
the number of total bioactivity points (in a,c) or total variant bioactivity points (in b,d) on a logarithmic 
scale. The height of the black dots along the dashed lines represents the number of variant bioactivity 
points (in a,c) or novel annotated variant bioactivity points (in b,d). The colour gradient represents the 
percentage of variant bioactivity data with respect to total bioactivity data (in a,c) or the percentage of 
novel annotated variant data with respect to total variant bioactivity data (in b,d). 

Similar trends were observed while focusing only on ChEMBL-exclusive data and exploring 

the differences between the original and the current variant annotation pipelines. The highest 

amount of bioactivity data points with potential novel variant annotations corresponded to 

enzymatic targets (3,631), followed by membrane receptors (218). However, at the highest 
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protein classification level, the percentage of potentially novel annotated bioactivity data to the 

totality of the variant-annotated data significantly differed across protein families, ranging from 

0% in secreted proteins to 17.5% in enzymes (Figure 2b, Supplementary Table 5). Again, 

this effect was exacerbated across kinase subfamilies. Here, in four subfamilies (i.e. atypical, 

STE, CK1, and CAMK protein kinase groups) the totality of the variant bioactivity data had 

previously been annotated in ChEMBL, resulting in a novel annotated variant bioactivity 

percentage of 0%, while in the AGC protein kinase group, 89.7% of the variant data was 

introduced by the current variant annotation pipeline (Figure 2d, Supplementary Table 6). 

Similarly, in the kinase subfamily with the highest amount of variant data (i.e. TK protein kinase 

group), 5.1% of the variant data had not been previously annotated in ChEMBL.  

The distribution of data in the VEBD across individual proteins was similarly unbalanced. Of 

the 335 proteins included in the annotated dataset, eight viral and bacterial proteins and one 

human protein did not include any WT data. However, only three of these (Hepatitis C viral 

NS3 protease Q0ZMF1 and polyprotein K7XJL6, and Human immunodeficiency virus 1 – HIV-

1 – reverse transcriptase Q9WKE8) had more than 30 bioactivity data points. From the 

remaining 326 proteins, the vast majority (315) had simultaneously less than 20 variants and 

less than 10,000 bioactivity data (Figure 3, Supplementary Table 7). Only three human 

proteins (aldehyde dehydrogenase AL1A1 - P00352, phosphatidylinositol kinase PK3CA - 

P42336, and epidermal growth factor receptor EGFR - P00533) had more than 10,000 

bioactivity data points, of which only one (EGFR) had a variant bioactivity percentage over 

2%, specifically 18.36%. Moreover, eight different proteins had more than 20 annotated 

variants, including WT (Figure 3a). Some of these variants were single amino acid 

substitutions, while other variants accumulated several substitutions (Supplementary Table 

8). The two most tested proteins among these eight with high genetic variance were viral 

proteins from HIV-1, namely polyprotein RNase H - reverse transcriptase (RNaseH-RT, 

Q72547) and polyprotein Q72874. The other six were mammalian membrane proteins, some 

of which may have been subjected to experimental mutagenesis programmes: five class A G 

protein-coupled receptors (GPCRs) – the human gonadotropin-releasing hormone receptor 

GNRHR (P30968), the rat muscarinic receptor ACM3 (P08483), the human chemokine 

receptor CXCR4 (P61073), the rat opioid receptor OPRK (P34975), and P2Y1 (P47900) – and 

one solute carrier transporter – human betaine transporter S6A12 (P48065). The protein with 

the largest number of annotated variants was GNRHR, with 70 variants other than the WT. 

Among the eight proteins with high genetic variance, the variant bioactivity percentages 

ranged between 1.72% and 71.83%.  
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From the 315 proteins that had 

simultaneously less than 20 variants and 

less than 10,000 bioactivity data, only 100 

displayed a variant bioactivity percentage 

equal to or greater than 10% (Figure 3b), 

and only 10 of these had more than 1,000 

bioactivity data points. For reference, we 

consider 1,000 data points as an arbitrary 

threshold to enable bioactivity modelling. 

Constraining the variant bioactivity 

percentage to 20% resulted in only 62 

proteins out of which only six had more than 

1,000 bioactivity data points; most of these 

contained clinically-relevant mutations. The 

five proteins with the largest amount of 

bioactivity data were all tyrosine, tyrosine-

like, or AGC kinases, namely ABL1 

(P00519), BRAF (P15056), leucine-rich 

repeat kinase LRRK2 (Q5S007), ALK 

(Q9UM73), and ribosomal protein kinase 

RPKS6B1 (P23443) in descending order of 

bioactivity data points and in line with the 

distributions per protein family (Figure 

2a,c). The sixth protein was the 

oxidoreductase isocitrate dehydrogenase 

IDHC (O75874).  

Save for the exceptions mentioned above, 

generally higher variant bioactivity 

percentages correlated with lower total 

bioactivity data, regardless of the number of 

variants annotated (Supplementary Figure 

2d). From the total of 335 proteins in the 

dataset, only 32 showed as much or more bioactivity data for variants than for WT (i.e. 50% 

variant bioactivity percentage or higher), and out of these, only three had more than 1,000 

bioactivity data points, namely IDHC (seven variants apart from WT), BRAF (one variant), and 

RPKS6B1 (two variants), and variant bioactivity percentages of 86.29%, 60.27%, and 55.21%.  

Figure 3. Variant annotation load per protein in 
terms of the number of variants and bioactivity 
data, as well as variant bioactivity percentage. a) 
Overall. Labelled are proteins with more than 
10,000 data and/or more than 20 annotated 
variants, including WT. b) Proteins with less than 
10,000 bioactivity data and less than 20 variants. 
Labelled are proteins with a variant bioactivity 
percentage higher than 10% and more than 500 
data. 
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In general, annotated proteins with more than 1,000 data points had a small number of 

variants, and most of their data was tested on the WT protein (Supplementary Figure 2d). 

However, the data-rich protein targets highlighted in this section emphasised the potential 

relevance of hidden variant data in bioactivity modelling and were therefore the focus for the 

rest of the analysis. In particular, we defined a set of 13 data-rich proteins (Table 1) with the 

highest variant bioactivity percentages 

(i.e. equal or above 10%) that had 

simultaneously sufficient data for 

bioactivity modelling (i.e. equal or above 

1,000 bioactivity data points) and that were 

subsequently analysed in more detail in 

the following sections. 

Amino acid substitution types represented 

in bioactivity datasets align with organism 

mutation rates 

The type of amino acid substitutions 

represented in bioactivity datasets was 

also not homogeneously represented and 

may reflect the community's interest in 

protein variant sampling. As such, the 

majority of the reported variants were 

amino acid substitutions to alanine (Figure 

4a), as part of the commonplace alanine 

scanning strategies to determine key 

structural and functional residues. Indeed, 

as expected, the alanine enrichment was 

not maintained in the number of bioactivity 

data points (Figure 4b). Instead, 

biologically relevant variants such as 

cancer-related BRAF V600E and EGFR 

T790M and L858R were responsible for the 

largest density of bioactivity data around 

particular amino acid substitutions. For 

example, the amino acid substitution with 

the largest amount of associated bioactivity 

Figure 4. Amino acid substitutions reported in 
bioactivity databases. a) Unique variants reported 
per amino acid substitution. b) Number of bioactivity 
data points per amino acid substitution. Highlighted, 
is the substitution with the highest representation for 
the top five amino acid substitutions. In variants with 
multiple substitutions reported, each variant was 
accounted for individually.  
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data was valine to glutamic acid, with 2,864 bioactivity data points, out of which 99.7% 

corresponded to the BRAF V600E variant.  

In line with the amount of data in ChEMBL per organism (Supplementary Table 9), the most 

frequently tested variants were in human proteins (BRAF, IDHC, RPKS6B1, EGFR). Indeed, 

out of the variant annotated bioactivity data, 90.56% corresponded to Homo sapiens. Viral and 

bacterial variants were also represented, however with only 4.82% and 0.70% of the bioactivity 

data. The remaining bioactivity data corresponded to 13 non-human Eukaryotic organisms of 

interest in preclinical studies, such as Rattus norvegicus or Mus musculus, among others.  

The type of amino acid substitutions reported in bacterial variants were similar to human 

variants (Figure 5a,b). These featured many disruptive amino acid substitutions (91.53% in 

bacteria and 89.67% in human), either affecting the size or polarity of the original amino acid 

or, in most cases, both. To further characterise the disruptive potential of each amino acid 

substitution, we calculated the Epstein coefficient of difference35, which is higher for more 

disruptive changes. In line with the previous observations, the Epstein coefficient of difference 

for most of the variants was higher than 0.4 (50.00% of the bacterial and 55.30% of the human 

variants), thus indicating changes in amino acid properties that would likely affect the protein’s 

function. On the other hand, viral variants featured a larger proportion of conservative amino 

acid substitutions (17.81%, Figure 5c). This observation was also backed up by a lower 

proportion of amino acid substitutions with an Epstein coefficient of difference higher than 0.4 

(41.21%), even when the size or polarity was affected. From a biological perspective, 

organisms with a higher mutation rate, such as viruses, are indeed prone to accumulate fewer 

damaging substitutions than organisms with a lower mutation rate subjected to more 

checkpoints, such as humans.  
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Figure 5. Types of amino acid substitutions in bioactivity databases across taxonomic categories: Homo 
sapiens (a,d), Bacteria (b,e), and Viruses (c,f). a-c) Number of variants according to their amino acid 
change, divided into six categories related to the effect in the amino acid polarity and size and coloured 
by the Epstein coefficient of difference of the corresponding amino acid substitution. d-f) Correlation 
between amino acid change relevance (Epstein coefficient of difference, x-axis), distance to ligand 
(average distance of substituted residue to ligand centre of geometry or centroid, y-axis), and sampling 
frequency (number of bioactivity data points, bubble size) in variants of (d) Homo sapiens EGFR 
(P00533), (e) Escherichia coli LPXC (P0A725) and DYR (P0ABQ4), and (f) Human immunodeficiency 
virus 1 (HIV-1) polyprotein RNase H - reverse transcriptase (RNaseH-RT, Q72547). Note that although 
Q72547 is the code for RNaseH-RT, the substitutions were concentrated in the RT domain, with only 
three substitutions in the RNaseH domain. In variants with multiple substitutions reported, each variant 
was accounted for individually. 

https://doi.org/10.26434/chemrxiv-2024-kxlgm ORCID: https://orcid.org/0000-0002-7554-9220 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-kxlgm
https://orcid.org/0000-0002-7554-9220
https://creativecommons.org/licenses/by/4.0/


 

 

14 

Among the 14 viruses and 16 bacteria for which 217 and 115 variants were tested, 

respectively, two organisms concentrated the majority of the data available (Supplementary 

Table 9). HIV-1 accumulated 54.8% of the viral variants and 70.6% of the viral bioactivity data 

in just five proteins. Similarly, Escherichia coli concentrated 20.9% of the bacterial variants 

and 42.0% of the bacterial bioactivity data tested in eight proteins. A closer look into the nature 

of the substitutions reported in these organisms offered some interesting insights when 

compared to EGFR as a proxy for a human protein with disease-relevant variants. In line with 

the general observation across human proteins, the nine single substitutions reported for 

EGFR were few but of high relevance, with only one conservative substitution and Epstein 

coefficients of difference around (three) or higher than (five) 0.4 (Figure 5d). Based on the 77 

crystal structures available, all reported EGFR substituted amino acids were located from 8Å 

to almost 25Å of the centre of geometry (centroid) of the protein ligands. Of note, the two most 

tested substitutions (resistance substitution T790M and activating substitution L858R) showed 

very high coefficients of difference but different locations with respect to the binding pocket 

(0.80 and 9.77Å, and 1.01 and 16.60Å, respectively). These two substituted residues are in 

the binding pocket of EGFR and correspond, respectively, to the gatekeeper residue and the 

back cleft. In contrast, HIV-1 RNaseH-RT harboured 31 single substitutions, of which 64.52% 

had an Epstein coefficient of difference lower than 0.4 (Figure 5f). Of note, these substitutions 

were concentrated around the non-nucleoside reverse transcriptase inhibitor (NNRTI) binding 

site, with distances to the ligand centroid mostly below 15Å. The only E. coli proteins with 

structural data, acetylglucosamine deacetylase LPXC (P0A725), and dihydrofolate reductase 

DYR (P0ABQ4), showed six substitutions affecting either size or polarity (Figure 5e), and 

were located around 15Å of the ligand centroid. The type of amino acid substitution, as well 

as the distance from the substituted residue to the ligand binding site, could affect the 

bioactivity of certain small molecules towards different variants. From a biological point of view, 

enriched human variants are likely to be disease-related whereas variants in pathogenic 

organisms are more likely linked to drug resistance. The extent of such an effect and its 

potential relevance in bioactivity modelling was analysed in the following sections. 

Genetic variants affect bioactivity at different levels  

Heterogeneity was found in annotated variants not only regarding the type and location of 

amino acid substitutions but also the number and structure of small molecules tested across 

them, as well as their relative bioactivity compared to WT. These observations reflected the 

interest in therapeutically targeting disease-relevant variants. In previous sections, it was 

shown that the majority of proteins have a small amount of variant bioactivity data compared 

to WT, in particular in proteins with sufficient data for modelling (Figure 3). Even in the proteins 
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with the highest variant bioactivity percentages (i.e. equal to or above 10%) that had sufficient 

data for bioactivity modelling (i.e. equal to or above 1,000 data), data density across variants 

was rather uneven. Out of the 13 data-rich proteins satisfying these conditions, WT was the 

most populated variant in all cases except for BRAF (P15056) V600E, IDHC (O75874) R132H, 

and RPKS6B1 (P23443) T412E (Supplementary Table 10), with the two first mutations 

corresponding to clinically relevant variants in cancer.  BRAF and RPKS6B1 were also the 

only proteins, together with LRRK2 (Q5S007), where the most populated variant-annotated 

target had less than twice the amount of data of the second most populated variant, namely 

1.52, 1.21, and 1.96 times. The rest of the proteins ranged from 4.73 (ALK, Q9UM73) to 104.64 

(GNRHR, P30968) times more data in the most populated variant-annotated target – generally 

WT – compared to the second. The proteins with the largest relative data density differences 

between the first and second variants were those with the largest number of variants 

annotated (Supplementary Figure 3a). In these cases, the existence of many variants 

compensated for their data scarcity and still amounted to a relevant variant bioactivity 

percentage, above 10%. However, for all 13 data-rich proteins, only up to three variants – 

generally the most established clinically relevant – contained more than 500 data points, with 

some of the remaining variants dropping to as little data as one data point (Supplementary 

Figure 3b). These numbers corroborated the high data sparsity and hinted at the potential 

challenges to accurately reflect the differences in bioactivity caused by variants.  

Two scenarios were contemplated to reduce the effect of chemical data sparsity across 

variants. The first one simulated an ideal scenario where all compounds would have been 

tested on all variants. For this purpose, fully dense common subsets were computed for 

targets with sufficient data, where only those compounds tested across all available variants 

were kept Given the number of variants with extremely low data density, this task was not 

trivial. In fact, approximately two-thirds of the 335 targets in the VEBD did not have a single 

compound that had been tested on all reported variants. For the other third consisting of 114 

targets, the fully dense common subset represented a small portion of the target’s set, with 

only 18 targets exceeding 10% and the maximum representation being 50%. Moreover, the 

size of their fully dense common subsets was very small, with only four targets surpassing 35 

compounds tested across all their annotated variants (Supplementary Figure 4). However, 

the computation of fully dense common subsets proved to be relevant to achieve fair 

comparisons. In many cases, like for breakpoint cluster region protein BCR (P11274) and 

JAK2 kinase (O60674), the modelling protein set was highly biased towards WT bioactivity, 

making the fully dense common subset valuable for comparison (Supplementary Figure 

4b,c,f,g). Given these results, a strategy was developed to compute non-fully dense common 
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subsets - referred to as common subsets - for the previously mentioned two-thirds of proteins 

for which a fully dense common subset was not available. Common subsets generated for 

compounds tested in at least two variants with a variant coverage of at least 20% identified  

115 targets for which a fully dense common subset was not possible. Overall, using these 

parameters to compute the common subsets resulted in very diverse subsets covering 229 

targets with an average common subset of 35 ± 121 unique compounds and 5 ± 6 variants. 

This was a clear improvement in terms of subset size from the original 114 fully dense common 

subsets, which had an average of 10 ± 33 unique compounds and 4 ± 7 variants. Additional 

measures were taken in very sparse targets by allowing the previous filters to be computed 

based on pairwise molecular similarity. This allowed us to include compounds only tested in 

one variant if a highly similar compound (e.g. Tanimoto similarity ≥ 0.80) had been tested in a 

different variant. The similarity option with the previously defined parameters allowed rescuing 

an additional four targets but did not improve the existing subset sizes, given the stringent 

80% similarity threshold. The obtained similarity-expanded common subsets maintained the 

bioactivity distribution per variant of the VEBD, and all reached a higher balance and reduced 

sparsity as intended (Supplementary Table 11).  

The generation of common subsets with varying parameters made it possible to analyse 

complete panels of compounds across variants. The versatility of such analysis on different 

protein families was exemplified for targets previously highlighted based on bioactivity data 

density and variant bioactivity percentage, namely EGFR (Figure 6, Supplementary Figures 

5,6), HIV-1 RNaseH-RT, IDHC, and bromodomain-containing protein BRD4 - O60885 

(Supplementary Figures 7-9, respectively). For EGFR, this analysis allows the user to follow 

some of the most biologically relevant activating – L858R, G719C/S, A750P, P753S, L861Q 

– and resistance – T790M – substitutions and the different generations of EGFR inhibitors 

(EGFRi) developed to achieve selective bioactivity profiles (as a reference commonly used in 

drug discovery we will consider a potency difference over 30-fold against specific variants of 

interest, which translates to a pChEMBL value difference over 1.5). The bioactivity analysis 

set for EGFR was generated from a common subset with compounds tested on at least three 

EGFR variants and variants covering at least 10% of the compounds. The analysis subset 

contained 22 compounds tested on nine out of the 14 annotated EGFR variants with clear 

differences in bioactivity (Figure 6, see Supplementary Figure 5 for compound ID mapping). 

Out of these 22 compounds, 10 were approved drugs – EGFRi but also pan-kinase and other 

inhibitors – and the rest were either preclinical or clinical candidates (Supplementary Figure 

5,6). The first two generations of EGFRi were represented in this analysis. First-generation 

EGFRi are reversible compounds developed to target activating mutations, in particular 

substitution L858R. Second-generation EGFRi are irreversible compounds aiming at a similar 
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selectivity profile. Three compounds (15-17), including second-generation EGFRi afatinib, 

showed consistently high pChEMBL values over 8.07, while seven (8-14) showed consistently 

low activity across variants with maximum pChEMBL value of 6.66. 

 

Figure 6. Full-panel bioactivity analysis of the effect of EGFR (P00533) variants. Bioactivity is 
represented in the heatmap as the pChEMBL value of different compounds, on the x-axis, tested on 
several variants, on the y-axis. See Supplementary Figure 5 for the mapping of compound numbers 
to their connectivity ID, preferred name, and approval status. Compounds and variants were clustered 
by their overall bioactivity profile. Compounds are further represented by their corresponding Butina 
clusters upon clustering of the subset with a cutoff of 0.7. Compounds that are representatives of 
particular clusters or bioactivity profiles are highlighted and their 2D structures are displayed with the 
preferred molecule name (ChEMBL). The rest of the molecules can be found in Supplementary Figure 
6. The biggest ring system in each molecule is highlighted in red for reference as a less stringent proxy 
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for the maximum common substructure to visually distinguish molecules with similar scaffolds. Variants 
are further represented by the distance from the substituted residue to the centroid of the ligand in the 
structure of the protein and by the Epstein coefficient of difference calculated for the amino acid 
substitution. In variants with multiple substitutions reported, the average distance and Epstein 
coefficient of difference are reported. 

Moreover, four compounds (1-4) showed very high activity – pChEMBL value between 7.80 

and 8.99 – against the two variants containing the resistance substitution T790M compared to 

the rest of the variants, including WT – where the maximum pChEMBL value was 7.34. These 

two variants, single substituted T790M and double substituted T790M/L858R, also exhibited 

the most different overall bioactivity patterns, as expected given their biological relevance. 

Indeed, five first-generation EGFRi (18-22) exhibited lower activity against the two T790M-

containing variants (pChEMBL values between 6.09-7.00, compared to 7.01-9.33), as this 

resistance substitution is known to appear as a response to treatment with first- and second-

generation EGFRi. Despite high activity overall, afatinib exclusively showed a decrease in 

bioactivity for the double mutant L858R/T790M. In terms of the location with respect to the 

ligand binding site, T790 is one of the closest substituted residues, below 10 Å from the ligand 

centroid and effectively in the binding site of EGFR. Additionally, the threonine to methionine 

amino acid change is highly disruptive with an Epstein coefficient of difference over 0.80. The 

rest of the variants behaved more similarly to the WT, with two major compound clusters with 

low (pChEMBL values between 5.00 and 7.34) and high activity (between 7.01 and 10.00), 

respectively. From these, WT was the odd one with the least marked differences between the 

two groups of compounds, as seen in the hierarchical clustering per variant (Figure 6). This 

was expected, as most EGFRi were developed to be variant-selective and reduce the side 

effects of anticancer therapies. The single substituted variant L858R behaved very differently 

from the double substituted T790M/L858R variant, in line with the different biological roles of 

these substitutions. Although the substitution to arginine is highly disruptive, L858 is further 

away from the ligand than T790. The Butina clustering performed on the 22 compounds 

showed that similar compounds exhibit similar effects across variants, as observed for clusters 

2-6, and in line with the sequential development of EGFRi generations. Clusters 2-6 were 

populated by compounds with clear similarities, resulting in a diverse cluster 1 

(Supplementary Figure 6) showing multiple patterns across variants but mostly containing 

first- and second-generation EGFRi. An interesting example was compound 4, which is 

structurally very different from the compounds in cluster 3 (compounds 1-3) yet exhibited the 

same bioactivity pattern. As such, this analysis can aid in the exploration of compounds with 

variant-selective profiles beyond the most well-known chemical groups. For other proteins, it 

can be a tool to rationalise the chemical modifications needed to develop drugs targeting 

specific resistance substitutions (Supplementary Figure 7); an instrument for extracting 
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starting scaffolds with specific selectivity profiles (Supplementary Figure 8); or to distinguish 

between compounds with different binding modes (Supplementary Figure 9). 

 

Figure 7. EGFR (P00533) bioactivity variability across variants compared to WT for compounds in the 
10 most populated Butina Clusters upon clustering compounds tested on at least two variants with a 
clustering threshold of 0.5. a) Differences between mean pchembl_value in WT, displayed at the first 
row as calculated for the compounds in each cluster, and the mean pchembl_value in each of the 
variants for the compounds in the same clusters. The left bubbles represent the result of subtracting 
the variant mean from the WT mean. The bubble size represents the absolute value of this difference 
(error). Opaque left bubbles represent a positive error (i.e. the mean calculated for the variant is higher 
than for WT), and translucent left bubbles represent a negative error (i.e. the mean calculated for the 
variant is lower than for WT). Right bubble sizes represent the variant coverage, in other words, the 
percentage of compounds in each cluster that was tested on a specific variant. b) Distribution density 
of pChEMBL values across compounds in each cluster. Different colours represent the different variants 
where compounds of the cluster were tested, according to the colour code of panel a. Dashed lines 
represent the mean pchembl_value, which was used to calculate the differences in panel a. c) Two 
compound examples per cluster with the atoms corresponding to the maximum common substructure 
of all the compounds in the cluster highlighted in red. When available, approved compounds or 
preclinical candidates are displayed. 
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The different effects observed for different chemical clusters in common subsets could also 

be expanded to bigger yet sparser subsets. This allowed us to analyse the overall effect of 

variants on different subsets of the chemical space tested for one protein. While this analysis 

is possible for the whole protein subset, in targets with a clear bias towards WT testing, 

selecting subsets of compounds tested on at least two variants was still preferred to increase 

the significance of comparisons across variants. Particularly for EGFR, the set of 1,219 

compounds tested on at least two variants was clustered using the Butina algorithm36 with a 

threshold of 0.5 resulting in 118 clusters. Clear differences in bioactivity across variants were 

observed among the top 10 biggest clusters (Figure 7). Chemistry-related changes in 

bioactivity distribution were already somewhat apparent on the WT level (Figure 7a,b), with 

mean pChEMBL values between 6.43 and 7.66 from slightly divergent distributions. The 

compounds in the two most populated clusters (n=253 and n=236, respectively) were tested 

across 11 and 10 out of the 12 variants, respectively, with various rates of variant coverage 

(Figure 7a). These two clusters included approved first (cluster 2), second (cluster 2), and 

third generation (cluster 1) EGFRis, as well as pan-kinase inhibitors (cluster 2). Third-

generation EGFRis were not present in Figure 6 and were developed to selectively target the 

L858R/T790M double substitution. Furthermore, the average differences in bioactivity 

compared to WT across variants were virtually the opposite between the two clusters, in line 

with the known selectivity profiles of different generations of EGFRi. For example, compounds 

tested on rare variants G719C, G719S, A750P, and P753S all showed lower activity than 

compounds tested on the WT in cluster 1 (0.54, 0.85, and 0.88 points below WT – 6.74) but 

higher in cluster 2 (1.21, 1.11, and 1.06 points above WT – 7.66). The opposite effect was 

observed for compounds tested on the double substituted T790M/L858R variant, which had a 

mean pChEMBL value 0.85 points higher than compounds tested on the WT in cluster 1 (7.59 

vs. 6.74) and 0.27 points lower than compounds tested on the WT in cluster 2 (7.39 vs. 7.66). 

Of note, the bioactivity distributions across compounds tested in each variant were highly 

diverse (Figure 7b), thus relevant in addition to the point mean differences. Together, this type 

of analysis pinpoints chemical patterns (as highlighted in Figure 7c for the maximum common 

substructures of compounds in each cluster) driving differences in bioactivity across variants. 

Similarly to EGFR, this analysis can help expand the results observed in the full-panel 

bioactivity analysis for other proteins as exemplified for HIV-1 RNaseH-RT, IDHC, and BRD4 

(Supplementary Figures 10-12, respectively). In an explorative fashion, results derived from 

this analysis can be the starting point of drug design campaigns satisfying certain activity 

characteristics. Alternatively, in virtual screening campaigns, they can be relevant for decision-

making to reduce noise in models or increase the modelling performance by constructing 

variant-aware models, as explored in the following section.  
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Variant awareness improves modelling performance 

The effects of variant bioactivity data on the performance of machine learning modelling were 

investigated by comparing results obtained from three scenarios. The first scenario 

corresponds to modelling in a variant-agnostic situation, wherein all bioactivity data 

measurements are (mistakenly) assumed to derive from assays carried out on WT proteins 

only (QSAR-All). The two other scenarios correspond to modelling in a variant-aware situation, 

wherein data points assayed on variant targets are either kept in (PCM-All) or filtered out of 

the training set (QSAR-WT).  

First, modelling performance was evaluated based on random split cross-validation on the 

VEBD in its entirety, splitting out each protein in turn, to assess the overall effect of introducing 

variant-aware strategies. As expected, on average the performance of models decreased with 

a scarcer number of bioactivity data points (Table 1, Supplementary Figure 8a and 8c, and 

Supplementary Table 12), characterised by the average cross-validated Pearson correlation 

coefficient (Pearson’s r) below 0.40 when modelling proteins with 5 to 100 data points, around 

0.70 with 100 to 500 data points, around 0.75 with 500 to 200 data points, and above 0.76 

with more than 2000 data points, respectively. In any case, variant-aware models showed 

increased performance, with all ‘QSAR-WT’ models showing an increased correlation with 

experimental values compared to ‘QSAR-All’ models. Data balance between the data points 

obtained on WT and the ones on variant targets had an impact on the significance of the 

differences in performance observed (Table 1 and Supplementary Figure 13b and 13d). 

This was demonstrated in protein families with substantial experimental data by the 

significantly increased performance of the `PCM-All` model (0.716) for protein kinases (p-

value=4.1 x10-5), with 9.1% of variant bioactivity percentage, compared to that of `QSAR-All` 

and `QSAR-WT` models (0.700 and 0.701, respectively). In contrast, no significant difference 

was observed for family A GPCRs, ion channels, and nuclear receptors, which all had a lower 

data balance (between 1.5 and 2.5% variant bioactivity percentage), and for which PCM was 

not the best strategy. Indeed, all points relating to protein kinases in Figure 8a zoom-in were 

very close to or below the identity line, and most data-rich kinases showed a significant 

performance increase when using PCM. These included EGFR (P00533), ABL1 (P00519), 

LRKK2 (Q5S007), ALK (Q9UM73), RPKS6B1 (P23443) and proto-oncogene RET (P07949) 

kinases, all having more than 2,000 associated data points with at least 10% variant bioactivity 

percentage, with correlation coefficients between 0.75 and 0.85 (Table 1, Figure 8a). 

Interestingly, of data-rich proteins, only BRAF (P15056) showed a decreased performance 

when including data points of variants, with a Pearson’s r of 0.847 for PCM-All and 0.858 for 

QSAR-WT. This could be the result of the very large amount of data points associated with 
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variants (60.3%) and due to the distinctively divergent but overlapping trends in the 

distributions of bioactivities between WT and variants (Supplementary Figure 4). These 

results highlight the importance of variant awareness in bioactivity modelling but do not provide 

a solid basis for general recommendations on the variant-aware strategy that should be used.  

Table 1. Modelling performance of variant-annotated proteins following three modelling strategies: PCM 
explicitly modelling variants (PCM-All), QSAR with all protein data without considering variants (QSAR-
All), and QSAR removing variant data (QSAR-WT). The performance of PCM and QSAR models 
depends on the number of data points and the variant bioactivity percentage. Performance is reported 
for the entire training set, focused protein families, and data-rich proteins (more than 1,000 data points 
with at least 10% variant bioactivity percentage) for a random split 5-fold cross-validation strategy as 
the average Pearson correlation coefficient for each group or protein and, between brackets, as the 
average per group or protein of the standard deviation of Pearson r between cross-validation folds for 
each protein. The best average Pearson r is reported in bold for each row. Pearson r of PCM and/or 
QSAR-WT models significantly differing from QSAR-All models are starred. Pearson r of PCM or QSAR-
WT models significantly differing from all other models (i.e. QSAR-WT and QSAR-All, and QSAR-All 
and PCM-All respectively) are underlined. Statistical results are detailed in Supplementary Table 17. 

 
Average Pearson correlation coefficient (average 

standard deviations) # data 
points 

variant 
bioactivity (%) 

 PCM-All QSAR-All QSAR-WT 

All 0.653 (0.117)* 0.634 (0.116) 0.654 (0.121)* 453,660 5.5 

5 to 100 data points 0.396 (0.322) 0.352 (0.323) 0.363 (0.378) 3,257 29.1 

100 to 500 data points 0.704 (0.085) 0.690 (0.083) 0.691 (0.094) 19,694 10.0 

500 to 2,000 data points 0.746 (0.038) 0.737 (0.039) 0.747 (0.041)* 84,426 4.5 

2,000 to 20,000 data 
points 

0.769 (0.018)* 0.763 (0.017) 0.764 (0.017) 346,283 5.2 

Family A GPCRs 0.731 (0.046) 0.735 (0.035) 0.752 (0.037) 93,454 1.8 

Ion Channels 0.620 (0.142) 0.613 (0.134) 0.646 (0.168) 16,635 1.5 

Nuclear Receptors 0.704 (0.047) 0.690 (0.036) 0.714 (0.034) 14,344 2.5 

Protein Kinases 0.716 (0.068)* 0.701 (0.068) 0.700 (0.080)* 133,396 9.1 

P00533 (EGFR) 0.822 (0.009)* 0.802 (0.008) 0.809 (0.004) 13,601 18.4 

Q72547 (HIV-1  
RNaseH- RT) 

0.809 (0.013)* 0.764 (0.005) 0.776 (0.012) 6,953 34.0 

P00519 (ABL1) 0.867 (0.008) 0.850 (0.019) 0.857 (0.012) 4,985 22.3 

P15056 (BRAF) 0.847 (0.012) 0.834 (0.013) 0.858 (0.014) 4,740 60.3 

P36888 (FLT3) 0.813 (0.022) 0.812 (0.016) 0.798 (0.018) 4,390 11.8 

O60885 (BRD4) 0.856 (0.007)* 0.714 (0.038) 0.858 (0.013) 4,106 17.1 

P10721 (KIT) 0.748 (0.028)* 0.708 (0.010) 0.716 (0.015) 2,897 19.4 

Q5S007 (LRRK2) 0.853 (0.017) 0.851 (0.013) 0.827 (0.009) 2,760 34.0 

Q9UM73 (ALK) 0.854 (0.017) 0.829 (0.011) 0.837 (0.021) 2,598 24.9 

P23443 (RPKS6B1) 0.854 (0.005) 0.853 (0.012) 0.682 (0.042)* 2,286 55.2 

O75874 (IDHC) 0.804 (0.014) 0.759 (0.031) 0.775 (0.045) 2,203 86.3 

P07949 (RET) 0.778 (0.027)* 0.752 (0.033) 0.718 (0.020) 2,123 13.2 

P30968 (GNRHR) 0.758 (0.047) 0.724 (0.030) 0.720 (0.045) 1,921 23.7 

 

https://doi.org/10.26434/chemrxiv-2024-kxlgm ORCID: https://orcid.org/0000-0002-7554-9220 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-kxlgm
https://orcid.org/0000-0002-7554-9220
https://creativecommons.org/licenses/by/4.0/


 

 

23 

Next, the capacity of models to predict the bioactivity of compounds on unseen variants was 

investigated. To this end, Leave-One-Variant-Out (LOVO) cross-validation was carried out. 

This confirmed the trend previously observed of the ability of PCM models to interpolate in the 

protein feature space, especially for richer sets of proteins (more than 2000 data points) with 

an average Pearson’s r of 0.325 compared to 0.311 for other proteins (Supplementary Table 

13). To decrease the sparsity of datasets, similarity-expanded common subsets were derived 

to focus on a subset of molecules and their analogues tested across a subset of variants. The 

latter drastically decreased the applicability domains of models (Supplementary Table 14) 

and affected the performance of most models (Figure 8b and Supplementary Table 15) but 

improved the performance of models when used in combination with LOVO cross-validation 

(Figure 8c and Supplementary Table 16) for most proteins. Nonetheless, the general trend 

showed no clear difference between ‘QSAR-All’ and ‘PCM-All’ models derived from LOVO 

cross-validation from the common subsets (Figure 8d), suggesting that the extrapolation to 

new variants using PCM is similar to random prediction. These results show the complexity of 

accurately predicting bioactivity for individual variants. Moreover, they highlight the impact of 

data sparsity on model performance and how the limited size of current datasets restricts 

extrapolation in the protein feature space when focusing on analogue molecules.

 

Figure 8. Comparison of the performance (cross-validated Pearson correlation coefficient average) of 
models in a variant-aware (PCM-All) and variant-agnostic (QSAR-All) setting considering the newly 
annotated set and zoom-in coloured by of protein families (a). Comparison of performance between the 
‘PCM-All’ and ‘QSAR-All’ models on the similarity-based common subset (b) and the newly annotated 
set using Leave-One-Variant-Out (LOVO) cross-validation (c). Labelled points correspond to data-rich 
proteins (see Table 1). 
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The general trends highlighted above were consistent across the data-rich proteins, although 

few of them had a significant performance improvement when using variant-aware models 

(Table 1, Figure 8). On a protein-specific level, this effect can be traced back to data sparsity 

and imbalance across variants and subsets of the chemical space (Figure 7 and 

Supplementary Figure 10 for EGFR and HIV-1 RNaseH-RT, respectively). In fact, tackling 

these issues by reducing the applicability domain with a similarity-expanded common subset 

resulted in equivalent or improved PCM performance in random split cross-validation 

compared to complete sets for these proteins, with a clear advantage over the variant-agnostic 

model (Supplementary Table 13, Figure 8b). Moreover, the analysis of the bioactivity 

patterns can help explain discrepancies from the general modelling trend. For example, 

among data-rich proteins, BRD4 (O60885) displayed the biggest increase in performance 

when using variant-aware models in random split cross-validation (Figure 8a). Following the 

general trend, we expected a good extrapolation to novel variants for this protein, which was 

not the case (Figure 8c). The examination of the substituted residue distance to the ligand’s 

centroid on the bioactivity cluster map for BRD4 (Supplementary Figure 9) highlighted that 

the two most represented variants, Y97A and Y390A respectively, are each part of different 

protein domains, bromodomains 1 and 2 respectively, corresponding to different binding sites,  

and had therefore opposite effects on bioactivity for the subset of compounds examined. This 

was confirmed in the protein’s structure and explained the lack of generalization power of the 

model, which might be improved by splitting the chemical space into domain-specific binders. 

Still looking at the data-rich proteins, IDHC (O75874) showed poor extrapolation, which could 

be traced back to the very similar bioactivity profiles across the tested variants, all of them 

occurring in the clinically-relevant R132 residue (Supplementary Figures 8,11). Based on 

this information, model performance could be improved by pooling all variant data or designing 

protein descriptors able to capture the subtle differences in one residue. These results stress 

the importance of informed decision-making via the analysis of bioactivity trends to design 

relevant training sets and strategies for variant-aware modelling. 

Discussion 

Bioactivity modelling is one of the cornerstones of computational drug discovery. Despite the 

most recent advances in modelling techniques and capacities, data quality and quantity 

remain a major bottleneck, particularly for those working in the public sector without access to 

large proprietary or commercial datasets. As a consequence, large, curated, and open 

bioactivity databases such as the ChEMBL database or the Papyrus dataset constitute key 

resources for the community. Despite the many benefits that the expert extraction and curation 

processes for these databases provide, the user still needs to navigate the often-complex 
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database structures and make informed decisions to select and curate data for the modelling 

task at hand. This does of course also reflect the fact that developing, running and processing 

the data from bioactivity assays is a complex scientific endeavour. Careful selection of several 

fields in these databases, such as activity comments and assay types can have a big impact 

on the quality of the modelling data. Here, the effect of a commonly overlooked field in 

bioactivity databases, amino acid substitutions constituting protein variants, was extensively 

analysed. The genetic variability landscape in the ChEMBL database has been explored in 

detail here for the first time, including the annotation strategy, the extent of variant data at 

different levels, the effect on bioactivity distributions, and finally the effect on bioactivity 

modelling. The dataset and results from this are made available to facilitate modelling with 

consideration of genetic variants. Moreover, a full analysis Python package is made available 

at https://github.com/CDDLeiden/chembl_variants to promote variant analysis in proteins of 

interest to the user and thus help make informed decisions about data selection and curation 

for modelling.  

A variant annotation strategy parallel to that of ChEMBL was developed that extracted 82.65% 

of the original variant annotations from the assay descriptions, which reinforced the confidence 

in the original ChEMBL variant annotation pipeline (which delivers these annotations by 

manual extraction of protein variant information from original papers). A clear advantage in 

the ChEMBL pipeline was the access to expert knowledge to rescue variants otherwise missed 

by a regular expression match. For example, sequence number shifts and non-canonical 

amino acid substitution definitions were identified among these expert rescues. However, 

misannotations reported by ChEMBL were also identified, for example, derived from 

mistakenly linking assays to protein families rather than single proteins. The current annotation 

strategy also retrieved several substitutions that had not been previously reported in ChEMBL 

31. Nevertheless, these results need to be considered cautiously since they are based on 

fields previously extracted by ChEMBL rather than the original source in the literature and 

might miss important aspects of the experimental set-up. Importantly, this approach also relies 

on accurate reporting of tested variants in the scientific literature in order for their subsequent 

capture in bioactivity databases. Collaborative work such as reported here is key to improving 

the ChEMBL database37,38 for the wider community; for future releases of ChEMBL we will aim 

to improve and enhance our reporting of variant data based upon the findings in this paper . 

Although several drug and protein databases contain variant data, the effect of drugs on 

specific variants is very sparse and conflicting39,40. An expert-curated dataset derived from our 

analysis could therefore serve as a user-friendly central repository for variant bioactivity data 

regularly retrieved from ChEMBL and additional sources. As a result of this collaboration, a 

revised version of this work will be released, integrating the alterations recommended through 
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the feedback loop (see ChEMBL comments on Supplementary Table 1 and 2, revision 

ongoing). 

The variant landscape in ChEMBL 31 and additional Papyrus sources is, as expected, a 

reflection of the clinical relevance and interest of the community in particular organisms, 

protein families, targets, and individual variants. Unsurprisingly, human proteins concentrated 

the bulk of the variant data, but several mammalian orthologs and human pathogens were 

also identified. Of note, curated drug resistance databases for significant pathogens such as 

HIV41, tuberculosis42, and other antibiotic-resistant bacteria43 are available independently of 

bioactivity databases and should be queried separately. Apart from being more complete, 

these databases have a more domain-focused curation process e.g. strain annotation in 

microorganisms. Although different organisms show significant differences in the amounts of 

data available, the amino acid substitution trends align with nature-observed patterns. Indeed, 

organisms with smaller genome sizes and higher mutation rates, such as viruses and to a 

lesser extent bacteria, accumulated larger amounts of non-disrupting substitutions compared 

to human proteins44,45.  

Among human protein families, enzymes, in particular kinases, amassed the most variant 

data, though not always proportionate to the overall data volume. While these numbers do not 

correspond to evolutionary mutation rates46, they are certainly correlated to the high interest 

in protein kinase variants in cancer research47. Indeed, the targets that simultaneously 

displayed high variant bioactivity percentages and large amounts of data overall were 

predominantly cancer-related kinases with clinically relevant somatic substitutions such as 

EGFR48, ABL149, BRAF50, and ALK51. Nonetheless, in this category were also cancer-related 

kinases with no reported disease-related somatic substitutions like RPKS6B152, where 

experimental mutations are common, or kinases responsible for other pathologies, such as 

LRRK2 in Parkinson’s53. Of note, the individual variants reported for specific targets also 

reflect the interest within the scientific community and do not necessarily include all reported 

and clinically relevant variants54. Other than clinically relevant variants, experimentally 

important variants were found, such as activating substitutions in downstream cascades55, or 

alanine scanning panels for functional56, or thermostabilizing assessment57 in GPCRs. Far 

from negligible, such panels can be repurposed for model training, consequently reducing the 

need for experimental assays58. 

The Python package and notebooks that accompany this work have been carefully designed 

to allow complete reproducibility of the annotation and variant landscape analysis. However, 

their primary purpose is to empower readers to self-assess variant effects on protein 

bioactivity. As shown here for the clinically relevant kinase EGFR, among other data-rich 
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targets, these analyses can identify clusters of chemical space with varying effects on 

bioactivity, specific protein structural traits causing differing bioactivity patterns, and 

compounds with desirable selectivity profiles. These results not only are in line with the 

literature and enabled the analysis of activating and resistance-inducing substitutions, but also 

extended beyond the most widely-recognized variants and chemical classes59. In turn, they 

can be used as hypothesis generators in drug design60 as well as recommendation systems 

to include or remove certain chemical clusters61 or variants from a prospective modelling or 

virtual screening task62. Indeed, for a target like EGFR with a high variant bioactivity 

percentage and differential bioactivity profiles across variants and chemical groups, our 

bioactivity modelling results indicated a decrease in predictive performance when variants 

were not accounted for, generalizing the effects previously observed when modelling 

cyclooxygenases 1 and 263. Both removing variant data from the QSAR model and explicitly 

modelling each variant in a PCM model increased performance in random split cross-

validation, likely by reducing the negative effect of noise64,65. Similar results were observed for 

other proteins with a high variant bioactivity percentage despite large inter-target variability. 

Nevertheless, non-optimized protein sequence descriptors were used in this work. 

Furthermore, the average length of protein sequences varies greatly - for instance considering 

the 566 amino acids of HIV-1 RNaseH-RT and the 2549 amino acids of the human mammalian 

target of rapamycin (MTOR) - and could influence the sensitivity significantly and hence the 

ability of PCM to detect signal from the averaged representation used herein. To remedy these 

challenges, the use of alignment-dependant or autocorrelation descriptors could be 

explored8,66. Moreover, as previously mentioned, some mutants are disease-causing and are 

often the drug target. For these cases, in which molecules are optimised away from the WT, 

the baseline for the QSAR-WT could be substituted with the disease-causing mutant.  

The modelling results presented here for all proteins containing variant data can be used for 

decision-making regarding additional data curation or the selection of modelling tasks for 

individual proteins. As a rule of thumb, targets with small datasets and/or high variant 

bioactivity percentages are the most susceptible to the presence of variants. These should be 

thoroughly examined before modelling and, if needed, additional measures should be 

implemented to tackle the drawbacks in the dataset67.  

Beyond bioactivity modelling with a focus on the WT protein, the dataset and results presented 

here can be exploited in variant bioactivity prediction with some precautions. First, variant data 

is still too sparse for large-scale modelling of new variants, as represented by the low 

performance of PCM models with LOVO validation. However, small-scale campaigns following 

data balancing strategies showed promising results and should be considered in light of each 
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particular project’s scope68. Second, in this work only amino acid substitutions were 

considered, however, other aberrations such as deletions, insertions, amplifications, or copy 

number variations are known to be clinically relevant and affect both protein function and 

pharmacology48,69. A protocol should therefore be devised to also map these variations in 

bioactivity databases accurately. Third, the biological context of the variants studied – 

activating vs. resistance substitutions, as an example – is correlated with the effect in 

bioactivity, and should be considered in database annotation and extrapolated to modelling. 

Fourth, new clinical variants are constantly identified and have limited data in bioactivity 

databases compared to established variants70. This does not mean that these variants are 

less important, and thus more appropriate channels for variant tracking should be consulted 

simultaneously to assess clinical relevance. Finally, the data and results presented here 

should not be restricted to bioactivity modelling for virtual screening, and thus the exploration 

of other modelling tasks considering protein variants is highly encouraged including (and not 

restricted to) selectivity modelling71, drug design by fragment merging72, or pharmacophore 

modelling62. 

Conclusion 

The genetic variability landscape of ChEMBL, the most widely used public bioactivity database 

in computational drug discovery, was comprehensively analysed for the first time. Key 

advantages resulting from years of expert knowledge gathering in ChEMBL’s variant 

annotation pipeline were identified through parallel annotation. Additionally, misannotations 

requiring future correction were found. Recommendations for pipeline enhancement were 

provided, alongside a proposal for simplified annotation of target variants for bioactivity 

modelling, which are made available in a modelling dataset. The amount and distribution of 

variant data across protein organisms, families, individual proteins, and variants were 

extensively described. Furthermore, a Python package and notebooks were developed to 

assess variant effects on bioactivity distributions and modelling performance. The potential of 

these analysis tools to extract variants and promising chemical candidates was demonstrated, 

particularly for data-rich proteins. Particularly, informed decisions for noise reduction in 

bioactivity models and modelling variant bioactivity can be facilitated using our approach.  
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Materials and methods  

Bioactivity data sources  

Bioactivity data was collected from ChEMBL (version 31) and the Papyrus dataset (version 

5.5). The Papyrus dataset contains highly curated data from ChEMBL version 31, ExCAPE-

DB, and other individual datasets. Protein targets in the Papyrus dataset are identified either 

by accession (i.e. UniProt accession code) or target_id. The latter is constructed from the 

accession and the amino acid substitutions present in the variant analysed, with 

accession_WT for wild-type (WT) proteins. In its current version, the Papyrus dataset does 

not reflect variants described in ChEMBL.  

ChEMBL data was collected using the ChEMBL Python client (Supplementary Figure 14a, 

full query available on the associated GitHub repository). The data queried included activities 

(i.e. pchembl_value and activity_comment), assay descriptions, molecular structures (i.e. 

SMILES – canonical_smiles), protein identifiers and sequences, and ChEMBL-annotated 

variants (i.e. mutation in the variant_sequences table).  

After assay-based amino acid substitution annotation (see "Amino acid substitution 

annotation" section and Figure 1), ChEMBL assay-target pairs were given Papyrus-like 

identifiers based on the validated substitutions. Target variants were henceforward identified 

by target_id. Subsequently, individual ChEMBL activity points were mapped to annotated 

variant targets (target_id) based on their assay_id and accession. Duplicated activity data 

(target_id-compound chembl_id pairs) from several assays were joined into one single point 

by dropping low-quality data and calculating the mean pChEMBL value or most common 

activity label (Supplementary Figure 14b). The data_validity_comment  field was used to 

drop low-quality data (author confirmed error), as done in the Papyrus dataset.34 The 

activity_comment field was also used to define active and inactive binary labels when 

pchembl_value was not available.  

Before variant bioactivity analysis, the Papyrus and ChEMBL datasets were integrated. Firstly, 

only the Papyrus entries originating from the Christmann subset were considered, filtering out 

de facto any Papyrus data point with ChEMBL as a source, avoiding duplicates. ChEMBL 

compounds were given Papyrus-like identifiers (connectivity). Then, the average 

pchembl_value was calculated for unique target_id-connectivity pairs. For data points with no 

pchembl_value, the most common activity label was kept. Finally, the VEBD for analysis was 

constrained to only targets with at least one variant annotated other than the WT.  
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Amino acid substitution annotation 

ChEMBL amino acid substitutions were extracted from assay descriptions for unique assay-

target (i.e. assay_id-accession) pairs following a three-step approach (Figure 1).  

i) First, regular expressions were used to extract from the assay description amino acid 

substitution patterns. This is, either a one-letter amino acid code followed by an unlimited 

number of digits and another one-letter code, or a three-letter amino acid code followed by 

digits and another three-letter code. Subsequently, three-letter codes were transformed into 

one-letter codes.  

ii) Second, exceptions were defined from assay-associated metadata and filtered out. These 

exceptions included assay cell types, target names, and target gene names and synonyms. 

At this level, an option was included to manually define exceptions from a JSON file for specific 

assays. Here, most "M1" and "D2" instances were filtered out as they could easily get a false 

positive validation status in step iii. The complete JSON file used for manual exception 

definition is included in the associated GitHub repository.  

iii) Third, the remaining substitutions were validated by mapping the first amino acid of the 

substitution pattern to the WT sequence. If the mapping was successful, the substitutions were 

included for further analysis.  

The resulting annotated assay-target pairs from the first round of annotation were introduced 

in an annotation feedback loop where they were compared to the original ChEMBL-annotated 

variants (Supplementary Figure 1). Annotations missed by ChEMBL were manually checked 

to assess their validity and classified accordingly into different categories of true and false 

positives. True positives included likely correct new annotations and likely correct rescue 

instances of “UNDEFINED MUTATION” labels in ChEMBL. New annotations and rescues with 

deletions were also categorized as true positives given the scope of this work. ChEMBL-only 

annotations were parsed and categorized into different categories of true and false negatives. 

True negatives included misclassified annotations due to the mislinking of single protein 

assays to protein families. Missed deletions were also categorized as true negatives in light of 

this work’s scope. False negatives included instances where expert knowledge was required. 

These were, for example, variants for which the amino acid substitution extracted matched 

but the sequence position was different due to sequence number shifts. Another example was 

constituted by completely missed substitutions because they did not correspond to the 

canonical regular expression. On the verge between true and false negatives were other 

ambiguous sequence number and amino acid substitution mismatches that did not correspond 

to the categories defined before. Without further manual curation, these could correspond 
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either to potential ChEMBL miss-annotations or missed correct annotations requiring expert 

knowledge. In a second round of annotation following the annotation feedback loop, the 

defined false positives were excluded from the annotated variants and reverted to WT. 

Similarly, false negatives were rescued by using the ChEMBL-annotated variants. The 

ambiguous cases were annotated as undefined variants given the lower confidence. The 

assay-target annotations from the second round were further linked to ChEMBL activity data 

to annotate variant targets (see section “Bioactivity data sources”). 

Family and taxonomic distribution analysis 

Protein family annotations were retrieved from ChEMBL version 31 by querying levels L1-L5 

from the SQL table protein_family_classification for all unique UniProt accession codes. 

Proteins in the VEBD were mapped to their corresponding family levels based on their 

accession code. Non-defined levels were labelled as ‘Other’. On levels L1 and L2, small-sized 

families were grouped into larger families as follows. L1 tags ‘Auxiliary’, ‘Unclassified’, 

‘Structural’, and ‘Surface’ were grouped into ‘Other’. L2 tags ‘Primary active’, ‘Ligase’, 

‘Isomerase’, and ‘Writer’ were grouped into ‘Other’. Additionally, all G protein-coupled receptor 

L2 tags were grouped into a single L2 family, ‘GPCR’.  

Subsequently, the total number of bioactivity data points as well as the number of variant 

bioactivity data points in the VEBD were calculated across families for each level. From these, 

the variant bioactivity percentage per family was calculated by dividing the amount of variant 

data by the amount of total data and multiplying the result by 100. Similarly, the novel variant 

bioactivity annotation percentage was calculated exclusively in ChEMBL data by dividing the 

number of bioactivity data points in potentially novel annotated variants (i.e. not previously 

defined in the ChEMBL ‘mutatation’ variable) by the total number of variant bioactivity data 

and multiplying the result by 100.  

Organism names and HGNC gene symbols were mapped on accession codes from the 

Papyrus version 05.5 protein table. Moreover, the proteins’ taxonomy was retrieved and 

mapped for all unique UniProt accession codes using the UniProt API via the UniProtMapper 

package. The two Escherichia coli strains present in the dataset were aggregated under one 

single Escherichia coli organism. The number of variants and bioactivity data points were 

subsequently calculated at different taxonomy levels. 

Statistical analysis per protein and variant 

The amount and distribution of variant bioactivity data across individual proteins and variants 

were analysed in detail. For each protein, the number of variants and bioactivity data points 
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were calculated, as well as the variant bioactivity percentage compared to the totality of the 

protein’s data. Within proteins, variants were ordered from most to least populated in terms of 

bioactivity data. The relative amount of data in the most populated compared to each of the 

following variants was calculated by dividing the amount of data in the first variant by the 

amount of data in the variant of interest. 

Amino acid substitution type analysis  

Amino acid substitution types were extracted from the variants. For variants with multiple 

substitutions, all the substitutions were considered individually. Three substitution-type 

definitions were implemented: 

i) Categorical: Six substitution-type categories were defined based on the type of amino acid 

substitution regarding side chain size and polarity. ‘Conservative’ for amino acid substitutions 

where the size and polarity remained similar. ‘Size’ when size changed but polarity remained 

the same. ‘Polar’ and ‘Charge’ when the size remained similar but either the polarity or the 

actual charge, respectively, changed. And ‘Polar size’ and ‘Charge size’ as a combination of 

the aforementioned size and polarity changes. To define the changes, amino acids were 

grouped into four polarity groups and three size groups. Polarity groups included non-polar 

(alanine, glycine, isoleucine, leucine, proline, valine, methionine, phenylalanine), polar neutral 

(asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), polar acidic 

(glutamic acid, aspartic acid), and polar basic (arginine, histidine, lysine). Size groups were 

defined based on the relative side chain size previously defined by Epstein35 and included 

bulky (tryptophan, tyrosine, arginine, phenylalanine), intermediate (histidine, glutamic acid, 

glutamine, lysine, methionine, asparagine, leucine, isoleucine, proline), and small (cysteine, 

threonine, valine, alanine, glycine).  

ii) Continuous and non-directional (Grantham's distance): A value from 5 (most similar, 

leucine-isoleucine) to 215 (most dissimilar, cysteine-tryptophan) was assigned to each amino 

acid substitution mapping it to Grantham’s distance matrix. This distance depends on three 

properties: composition, polarity, and molecular volume; and is independent of the 

directionality of the change (e.g. leucine > isoleucine is the same as isoleucine > leucine). 

iii) Continuous and directional (Epstein's coefficient of difference): A value from 0 (most similar) 

to 1 (most different) was assigned to each amino acid substitution mapping it to Epstein's 

coefficient of difference matrix. This coefficient depends on the polarity and size of the 

replaced amino acids and takes into account directionality (e.g. leucine > tyrosine is 0.28 and 

tyrosine > leucine is 0.22).  
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The number of variants and bioactivity data was subsequently calculated per substitution type 

for different subsets of proteins. For variants with multiple substitutions, each substitution was 

considered, and therefore accounted for, separately.  

Amino acid substitution location analysis  

Amino acid substitutions in a protein were defined by their location within the protein with 

respect to its binding pocket. To this end, each protein was mapped by its UniProt accession 

code to the available PDB structures with a co-crystalized ligand, which were downloaded as 

PDB files. Next, for each structure, the structure’s first chain with the crystalized ligand was 

extracted and, for that chain, the ligand’s coordinates in the PDB file were retrieved. Based on 

these coordinates, the ligand’s centre of geometry (centroid) was calculated. Similarly, the 

centroid of each residue in the chain was also calculated. Finally, the distance between the 

ligand’s centroid and each residue’s centroid was computed, and the average distance was 

calculated for each residue across all PDB structures available for a protein. The average 

distance between the substituted residues’ centroid and the ligand’s centroid was 

subsequently used as a metric to differentiate variants based on the location of the substituted 

residue in the protein. Of note, the average distance between centroids will by definition be 

larger than the shortest distance to the ligand, which is generally considered when using 

distances of 5 Å to define the binding pocket. This metric was constructed to be as ligand-

agnostic as possible, which in turn leads to non-generalizable distance ranges and should 

therefore be considered carefully (as an example two ligands with different sizes and binding 

modes leading to different distances to key residues in EGFR are presented in 

Supplementary Figure 15). In variants with multiple substitutions, each substitution was 

considered separately. For the analysis of HIV-1 RNaseH-RT (Q72547), only the first of two 

retrieved PDB codes (2JLE and 3HYF) was used to annotate substitutions located in the 

reverse transcriptase domain (Supplementary Figure 16).  

Common subset design 

The analysis of variant bioactivity data was done on common subsets of small molecules to 

ensure fair and accurate comparisons between distributions (Supplementary Figure 17). 

When possible, fully dense common subsets were computed, where all compounds of the 

subset had been tested on all annotated variants. More typically, non-fully dense common 

subsets - referred to as common subsets - were defined for each accession by first keeping 

molecules that meet a threshold of being tested on a minimum number of variants. For further 

analysis, this minimum variant threshold was set to at least two variants. Secondly, variant 
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coverage was calculated as the percentage of molecules in the subset that were tested on a 

specific variant. Subsequently, variants above a certain coverage threshold were kept for 

analysis. Ideally, variant coverage would be set to 100% but, due to high data sparsity, it was 

set to 20% for analysis. 

To increase the density of the common subset, a strategy was introduced where similarity-

based filters were used for calculating the minimum variant and the variant coverage 

thresholds. To obtain these similarity-expanded common subsets, we first computed pair-wise 

Tanimoto similarities for all molecules in our dataset. Then, we assigned to each molecule a 

similarity group containing all molecules with a Tanimoto similarity above a certain threshold 

(0.80). Next, we computed common subset thresholds considering not only true activity points 

but also activity points in the similarity groups. This is, for threshold calculation a non-existing 

activity point of molecule X in variant A was counted as existing if compound Y, similar to X, 

was tested in variant A. 

Common subsets were also computed to enable full-panel bioactivity analysis of proteins 

without a true fully dense common subset. For example, for EGFR (P00533), a bioactivity 

analysis subset was derived from a common subset computed with a minimum variant 

threshold of three and a variant coverage of 10%. For HIV-1 RNaseH-RT (Q72574), from a 

common subset for variants with a compound coverage greater than 3%. For IDHC (O75874), 

from a common subset for compounds tested on at least two variants and variants with a 

compound coverage greater than 20%. Finally, for epigenetic regulator BRD4 (O60885), from 

a common subset for variants with a compound coverage greater than 2%.  

The differences between the bioactivity distributions across different types of common subsets 

were analyzed by calculating the Wasserstein distance between distributions of the 

pchembl_value_Mean variable separately for the WT and all variants combined. 

Molecular clustering and visualization 

Small molecules in a subset of compounds were clustered using the Butina algorithm to 

represent their structural similarity across the subset. Starting from compounds represented 

by canonical SMILES, molecular objects were generated using RDKit. Subsequently, RDKit 

Daylight-like topological fingerprints were generated and the Tanimoto distance matrix was 

calculated based on these. Finally, the Butina cluster algorithm was applied to the similarity 

matrix with a varying cutoff for each subset to minimize the number of single-element clusters. 

Clusters generated to analyse variant bioactivity distributions in Figure 7 were computed for 

subsets including all compounds tested on at least two variants and a Butina cluster cutoff of 

0.5. Clusters generated to analyse the full-panel bioactivity differences of compounds in the 
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EGFR (P00533; Figure 6), BRD4 (O60885), and IDHC (O75874) bioactivity analysis subsets 

were computed for said bioactivity analysis subsets with a Butina cluster cutoff of 0.7. For HIV-

1 RNaseH-RT (Q72574), the cluster cutoff was set to 0.5.  

To visualize the molecules in a subset of compounds, 2D molecular representations were 

computed with RDKit. Molecular substructures of interest were matched and highlighted in 

red. These included either the largest ring system in the molecule or the atoms corresponding 

to the maximum common substructure of all the compounds in a given cluster. 

Variant bioactivity distribution analysis 

The distribution of bioactivity values across variants per protein was analysed for three 

different types of subsets: i) modelling, ii) common, and iii) Butina clusters. These subsets 

were computed to capture differences in bioactivity across variants covering, respectively, i) 

all compounds tested on a given protein, ii) a common subset of compounds tested across 

variants, and iii) different areas of the chemical space tested on a given protein. Common 

subsets were computed as defined in the section Common subset design. In all cases, 

univariate pChEMBL value distributions were plotted using kernel density estimations in 

Seaborn for each variant present in the protein subset.  

To give an idea of the data sparsity across variants in the different subsets, variant coverage 

was calculated and reported as defined in the section Common subset design. To summarize 

the bioactivity distribution information, the mean and standard deviation pChEMBL value for 

each variant was calculated. Moreover, the difference in mean pChEMBL value with respect 

to the WT was calculated for each variant by subtracting the variant’s mean pChEMBL value 

from the WT’s mean pChEMBL value.  

Modelling of bioactivities 

Three sets were considered for modelling with machine learning. The first set consisted of the 

original set of bioactivity values obtained for both WT and variant proteins. The second set 

consisted of data points relating to the WT protein sequences only. Finally, the third set 

consisted of the similarity-derived common subsets. 

All three sets were independently modelled with a quantitative structure-activity relationship 

(QSAR) model for each accession without any protein sequence-derived feature and with a 

proteochemometrics (PCM) model for all accessions altogether with sequence features. 

Protein sequences containing other than the 20 natural amino acids were not considered for 

modelling with PCM. The collected negative logarithmically scaled bioactivities values were 
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modelled using the XGBoost (version 1.7.5) implementation of gradient-boosted regression 

trees73. Molecules were represented with the 777 physicochemical and topological Mold2 

molecular descriptors74. Unaligned protein sequences were described with ProDEC75 by 

splitting them into 50 equal parts and averaging the first three principal components (PCs) of 

Sandberg et al.’s amino acid descriptors over each part and over the entire sequence for each 

of the three PCs, resulting in 153 features (50 parts x 3 PCs + 3 averages PCs)11,76,77. Models 

were 5-fold cross-validated using a random split with a random seed set to 1234 and using a 

leave-one-out strategy applied for each sequence variant (LOVO). Accessions with less than 

five data points were disregarded for QSAR modelling and data points related to only one 

variant were not considered for PCM modelling. Applicability domains were derived using 

MLChemAD (version 1.2.0) with isolation forests by fitting the training subsets and evaluating 

them on the Enamine Hit Locator Library (downloaded on 24/01/2024), emulating a typical 

real-world virtual screening. Finally, the performances of cross-validated models were 

statistically evaluated between ‘PCM-All’, ‘QSAR-WT`, and ‘QSAR-All` models using 

Friedman’s test for repeated samples using Scipy (version 1.11.2). Significant differences (p-

value<0.05) were further investigated using pairwise uncorrected post-hoc Conover-Friedman 

tests (p-value<0.05) using scikit_posthocs (version 0.8.0). 

Data and code availability statement 

The data underlying the results and conclusions derived from this work are available online at 

Zenodo (https://doi.org/10.5281/zenodo.11236694). The Python code and Jupyter Notebooks 

used to compile and analyse these data is available and maintained on GitHub 

(https://github.com/CDDLeiden/chembl_variants).   
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