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Abstract8

Forecasting experimental chemical shifts of organic compounds is a long-standing challenge9

in organic chemistry. Recent advances in machine learning (ML) have led to routines that10

surpass the accuracy of ab initio Density Functional Theory (DFT) in estimating experi-11

mental 13C shifts. The extraction of knowledge from other models, known as transfer learn-12

ing, has demonstrated remarkable improvements, particularly in scenarios with limited data13

availability. However, the extent to which transfer learning improves predictive accuracy in14

low-data regimes for experimental chemical shift predictions remains unexplored.15

This study indicates that atomic features derived from a message passing neural network16

(MPNN) forcefield are robust descriptors for atomic properties. A dense network utilizing17

these descriptors to predict 13C shifts achieves a mean absolute error (MAE) of 1.68 ppm.18

When these features are used as node labels in a simple graph neural network (GNN),19

the model attains a better MAE of 1.34 ppm. On the other hand, embeddings from a self-20

supervised pre-trained 3D aware transformer are not sufficiently descriptive for a feedforward21

model but show reasonable accuracy within the GNN framework, achieving an MAE of 1.5122

ppm. Under low-data conditions, all transfer-learned models show a significant improvement23

in predictive accuracy compared to existing literature models, regardless of the sampling24

strategy used to select from the pool of unlabeled examples.25

We demonstrated that extracting atomic features from models trained on large and di-26

verse datasets is an effective transfer learning strategy for predicting NMR chemical shifts,27

achieving results on par with existing literature models. This method provides several ben-28

efits, such as reduced training times, simpler models with fewer trainable parameters, and29

strong performance in low-data scenarios, without the need for costly ab initio data of the30

target property. This technique can be applied to other chemical tasks opening many new31

potential applications where the amount of data is a limiting factor.32
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Introduction35

NMR Chemical Shifts36

NMR chemical shifts are valuable in the structure elucidation of organic compounds within37

classical and computer-assisted frameworks.1–5 Carbon chemical shifts have been used to38

elucidate reaction products6, metabolites7, and natural products, including in the revision39

of the structures.8–10 Furthermore, chemical shifts carry information about the local chem-40

ical environments of atoms and have been used as descriptors for predicting chemical re-41

activity11,12 and in QSAR/QSPR models13. Prediction of carbon chemical shifts from the42

molecular structure has been extensively studied and many methods have been developed,43

ranging from ab initio to fully data-driven methods.14,15
44

Predicting carbon NMR shifts from molecular structures from the first principles is com-45

putationally intensive. First, the geometry is optimized, followed by calculating the electronic46

structure. In addition to errors from the electronic structure calculations, treatment of solva-47

tion, conformational flexibility, and rovibronic effects introduce further errors.16 Considering48

all these factors comprehensively is computationally impractical at any level of theory that49

ensures reasonable accuracy. For example, even a basic DFT calculation of chemical shifts50

on an inexpensive geometry is too resource-intensive for large-scale rapid structure elucida-51

tion. The chosen functional, basis set, and solvation model influences the precision of DFT52

predictions for NMR shifts.17,18 Although different results in the literature are reported on53

different sets for the same computational protocols, the best-reported protocol achieves a54

root mean square error (RMSE) of 3.68 ppm when compared to experimental shifts.17 This55

is insufficient for typical applications, as an initial investigation has shown that an accu-56
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racy of 1.1-1.2 ppm of MAE is necessary for correctly identifying 99% of molecules in the57

metabolomic database.19
58

The errors of DFT-predicted shifts have a systematic component that can be corrected59

using available experimental data. Lodewyk et al.16 developed a linear scaling protocol for60

different combinations of levels of theory, solvents, and solvation models, and their findings61

were compiled in the CHESHIRE repository.20 This became the standard for chemical shift62

prediction using DFT. Gao et al.21 went beyond linear interpolation and constructed a63

deep neural network that takes molecular structure and descriptors derived from calculated64

DFT shielding constants as input to predict experimental chemical shifts. Their method65

demonstrated superior performance, achieving an RMSE of 2.10 ppm, which is a significant66

notable improvement over the 4.77 ppm RMSE the authors report from linear regression on67

the same small test set.68

The Exp5K dataset, developed as part of the CASCADE project,12 is the largest dataset69

that compares empirically scaled DFT chemical shifts with experimental shifts. The authors70

excluded structures where DFT significantly disagreed with experimental results to avoid71

introducing noise from potential misassignments in the experimental data. This exclusion72

inevitably removes challenging examples where the disagreement arises from DFT’s inability73

to accurately predict shifts due to molecular complexity. Additionally, the atom ordering was74

altered when comparing DFT with experimental shifts, leading to the unjustified exclusion75

of some examples from the dataset. After correcting the atom order, the calculated shifts76

deviate from the experiments with an MAE of 2.21 ppm and an RMSE of 3.31 ppm.† This77

should be considered the most realistic measure of the accuracy of DFT-calculated shifts78

corrected with linear scaling. These correction methods, along with others reported in the79

literature,22,23 enhance the accuracy of predictions but do not reduce their computational80

cost.81

On the other hand, data-driven methods are significantly faster by several orders of82
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magnitude. The efficiency of machine learning in predicting carbon chemical shifts arises83

from the avoidance of expensive geometry optimizations or electronic structure computations.84

Nevertheless, the top models in the literature explicitly include geometrical data of the85

lowest energy conformers in their predictions.12,24–26 The compromise is achieved by utilizing86

inexpensive forcefield geometries instead of costly DFT-optimized geometries.87

The accuracy of predictions in data-driven models is influenced by the quality and quan-88

tity of the training data.27,28 By using experimental data for training, common errors in ab89

initio methods can be avoided. The most extensive open NMR shift database with fully as-90

signed spectra is nmrshiftdb2.29,30 User-contributed databases like this often face issues such91

as missing solvent and temperature details, peak misassignments, measurement noise, and92

incorrect structure identification. A model’s performance is limited not only by the quantity93

but also by the quality of data. Thus, models that perform well in low-data scenarios are94

necessary when data is scarce and when prioritizing high-quality data over quantity.95

Transfer Learning96

Transfer learning involves using a model trained on one task as a foundation for training97

on another task, known as a downstream task.31 Generally, pre-training is performed on a98

similar task with a much larger dataset, followed by training on a smaller dataset for the99

specific task of interest. Feature extraction and fine-tuning are two main implementations of100

transfer learning.∗ The choice of method depends on task similarity, the size and architecture101

of the pre-trained model, and the amount of available data. Feature extraction is commonly102

used in computer vision,32,33 while fine-tuning is widely used in language models.34,35
103

One of the major challenges for machine learning in chemistry is the scarcity of train-104

ing data.36,37 Acquiring experimental and high-quality ab initio data is costly, and more105

∗In the literature, the term fine-tuning is not well-defined; it can refer to the second phase of training in
general or to training models with weights initialized from other models. Here, we refer to the latter and
simply call the second phase of training ’training,’ as opposed to the ’pre-training’ in the first phase.
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affordable ab initio data often comes with substantial errors. Complex models, which are106

generally necessary to represent intricate chemical phenomena, demand a large amount of107

data for training. Integrating chemical and physical knowledge and intuition into the model108

architecture is one strategy to lessen the required training data.38 Transfer learning provides109

an alternative method to enhance models and can be used alongside other techniques to110

address issues related to limited data for chemical problems.111

Most previous studies employ transfer learning for chemical models by initially training112

models on data generated from ab initio methods and then fine-tuning them on experimental113

data.12,39,40 This quasi-transfer approach is effective if a significantly larger amount of ab114

initio data compared to the available experimental data can be produced. However, certain115

experimental properties like the smell, catalytic activity, and reaction yield are difficult116

or impossible to model using ab initio methods, while calculating others such as NMR117

properties, free energies, and absorption spectra can be prohibitively costly. In such cases,118

pre-training must be conducted on less relevant tasks where it is feasible to generate large-119

scale datasets.120

Related work121

In the notable CASCADE study,12 graph neural networks (GNN) were employed to pre-122

dict experimental chemical shifts. The ExpNN-ff model takes 3D structures optimized using123

MMFF forcefield as the way to incorporate geometrical information while maintaining rel-124

atively low computational cost. The authors implemented an interesting double-transfer125

learning training. First, the model was trained on DFT-optimized geometries and scaled126

DFT shifts. Second, the model was retrained on DFT-optimized geometries and experimen-127

tal shifts, keeping the interaction layers frozen. Finally, the model was retrained again on128

forcefield geometries and experimental shifts, keeping the readout layers frozen. It is unclear129
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what advantage this approach has over doing single-step transfer learning, updating all layers130

in the model simultaneously. Still, the ExpNN-ff model with an MAE of 1.43 ppm on a 500131

hold-out test set performs better than the DFT with empirical scaling which has an MAE132

of 2.21 ppm on the whole training dataset of around 5000 compounds.133

To avoid the costly DFT calculations for large molecules during the generation of the pre-134

training dataset, Han and Choi39 pretrained a GNN using the QM9 dataset of DFT shielding135

constants. They subsequently fine-tuned the model using an experimental chemical shifts136

database that includes larger molecules and atoms such as P, Cl, and S, which are absent in137

the QM9 dataset. The authors evaluated the model in low data scenarios, achieving an MAE138

of approximately 2.3 ppm with 2112 training examples. Nonetheless, the authors pre-trained139

on ab initio NMR data on a dataset comparable to the size of the experimental dataset used140

to fine-tune the model, similar to the approach used in CASCADE.141

The first example of adopting true transfer learning for predicting chemical shifts was142

done in a recent work by El Samman et al.41 The authors extracted atomic embeddings from143

the last interaction layer from the SchNet model42 trained to predict molecular energies on144

the QM9 dataset. The authors tested linear and feedforward network models for different145

chemical tasks, including predicting carbon chemical shifts calculated by HOSE codes.43
146

However, the dataset for the chemical shifts consisted of only 200 examples of shifts predicted147

by the HOSE code, so the performance relative to the literature models trained from scratch148

could not be assessed.149

To tackle low-data scenarios without resorting to transfer learning, Rull et al.44 modified150

a GNN architecture to enhance its efficiency in such conditions. While the modified archi-151

tecture performed better in low-data scenarios than a similar GNN model, it significantly152

underperformed in high-data scenarios. This underscores the importance of considering the153

volume of training data when evaluating model performance and designing model architec-154

tures.155
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Approach156

In an ideal situation, pre-training is performed on a highly similar task for which either more157

data is available or it is significantly cheaper to generate. However, such tasks are rarely158

available for any downstream chemical task, necessitating some form of compromise. Many159

of the latest pre-trained chemical models employ self-supervised pre-training tasks on huge160

unlabeled datasets of 2D chemical structures.45–48 Conversely, there are numerous instances161

of quasi-transfer learning, involving pre-training on datasets of ab initio calculated properties162

of the size comparable to the available experimental datasets.12,39 We propose the atomic163

feature extraction from the models pre-trained for different chemical tasks on larger datasets,164

and we evaluate it by predicting experimental 13C chemical shifts. The proposed approach165

is illustrated in Figure 1.166

Choice of pre-training task and model167

The downstream task in this study is to predict the chemical shifts of carbon atoms. Pre-168

dicting other atomic properties influenced by the chemical environment of the atom is the169

most relevant task. However, no other atomic properties have as extensive experimental data170

as chemical shifts. Fortunately, many models designed for predicting molecular properties171

incorporate atomic representations within their architectures.49,50 Moreover, the pre-trained172

model must consider geometrical information since chemical shifts are influenced by molecu-173

lar conformation. Therefore, most pre-trained models based on 2D molecular structures are174

not suitable candidates. This leads us to neural network forcefields, whose architectures are175

designed to sum atomic energy contributions.∗ We selected the MACE-OFF23 transferable176

organic forcefield51,52, which is state-of-the-art for predicting DFT molecular energies, open-177

source, and trained on a reasonably large dataset. Since we are not concerned with inference178

∗This architecture design is not mandatory. The only requirement for architecture is the presence of
atomic embeddings within the model
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Figure 1: Transfer Learning based on atomic feature extraction.

time, we chose the large variant of the forcefield. The other model we tested is Uni-Mol53, a179

3D-aware self-supervised pre-trained transformer known for its performance in downstream180

molecular property prediction tasks. Although self-supervised pre-training is less directly181

related to atomic property prediction, it is done on an even larger dataset. The model in-182

cludes atomic representation in its architecture, and integrates geometrical information in183

its embeddings, making it appropriate for this transfer learning approach.184

Feature extraction185

We extract atomic embeddings from the first of two interaction layers in the large variant186

of the MACE-OFF23 forcefield. This approach contrasts with the method of El Samman et187
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al.41, where embeddings are extracted from the final interaction layer of the SchNet model.42
188

We retain only the invariant portion of the embedding to ensure rotational and translational189

invariance, resulting in a 244-dimensional vector atomic embedding. Given that Uni-Mol is190

intended as a backbone pre-trained model for various downstream tasks, we directly extract191

the atomic representation from the output of the backbone, yielding a 512-dimensional vector192

per atom, invariant to translation and rotation. Both models use atomic coordinates and193

identities as inputs, akin to the input used by typical ab initio codes, and produce atomic194

embeddings for each atom as outputs.195

Models architecture196

We evaluated two distinct types of downstream models: a feedforward network (FFN) and a197

graph neural network (GNN). For the feedforward network, we assume that the pre-trained198

model has captured all necessary information regarding the chemical environment of each199

carbon atom. We use the embeddings of carbon atoms as input and train the network to200

predict chemical shifts. Additionally, we tested the GNN based on the GraphSAGE54 archi-201

tecture, which facilitates the exchange of information between different atomic environment202

embeddings. This leads to a more robust model as it can learn more relevant embeddings203

for NMR shifts. Unlike the other methods where fully connected graphs with a cutoff dis-204

tance or graphs with implicitly represented hydrogens have been used, we used a chemical205

graph where all atoms are explicitly included. Consequently, GNN models require atomic206

connectivity as input, whereas FFN models only need atomic coordinates. Finally, after207

the message passing layers, the atomic embeddings of carbon atoms are fed into a readout208

feedforward network to predict chemical shifts. Both methodologies are illustrated in Figure209

2.210
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Figure 2: a) FNN model b) GNN model.
Only orange models are trained, while the green models’ weights are frozen.

Low-data regimes211

To evaluate model performance with fewer training examples, we selected varying quantities212

of samples from the original dataset, treating it as a pool of unlabeled examples. Although213

this dataset is smaller than the typical molecular datasets of unlabeled molecules, it is suffi-214

ciently large to compare different sampling methods. We examined three sampling strategies:215

random sampling, MaxMin55 sampling based on the Tanimoto distance56 between Morgan216

fingerprints57, and MaxMin sampling based on the undirected Hausdorff distance58 between217

sets of transferred embeddings of all carbon atoms in two molecules. The directed Hausdorff218

distance between two sets of vectors A and B is defined as:219

h(A,B) = max
a∈A

min
b∈B

d(a, b)
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where d(a, b) is any distance metric between two vectors. However, the directed Hausdorff220

distance is not symmetric, so we use the undirected Hausdorff distance, employing the Eu-221

clidean distance as the distance metric d:222

H(A,B) = max
(
h(A,B), h(B,A)

)
h(A,B) = max

a∈A
min
b∈B

||a− b||2

In our scenario, sets of vectors represent sets of transferred embeddings of carbon atoms.223

While we could have used embeddings of all atoms, the carbon atom embeddings also convey224

information about their neighboring atoms. Since our primary interest lies in the differences225

in carbon atom environments between two molecules, we used only the embeddings of carbon226

atoms, which also reduces the computational cost, a crucial factor when sampling large pools227

of examples.228

Results229

The mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation230

coefficient (ρ) for all models are presented in Table 1. The results are based on a modified231

test set, where we excluded a couple of broken examples from the original test set. Additional232

details, including more performance metrics for each model and examples of molecules where233

models fail, can be found in SI.† The ensemble of two independently trained GNN models234

performs the best, with the lowest MAE and RMSE. MACE models outperform their Uni-235

Mol equivalents significantly, indicating that the forcefield is an excellent option for the236

pre-training task. Even though the Uni-Mol GNN has a lower MAE than the MACE FFN237

model, its RMSE is higher, highlighting the necessity to report at least both MAE and RMSE238
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when reporting the model’s performance. Regarding parameter efficiency, MACE GNN is239

by far the best model.240

Table 1: Performance on a test set and number of trainable parameters

Model MAE [ppm] RMSE [ppm] ρ N◦ params

MACE FFN 1.68 2.74 0.9986 1.3× 106

Uni-Mol FFN 2.07 3.40 0.9978 1.8× 106

Ensemble MACE & Uni-Mol FFN 1.65 2.68 0.9986 3.1× 106

MACE GNN 1.34 2.38 0.9989 1.9× 106

Uni-Mol GNN 1.51 2.81 0.9985 9.3× 106

Ensemble MACE & Uni-Mol GNN 1.28 2.37 0.9989 1.0× 107

A comparison with relevant literature models that take forcefield geometries as input is241

shown in Figure 3. The ensemble of two GNNs and MACE GNN performs equally well as the242

best-reported literature models. Comparison with models trained using the same train/test243

split is more reliable, and the FullSSPrUCe model is trained on the larger portion of the244

nmrshiftdb2 database, which explains its slightly better performance. In any case, since245

all reported models are solvent agnostic, it is clear that the accuracy has reached its limit246

because it is not unusual for 13C shifts to differ by more than 1 ppm in different solvents.247

The distinct advantages of our models are their simpler architectures† and fewer trainable248

parameters, which result in significantly reduced training time. We do not consider the249

parameters of pre-trained models because the entire training dataset can be encoded by250

pre-trained models before training, making the training time independent of the number of251

parameters of the pre-trained model. However, the complexity of pre-trained models affects252

inference speed. Fortunately, the bottleneck in inference is conformer generation, so our253

models are faster to train and equally fast for inference.254
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Figure 3: Comparison with the literature models.12,24–26,59

Low-data regimes255

To simulate low-data regimes, we sampled data points from the training dataset, maintaining256

the same model architectures† as used in the full data scenario to emphasize the effectiveness257

of transfer learning. Nonetheless, the performance can be enhanced by optimizing hyperpa-258

rameters for low-data regimes, especially by reducing model complexity and the dropout rate.259

Furthermore, an additional molecule was excluded from the test set because MACE-based260

models gave erroneous predictions for that molecule.†261

Figure 4a illustrates that the performance of all models is improved with an increased262

number of training examples. Notably, the MACE FFN model outperforms the Uni-Mol263

GNN model in extremely low-data scenarios, whereas the reverse is true in high-data sce-264

narios. The varying complexities of the models can explain this difference, as smaller models265

need less training data. Figure 4b compares models in this paper with a model that per-266

forms similarly on the full dataset, a model specifically designed for low-data scenarios, and267

a classical HOSE Code model.43,44 Transfer learning significantly boosts accuracy in low-268
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data scenarios compared to models trained from scratch. Furthermore, there is no trade-off269

between performance in high-data and low-data scenarios, unlike in the 2019 model.44
270
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(a) This work.
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(b) Comparison with literature models.43,44

Figure 4: Low-data regimes simulated using random sampling

Tautomer identification271

In contrast to other outliers that possess uncommon functional groups or complex bonding272

and geometrical configurations,† one simple molecule yielded unsatisfactory results across all273

models developed in this study. Detailed examination reveals that the structure listed in274

the dataset, 1,3-cyclopentanedione, does not correspond to the tautomer present in solution275

under the conditions where the experimental chemical shifts were obtained. The tautomeric276

equilibrium that takes place for this molecule is illustrated in Figure 6.277

Experimental findings on a similar compound60 indicate that the two tautomers on the278

right-hand side of Fig. 6 predominate in solution, with rapid interconversion between them on279

the NMR time scale. Consequently, the NMR chemical shift of this compound represents an280

average of the chemical shifts of these two structures. The predicted shifts by the Ensemble281

MACE & Unimol GNN model for the diketo form (structure a) and the averaged prediction282
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for the keto-enol forms (structures b and c) are illustrated in Figures 7a and 7b. The283

comparison of structure a, structure b, and the averaged prediction for structures b and c284

with observed shifts is shown in Table 2 . The good match with experiment when using the285

prediction for the mixture of tautomers b and c is consistent with the rapid interconversion286

between two tautomeric structures, and demonstrates the ability of the model to assist in287

typical organic chemistry problems.288

Table 2: Mean absolute errors of shifts predicted by the Ensemble GNN model

Structure a Structure b Structures b and c

MAE [ppm] 19.03 3.42 0.34

(a) Structure a (b) Average of Structures b and c

Figure 7: Errors [ppm] in predictions by Ensemble GNN model

Conclusion289

We introduced atomic feature extraction as a transfer learning method applicable to both290

atomic and molecular-level prediction tasks. Unlike previous quasi-transfer methods, this291

approach does not require generating ab initio data for the target property. Moreover, the292

only information needed are atomic coordinates and atomic connectivity.293

We evaluated this method on the prediction of experimental 13C chemical shifts, a well-294

studied atomic property prediction task. Our method performs on par with the best models295
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trained from scratch and surpasses them in low-data scenarios. When using this transfer296

learning approach, we demonstrated that the details of the sampling strategy used to se-297

lect from the pool of unlabeled examples don’t matter. Lastly, we identified the MPNN298

forcefield as a superior candidate for pre-trained models for transfer learning compared to299

self-supervised pre-trained models.300

The proven efficacy in low-data scenarios reveals new potential uses for this transfer301

learning approach in chemical problems with limited experimental data and in tasks where302

plenty of data exists but predictions are limited by data quality. For chemical shifts, em-303

ploying more precise geometries and data with recorded solvents and peaks assigned through304

multiple spectra will enhance the accuracy of data-driven models. This enhancement is fea-305

sible only if models can be trained on less data, which can be achieved through the transfer306

learning method described here.307

Methods308

Data309

The dataset utilized in this work is taken from Kwon et al.26, and is derived from the original310

dataset published by Jonas and Kun.59 It includes a predefined train/test split. This dataset311

comprises molecules with experimental spectra from nmrshiftdb2, which contain elements312

H, C, O, N, P, S, and F, and have no more than 64 atoms. The molecular geometries313

are obtained as the lowest energy conformers found in EDTKG conformer search61 followed314

by MMFF minimization62. Molecules that failed rdkit sanitization, likely due to version315

discrepancies, were excluded. A detailed summary of the resulting dataset is available in the316

supplementary information.†317
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Models318

FFN models consist of simple fully connected layers with exponential linear unit (ELU)319

activation functions.63 The final layer is linear without any activation function. GNN models320

employ GraphSAGE message passing layers with ELU activation function, followed by a321

readout feedforward network of the same type as FFN models. Dropout was applied after322

each layer in all models.64 The models were trained using L1 loss (mean absolute error) as the323

cost function and the AdamW optimizer with a weight decay of 0.01.65 Hyperparameters were324

optimized through automated hyperparameter tuning and manual adjustments. Additional325

training and model architecture details can be found in the SI.†326

Computational details327

We accessed the pre-trained models using code from the associated repositories. Rdkit66,67
328

(version 2023.09.5) was employed to process data, extract atomic connectivity from molec-329

ular structures, and perform MaxMin sampling. PyTorch68 (version 2.2.1) and PyTorch330

Lightning69 (version 2.2.1) were used for constructing and training FFN models, while Py-331

Torch Geometric70 (version 2.5.2) was used for GNN models. All models were trained on a332

single Nvidia L4 Tensor core GPU. MaxMin sampling and Morgan fingerprints with a radius333

of 3 were implemented using rdkit. The Hausdorff distance was calculated using the scipy334

package71,72. Training for low-data examples continued until the validation loss ceased to335

decrease or until 800 epochs were reached. We sampled 120% of training data points for each336

regime, then randomly divided the data into train and validation sets. This ensured that the337

validation dataset size was always 20% of the training dataset size, and the train/validation338

split was performed as usual, making the conditions closer to a real low-data regime. Con-339

versely, testing was conducted on the entire test set for a realistic performance evaluation.340

Note that this approach differs from the work we compared low-data performance to, where341
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the test set size was proportional to the training dataset size.342

Code and Data availability343

The code used in the paper is publicly available in the repository344

https://github.com/zarkoivkovicc/AFE-TL-for-13C-NMR-chemical-shifts under the ASL li-345

cense, including the transfer learned models’ weights. Pre-trained models and original346

datasets can be downloaded from the code repositories of the corresponding publications.347
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