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Abstract  30 
 31 

Trifluoroacetic acid (TFA) is a hydrophilic, non-degradable substance that has been increasing 32 

in concentrations within diverse environmental media, including rain, soils, human serum, 33 

plants, plant-based foods, and drinking water. Currently, TFA concentrations are orders of 34 

magnitude higher than those of other per- and polyfluoroalkyl substances (PFAS). This 35 

accumulation is due to many PFAS that have TFA as a transformation byproduct, including 36 

several fluorinated gases (F-gases), high-volume pesticides, pharmaceuticals and industrial 37 

chemicals, in addition to direct industrial release. Due to TFA’s extreme persistence and 38 

mobility, these concentrations are increasing irreversibly. What remains less clear is the 39 

thresholds where irreversible effects on local or global scales occur. There are indications from 40 

mammalian toxicity studies that TFA is toxic to reproduction and that it exhibits liver toxicity. 41 

Ecotoxicity data are scarce, with most data for aquatic systems; fewer data are available for 42 

terrestrial plants, where TFA bioaccumulates most readily. Collectively, these trends imply that 43 

TFA meets the criteria of a planetary boundary threat for novel entities because of increasing 44 

planetary-scale exposure, where potential, irreversible disruptive impacts on vital earth system 45 

processes could occur. The rational response to this is to instigate binding actions to reduce 46 

emissions of TFA and its many precursors. 47 

 48 

Keywords: trifluoroacetic acid, intergenerational exposure, market transition, PMT, vPvM, 49 

exposome 50 

 51 

Synopsis: (~20 words) 52 

Rapidly increasing TFA concentrations, coupled with TFA’s extreme persistence, mobility and 53 

the possibility of irreversible impacts, should prompt action to reduce TFA emissions. 54 
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Introduction 55 
 56 

Trifluoroacetic acid (TFA) belongs to the subclass of per- and polyfluoroalkyl substances 57 

(PFAS) known as ultra-short chain perfluoroalkyl acids (PFAAs). TFA is by far the most 58 

abundant PFAS in the environment1–6. For example, Neuwald et al. demonstrated that TFA 59 

accounted for more than 90% of the total PFAS concentration (of 46 individual PFAS analyzed) 60 

in various drinking water sources in Germany2. Tian et al. observed TFA and perfluoropropionic 61 

acid (PFPrA) concentrations of similar proportion in air, dry deposition particles and plant 62 

leaves surrounding two landfills in China, and these concentrations were an order of 63 

magnitude higher than those of the 21 other PFAS analyzed4. Chen et al. measured 25 PFAS 64 

in total around two fluorochemical manufacturing plants in China, covering 8 different media 65 

(air, various water, soil, dust, plant leaves, sediment), with TFA concentrations being 66 

consistently 1-2 orders of magnitude higher than other PFAS5. 67 

An initial wave of scientific interest in the environmental fate and effects of TFA started around 68 

the mid-1990s, due to novel fluorinated refrigerants (hydrofluorocarbons (HFCs) and 69 

hydrochlorofluorocarbons (HCFCs)) being introduced to the market after the ozone-depleting 70 

chlorofluorocarbons (CFCs) were phased out under the Montreal Protocol7–12. When 71 

fluorinated gases (F-gases, encompassing gases with R-CF3 moiety, R-CF2-R moiety or 72 

inorganic fluorides), or other fluorinated organic substances, contain a C−CF3 moiety that is 73 

resistant to biochemical or photochemical degradation, TFA will commonly show up as a 74 

terminal degradation product. In recent years, interest in TFA has been re-established due to 75 

rapidly increasing concentrations observed in remote locations, drinking water sources and 76 

human blood2,13–15.  77 

There has been increasing debate since the 1990s about the hazard-related concerns of TFA 78 

and other short-chain PFAAs, which have been considered comparatively less 79 

bioaccumulative and toxic than PFAAs with longer perfluoroalkyl chains 8,9,16–23. However, 80 

these early reports did not consider TFA’s ubiquitous accumulation in the exposome, in 81 
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particular its observed accumulation in water resources and bioaccumulation in plants and 82 

crops.  Although there are fewer toxicological data compared to long-chain PFAAs, we will 83 

present in this study that there are more than sufficient data to conclude that TFA poses a risk 84 

to humans and the environment, and meets the criteria of a planetary boundary threat for 85 

novel entities24–27. Here we will present evidence for this because of TFA’s 1) increasing 86 

planetary exposure, which is 2) an irreversible burden from many sources that can cause 3) 87 

disruptive effects on human health and earth system processes. Our analysis leads to the 88 

conclusion that policy, industry, and innovation actions to reduce TFA emissions should be 89 

enacted globally as soon as possible to protect future generations from the subsequent effects 90 

of TFA accumulation. 91 

 92 

Increasing planetary exposure 93 
 94 

A review of the scientific literature was conducted to obtain an overview of average and 95 

maximum concentrations in diverse environmental media (see Supplementary Information for 96 

a full methodology and collected data). In brief, 43 studies reporting on TFA concentrations 97 

spanning from the late 1990s to the 2020s were selected and monitoring data were analyzed. 98 

Collectively, these data indicate that TFA exposure is widespread and increasing. 99 

Recent median concentrations of TFA in precipitation were measured at 0.29 µg/L in the 100 

USA28, 0.34 µg/L in Germany29 and 0.70 µg/L in Fuxin, China5. These median concentrations 101 

are similar to the proposed limits of total PFAS in drinking water in the EU draft recast Drinking 102 

Water Directive30, which places a threshold of total PFAS of 0.5 µg/L. In surface water and 103 

groundwater studies, median levels of TFA are commonly above 0.5 µg/L. A recent report 104 

measuring TFA in European surface water (median 1.2 µg/L) and groundwater (median ~1 105 

µg/L), recorded exceedance of this total PFAS threshold in 79% of samples, with more than 106 

98% of detected PFAS being TFA31.  107 
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In crops and other plants, short and ultrashort PFAAs undergo rapid uptake and 108 

bioaccumulation, particularly in aerial plant compartments35–38. Chen et al.5 detected 109 

concentrations of up to 3800 µg/gdw of TFA in plants in the vicinity of the fluorochemical 110 

industrial site in China with an average field bioaccumulation factor of 13000. TFA has been 111 

in general found to be enriched in conifers39, wheat, maize5, various tree species4,5 and some 112 

wetland species40. Consequently, high concentrations of TFA in plant-based foods41 and plant-113 

based beverages such as beer and tea42 were reported, indicating that the ingestion of plant-114 

based foods and beverages could be a significant route for human (and animal) exposure in 115 

addition to drinking water.  116 

TFA was detected in human blood from China32 with median concentrations of 8.46 µg/L, 117 

similar to the levels of long-chain PFAAs, despite TFA not being considered bioaccumulative 118 

according to regulatory criteria33. A similar study in the USA reported a median of 6 µg/L and 119 

a maximum of 77 µg/L18, where TFA alone had a 57% contribution to the sum of a total of 39 120 

PFAS measured. Thus, the concentrations of TFA in non-occupationally exposed US 121 

populations are similar to the concentrations of bioaccumulative legacy long-chain PFAAs 122 

(e.g. PFOS, PFHxS, PFNA, PFDA) measured in the serum of the occupationally exposed 123 

population34. Because of high uptake, TFA reaches levels in human serum that are much 124 

higher than what its low bioaccumulation potential would indicate.  125 

To demonstrate the change in concentrations and trends over the years, Figure 1 presents a 126 

comparison of pre-2010 and post-2010 data (by the reported year of sampling, not the year of 127 

publication). This cut-off year was chosen because the 1st of January 2010 was the final 128 

deadline for stopping the last remaining production of CFCs43; therefore, it is a key date 129 

regarding the phase-in of replacement F-gases. This date is also coincident with a slump in 130 

interest in TFA, which attracted some initial attention during the introduction of F-gases around 131 

the late 1990s, as opposed to the more recent interest in the past few years due to its 132 

increasing detection during PFAS monitoring.  133 

 134 
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 135 

Figure 1. Comparison of detected TFA concentrations in different media summarized as before 2010 (in green) 136 

and after 2010 (in red). Maximum reported values of maximum concentrations found in the literature review are 137 

shown as vertical bars and mean values of reported monitoring means and medians are shown with overlapping 138 

dots. Numbers indicating the number of summarized individual data points are shown above the corresponding 139 

bars.  140 

 141 

When pre- and post-2010 concentration data are available in a specific medium (Figure 1) an 142 

increase in TFA by orders of magnitude in both maximum and mean concentrations in several 143 

environmental compartments is evident, including for precipitation, rivers and streams, 144 

groundwater and drinking water, soil and plants. While atmospheric media were the main focus 145 

of monitoring studies dated pre-2010 (especially precipitation), more data from other media 146 

became available after this cut-off year – with new media relevant to human exposure (e.g. 147 
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plant-based beverages, crops, indoor and outdoor dust, human serum) and ecosystem 148 

exposures (e.g. animals such as locusts, autochthonous tree species) that were not available 149 

pre-2010 or were rarely measured (e.g. drinking water). 150 

More detailed time trends are available in certain areas. Urban surface waters around Beijing 151 

were sampled in 200244, and resampled in 201245, showing up to a 17-fold increase in TFA 152 

concentrations over 10 years, while tap water detections went from non-detection to 0.16 ng/L 153 

in 201245. Freeling et al. reported an increase in wet deposition in Germany from 22 to 30 154 

t/year during 1995–1996 to 68 to 98 t/year in 201929. Pickard et al. used dated Arctic ice cores 155 

to show a rapid increase in deposited TFA after the entry-into-force of the Montreal Protocol, 156 

in 1989, from non-detection or a few ng/L to 129 and 148 ng/L15. In 2021, Cahill et al. reported 157 

a 6-fold increase in TFA in a stream transect in California since 199846. Freeling et al. analyzed 158 

archived leaf samples of different tree species for TFA and observed increases by factors of 159 

up to 12.5 in TFA concentrations in some species from 1989 to 202029. A study in indoor and 160 

outdoor dust found an increase in TFA by a factor of 4 between 2013 and 201747.  161 

 162 

An irreversible burden from multiple sources.  163 
TFA has no known environmental degradation pathway48,49. This means that the mass of TFA 164 

that exists on the planet is approximately proportional to the amount emitted. Based on its 165 

persistence and high mobility, due to lack of sorption13,50, the ultimate recipient is the Earth’s 166 

hydrosphere. As TFA is omnipresent in all water bodies, from groundwater, deep and surface 167 

oceanic water, ice cores, drinking water, bottled water1,2,15,42,45,51–53, dilution in many ways has 168 

already occurred, and will not be a way of substantially reducing exposure. Similarly, 169 

enrichment in plants will follow constantly increasing TFA concentrations in water and soil. 170 

With limited TFA loss processes for elimination from plant tissues because of TFA’s 171 

persistence (no biotransformation) and presence in fully ionic form (strong acid, no 172 

volatilization), constant passive uptake from soil pore water via the transpiration stream can 173 

be expected for the lifetime of the plant as long as there is an input of TFA available. This 174 
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theory is supported by findings for other short- and ultrashort-chain PFAAs37 and is in 175 

agreement with the results by Zhang et al.54, who did not observe a steady-state concentration 176 

being reached for TFA in their plant uptake experiments. The global average of TFA 177 

concentrations in humans (serum), animals and plants can only increase. 178 

Methods to remove TFA from water are expensive and often inefficient due to TFA’s 179 

persistence and mobility51,55,56. In some cases, water purification methods as common as 180 

ozonation and chlorination are also a source of TFA, depending on the presence of its 181 

precursors51. The most effective solution would be reverse osmosis (RO) to up-concentrate 182 

TFA, followed by some expensive destruction technique. However, RO treatment of water, 183 

particularly wastewater, compared to other forms of water treatment is both more 184 

expensive57,58, and requires a substantial amount of energy59. Further, destructive techniques 185 

for concentrated TFA may lead to harmful byproducts. At high temperatures (> 170°C) and 186 

certain conditions, TFA can be converted to the potent greenhouse gas fluoroform (CF3H)60, 187 

which may be relevant in the context of heating or burning organic matter or RO brine 188 

concentrates containing TFA. 189 

 190 

TFA accumulation is expected to increase for the foreseeable future due to emissions from 191 

multiple sources. One of the most discussed is F-gases used as refrigerant chemicals.  192 

Refrigerant chemicals have a history of being problematic. CFCs were originally introduced 193 

as “safer”, alternative refrigerants to ammonia, sulfur dioxide and methyl chloride, until it was 194 

discovered that highly persistent CFCs were decomposing stratospheric ozone, particularly 195 

over Antarctica61–63, indicating that CFCs were a planetary boundary threat64. To protect the 196 

ozone layer from poorly reversible depletion, the Montreal Protocol65 required CFCs used in 197 

refrigeration and air conditioning systems to be substituted with HCFCs and HFCs66. HCFCs 198 

have lower ozone depletion potential than CFCs, and HFCs have no depletion potential; 199 

however, HFCs have a high global warming potential (GWP)66. Further amendments to the 200 

Montreal Protocol and the European F-gas Regulation aimed to replace the high-GWP F-201 
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gases with low-GWP alternatives67. Nevertheless, the substances proposed as replacements 202 

– hydrofluoroolefins (HFOs) and even currently applied HFCs – add to the problem that many 203 

of the HFOs and HFCs can in part (e.g. HFC-134a, HFC-143a, HFC-1234ze, HCFO-1233zd) 204 

or completely be converted to TFA, with one known HFO, tetrafluoropropene (TFP, HFO-205 

1234yf), having a 100% TFA yield68,69. TFA formed in this way is readily scavenged from the 206 

atmosphere by wet (and to a lower extent, dry) deposition12,45,70. Hence, a dramatic increase 207 

in atmospheric TFA could arise from the use of new HFO refrigerants. The use of HFO-1234yf 208 

alone was predicted to be responsible for 6900 t/year emissions of TFA in 2020 in the EU 209 

alone, with a potential increase of up to 47650 t/year by 2050. This shift in F-gases alone could 210 

cause emissions of TFA to increase by orders of magnitude in the coming years68. 211 

TFA is registered under REACH as manufactured and/or imported into the EU in volumes 212 

ranging from 100 to 1000 tons per year.50 Additionally, there is usage as an intermediate, but 213 

this usage does not require registration, so the volume remains unknown. TFA is therefore 214 

emitted directly from industrial production in Europe, and there is further evidence of emissions 215 

from global manufacturers. Xie et al. measured TFA in the surrounding environment (surface 216 

water, groundwater, air, dust, soil) of three fluorochemical plants near Jinan, China, having 217 

TFA and related inorganic fluoride intermediates as their main products71. Though surface 218 

water concentrations measured by Xie et al. had a maximum of ~2.6 µg/L, in Southern France 219 

a TFA-producing plant’s discharge recipient recently recorded concentrations up to 7600 220 

µg/L.72 221 

In addition to F-gases and direct TFA production71,72, there are several other precursors 222 

contributing to the accumulation of TFA in the environment, including a variety of groups of 223 

chemicals containing the C−CF3 moiety, such as agrochemicals51,73–75, pharmaceuticals51, 224 

(fluoro)polymers76–78 and other PFAS13,51,79. For this reason, TFA has been dubbed a 225 

“Substance from Multiple Sources” by Nödler and Scheurer80, highlighting the difficulty in 226 

ascertaining the main sources of TFA in monitoring studies of water resources14,19. TFA and 227 

its precursors can be emitted from point sources such as the (fluoro)chemical industry5,51, 228 
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wastewater treatment plants and landfills4,81,82, and sites with a history of the use of aqueous 229 

film-forming foams (AFFFs)81,83. Another source of TFA that is of increasing attention, but has 230 

already been discussed since the late 1990s, is transformation products from the thermal 231 

destruction of fluoropolymers48 as well as treatment of PFAS by destruction methods51,84,85. 232 

The yields of TFA from diverse PFAS destruction methods are often unknown and this should 233 

be taken into consideration when developing new remediation methods for PFAS16.  234 

The German Environment Agency (Umweltbundesamt, UBA) published estimates for TFA 235 

emissions from sources in Germany86. The available data indicate that refrigerants and 236 

blowing agents were the largest quantifiable source of TFA with emissions at ~ 2000 t/year in 237 

Germany, followed by pesticides at ~ 457 t/year (mainly flufenacet, diflufenican and 238 

fluazinam), and human pharmaceuticals at ~ 29 t/year. Emissions from other sources, such 239 

as direct production of TFA, biocides, veterinary pharmaceuticals, and fluorochemicals in 240 

products could not be quantified86. There have been speculations about natural sources of 241 

TFA, but these have recently been discredited by Joudan et al.87, who presented that only 242 

increasing anthropogenic sources of TFA can explain its exponential increase in recent 243 

decades.  244 

 245 

Disruptive Effects on Human Health and Earth System Processes 246 

There may be a disruptive effect of TFA on human health or to Earth system processes that is 247 

currently unknown, similar to how the effects of longer-chain PFAAs on human health, and of 248 

CFCs on the ozone layer, were initially unknown by the broader scientific and regulatory 249 

community. Overcoming this ignorance is the hardest part of understanding that a certain 250 

novel entity that is irreversibly increasing in concentrations globally may pose a planetary 251 

boundary threat25. Such effects cannot be fully described or anticipated by known paradigms 252 

of hazard assessment. However, as standard hazard categories are commonly used in 253 
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defining regulatory human health and environmental thresholds for chemicals, this is where 254 

we start our analysis of TFA potentially causing a disruptive impact.  255 

Known health and environmental thresholds. 256 

A recent review by Dekant & Dekant (2023) summarized mammalian toxicity of TFA, referring 257 

specifically to human toxicity. Most toxicity tests on which human health risk assessments 258 

were based are rat studies, which found mild liver hypertrophy (increased size of the liver) as 259 

the lead effect (at high concentrations). More human-relevant tests directed towards a 260 

mechanistic understanding and not only towards filling regulatory apical endpoints should be 261 

conducted in the future. Currently, there is an intention to change the CLP classification of TFA 262 

and its salts to Category 1B: Presumed human reproductive toxicant, based on new evidence 263 

of embryo-fetal developmental toxicity in rabbits, submitted to ECHA by The German Federal 264 

Office for Chemicals50,88. If TFA were to be classified as toxic for reproduction, this would 265 

indicate that increasing concentrations in drinking water and food could lead to decreased 266 

fertility rates. In 2020, Germany has established a TFA human-health guideline concentration 267 

for drinking water at 60 µg/L, which is based on a chronic rat toxicity (feeding) study, but 268 

emphasized that the concentration in drinking water should be kept as low as reasonably 269 

possible and a value of 10 µg/L should be targeted89.  270 

Under the EU’s regulation on classification and labelling (CLP), TFA is classified as causing 271 

severe skin burns and eye damage (H314), harmful if inhaled (H332), and harmful to aquatic 272 

life with long-lasting effects (H412)90. Under REACH, the toxicological threshold for the general 273 

population (Derived No Effect Level, DNEL) is derived only for the oral route and set to 0.042 274 

mg/kgbw/day, while for other routes of exposure, no hazard has been assumed and concluded. 275 

The threshold for the oral route was derived based on the observed effects from a 90-day rat 276 

feeding study50. Human toxicokinetic evaluation of TFA showed rapid oral absorption, 277 

submission to enterohepatic circulation, and body distribution via blood which included 278 

passing through the placenta barrier. The main excretion routes are considered to be via urine 279 

and bile. TFA did not exceed the regulatory bioaccumulation criteria in humans and is 280 
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considered non-bioaccumulative50. However, this latter conclusion should be considered in the 281 

context of continuously accumulation in exposure media, such as drinking water and plant-282 

based food and beverages, implying that internal concentrations will increase despite TFA 283 

being non-bioaccummulative. 284 

Contrary to the most recent human toxicological review17, a similar and recent review was not 285 

available for (eco)toxicity data. We conducted a search of the USEPA ECOTOX database91 286 

and ECHA registration dossiers (where currently TFA falls under the hazard classification 287 

“chronic 3” (H412), which indicates long-term harmful effects for water-dwelling organisms)50 288 

and found that most efforts towards the determination of (eco)toxicity of TFA are from the 289 

1990s. Algae are considered the most sensitive trophic level, with S. capricornutum the most 290 

sensitive species and 0.12 mg/L the lowest determined No-Observed Effect Concentration 291 

(NOEC), which was determined for the TFA sodium salt (Solvay data, ECOTOX database 292 

extracted for TFA/NaTFA and reported in Berends et al.8,91). Selected ecotoxicity endpoints 293 

(acute and chronic) for other organisms are reported in Table S2 of the Supplementary 294 

Information, with listed ecotoxicological thresholds and their abbreviations. Overall, most of 295 

the testing was performed for acute toxicity, with only a few studies investigating the chronic 296 

toxicity of TFA. 297 

Predicted No-Effect Concentrations (PNECs) are concentration thresholds commonly derived 298 

in environmental risk assessment that should be protective of the whole ecosystem. They are 299 

based on ecotoxicity data and extrapolation factors based on data abundance, test duration 300 

(acute/chronic), and data quality/uncertainty92. For TFA, the lowest PNEC of 0.12 µg/L was 301 

derived by Xie et al.71 and was based on algae that were previously shown as the most 302 

sensitive trophic level, including a high uncertainty factor due to the scarcity of (eco)toxicity 303 

data. The ECHA REACH dossier reports a freshwater PNEC of 0.56 mg/L and a marine water 304 

PNEC of 0.056 mg/L, both based on the algal study reporting the 72h ErC50 (EC50 based on 305 

growth rate) of 56 mg/L 50. More than half of the surface water median and/or mean 306 
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concentrations from peer-review studies reported as post-2010 already exceed both of those 307 

freshwater PNECs (Table S1, Figure S2). 308 

Among terrestrial organisms (ecotoxicity studies), only plants were tested for TFA toxicity. The 309 

final short-term EC50 was 4.7 mg/kg soil dry weight and a long-term NOEC was 0.83 mg/kg 310 

soil dry weight. It was mostly the plant shoot growth that was affected50. However, considering 311 

TFA’s high affinity for plant uptake, further testing of TFA plant toxicity is needed13. This NOEC 312 

is already similar to soil TFA background concentrations and is several orders of magnitude 313 

lower than TFA soil concentrations in contamination hotspots (Figure 1, SI)5,93.  314 

Given the persistence of TFA, exposure to TFA should be considered chronic and life-long for 315 

all species. However, chronic studies are still relatively scarce, with chronic data from 316 

standardized tests being limited in time of exposure to, for example, 35 days in fish, 21 days 317 

in Daphnia, 90 days in rat, or 36 days in crop plants50 (Table S2, SI), which are insufficient in 318 

their extrapolation to potential impacts from lifetime exposure to TFA. Hence, none of the 319 

current studies considered actual long-term exposure to TFA, which would be more relevant 320 

given its ubiquitous and increasing presence over long time scales. 321 

 322 

Unknown environmental and health impacts 323 
As TFA is accumulating in diverse ecosystems, researchers should focus on non-traditional 324 

exposure and impact pathways that effect biogeochemical processes. Despite the extremely 325 

high plant uptake of TFA and its implications, controlled uptake experiments were rarely 326 

performed and reported for TFA. Zhang et al.54 performed a set of hydroponic experiments 327 

with TFA and other ultra-short and short PFCAs. Here, the root uptake was exceptionally high 328 

for TFA (e.g. TFA concentration in roots was > 100 times higher than that of PFHxA)54, 329 

indicating that the interface partitioning of TFA and specific interactions with organic solids 330 

need to be researched further and accounted for in assessing its environmental fate and 331 

behavior properties, particularly (bio)accumulation potential.  332 
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Direct effects of TFA on soil quality were only recently investigated;94 here effects on the soil 333 

pH, microbial respiration, bacterial abundance and litter decomposition were reported, the 334 

latter being affected at concentrations similar to current TFA concentrations in soil for 335 

contamination hotspots as described in Chen et al5 (13 - 2400 ng/gdw). Bott and Standley 336 

observed the incorporation of TFA into cells by microbial communities in freshwater surface 337 

sediments95 after also demonstrating TFA incorporation in biomolecules such as proteins in 338 

aquatic organisms spanning a range of trophic levels11. Concentrations that were used in these 339 

~1.5 to 2.5 year experiments overlap with those currently observed in waters worldwide, from 340 

a few 2.2 to 43 µg/L, (Table S1, Figure S2, SI), and resulted in significant cell incorporation of 341 

TFA95. It was also demonstrated that at elevated concentrations, the presence of TFA in the 342 

atmosphere may influence aerosols and cloud formation, boosting the formation of 343 

atmospheric clusters involved in new aerosol particle formation 96,97. As concentrations of TFA 344 

will likely increase by at least an order of magnitude in the coming decade, further 345 

investigations of TFA on biogeochemical processes is warranted. 346 

CONCLUSIONS  347 
 348 

Based on the data presented above, the increasing accumulation of TFA can be considered 349 

to meet the conditions of a planetary boundary threat,98,99 as it fulfils the following three 350 

conditions defined by Persson et al.25 “Condition 1 (C1) – the pollution has a disruptive effect 351 

on a vital earth system process of which we are ignorant; Condition 2 (C2) – the disruptive 352 

effect is not discovered until the associated impacts are, or inevitably will be, manifested at a 353 

global scale; and Condition 3 (C3) the impacts are poorly reversible because the level of 354 

pollution in the global environment cannot be readily reduced…”  Condition 1 (C1) is fulfilled 355 

based on the many surface water samples that exceed the lowest established PNEC (0.12 356 

µg/L)71, as well as some soil concentrations that have exceeded the lowest established NOEC 357 

(0.83 mg/kg soil)50. Further, there are some indications of toxicity that have caused the first 358 

drinking water advisories to be established based on concerns to human toxicity 89. The 359 

existence of such health advisory and regulatory values has been used as the basis for 360 
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establishing C1 in relation to four PFAAs previously. 27  Furthermore, the possibility of 361 

unknown, long-term disruptive effects, which may be already occurring, but which we are 362 

ignorant of, cannot be excluded.  Condition 2 (C2) is fulfilled as TFA is manifested globally in 363 

all environmental media, such as its ongoing bioaccumulation in crops. TFA hotspots can be 364 

found around the globe, such as around industrial sites, and are spreading. Condition 3 (C3) 365 

is fulfilled as when effects are realized globally, they will be irreversible for the foreseeable 366 

future, due to TFA’s extreme persistence and mobility, coupled with emissions from multiple 367 

sources.  368 

Though currently TFA does not have as well-established health advisories or regulatory limits 369 

as the four PFAAs in a previous planetary boundary study27, it is likely that new 370 

advisories/limits will be introduced in the coming years as more research on the impacts of 371 

TFA emerges. With the projected exponential increase in TFA concentrations in human tissue, 372 

human diet and the environment, the question is not if TFA can exceed a planetary boundary, 373 

but which irreversible health or Earth system impacts would be first observed at a planetary 374 

scale, and where thresholds should be set to limit the severity of such impacts.  375 

The potential long-term, irreversible impacts from the rapidly increasing emissions of TFA from 376 

anthropogenic sources should be used as a rationale to start immediately discussing policy, 377 

industry and innovation actions towards the phase-out of high-volume substances that lead to 378 

increasing TFA accumulation. Obvious places to start would be to limit the use of HFOs, as 379 

well as high-volume pesticides such as flufenacet, diflufenican and fluazinam, which are well 380 

known to form large volumes of TFA86,89. Other pharmaceuticals, veterinary products and 381 

industrial chemicals that release TFA via transformation processes should also be considered 382 

for phase-out or substitutions. As discussions and policy mechanisms to phase out the sources 383 

of TFA could take some time, the rational response to the global threat posed by accumulating 384 

TFA is to act swiftly before the irreversible impacts are realized to humans and the 385 

environment. Transitioning away from TFA precursors is the most effective way of 386 

safeguarding future generations from this planetary boundary threat. 387 
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 388 

 389 

 390 

SUPPORTING INFORMATION 391 
The Supporting Information is available free of charge at https://xxxx 392 

The monitoring data collection and methodology, full set of collected monitoring data and an 393 

overview of selected ecotoxicity values referred to in this study is available in a docx and xlsx 394 

file. 395 
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