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Abstract: General reaction behavior is rarely reported in asymmetric catalysis, not simply because 
it is difficult to achieve, but also due to the methods used for its identification and study. 
Traditional approaches involve compartmentalization, where the impact of individual components 
is first analyzed, followed by assimilation using simple response and structure matching 
techniques. However, extending this method to accommodate complex conditions and diverse 
reactions proves challenging. Here, we present a data-driven method that relies on clusterwise 
linear regression to derive and predictively apply general mechanistic models of enantioinduction, 
with minimal human intervention. When applied to the palladium-catalyzed decarboxylative 
asymmetric allylic alkylation (DAAA) reaction, unexpected interactions governing 
enantioselectivity are revealed, supported by high-level computations and additional experiments. 
Our results demonstrate this workflow as a powerful new tool for automating mechanistic 
elucidation and effectively identifying general reaction performance. 
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Chemical reactions are traditionally analyzed first individually to determine how the molecular 

features of the reaction components contribute to the mechanistic aspects of the transformation (1–

4). Subsequently, the insight gathered from this process is matched, either qualitatively (5–7) or 

quantitatively (8–10), to a wide array of experimental observations to derive general mechanistic 

principles applicable to a broader range of reactions. While this bottom-up approach to mechanistic 

elucidation has been invaluable for guiding the rational design of catalytic systems (11–13), its 

limitations lie in its potential oversimplification, dependence on complete datasets (14, 15), and 

challenges in extrapolating meaningful mechanistic insights to transformations that utilize diverse 

structures and complicated reaction conditions (16). These issues are particularly common in 

asymmetric catalysis, an area that has evolved to impart high-levels of enantioinduction through 

the application of complex catalysts that engage in various interactions with reactants, often 

noncovalent in nature and energetically weak (17, 18). Such transformations, although seemingly 

mechanistically related, are typically adjusted to perform optimally with distinct conditions and 

catalyst structures. Accordingly, applying simple response and structural matching techniques to 

establish broad mechanistic principles remains a challenge (19, 20). In order to address such 

systems, we envisioned a top-down strategy for mechanistic study involving the application of 

data-driven techniques. This approach relies on the use of clusterwise linear regression (21) to 

autonomously discover subsets of reaction space that operate generally (Fig. 1A). Here, we 

demonstrate that this technique enables in-depth mechanistic analysis of the features that govern 

enantioselectivity, affording nonintuitive insight into the origin of general asymmetric induction 

and guiding rational experimental design.      

Our platform for probing the presence of linear relationships as an indicator of mechanistic 

continuity was inspired by Hammett analysis. Simply put, this type of physical organic experiment 

demonstrates that a transformation’s mechanistic features are embodied in its unique response to 

changes in reaction component structure and conditions (22). Traditional assessments constrain 

the chemical space for evaluation by probing the impact of one or few changes to a single structure, 

ultimately allowing for trends of best fit to be established with a single parameter (23). The 

resultant correlation, or pair of correlations in the case of non-linearity (24), can provide insight 

into the molecular feature impacting one or a set of key transition state structures (25–27). If more 

than one molecular property influences the transition state structure, the approach can be scaled to 

incorporate these multiple factors (28). Expanding this idea to complex datasets containing 

multiple multidimensional linear relationships is highly appealing and an unmet challenge. Such 
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an approach would lead to the identification of reactions that operate similarly, producing testable 

hypotheses regarding the structural origins of general reaction behavior (Fig. 1B).  

 

Fig. 1: Studying general reaction behavior through structure-function relationships. (A) 

Overview of the clusterwise linear regression algorithm for automating the construction of general 

mechanistic models and predictive application to experimental design. (B) I–III demonstrates the 
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evolution of the Hammett type analysis from uniparameter to multivariate correlations. This work 

focuses on algorithm development for the automated identification of multiple multivariate 

correlations and mechanistic analysis of the resulting statistical models. (C) General mechanism 

(I-V) and recognized empirical trends of the palladium-catalyzed DAAA reactions, the case study 

to be studied in depth. 

 

Workflow Design and Implementation 

Perhaps the greatest impediment to performing mechanistic analysis in this manner is 

selecting data subsets that can be correlated linearly from a much larger, potentially unstructured 

dataset. Current training set selection methods aim to minimize within cluster variance based on 

input features only (e.g. constraining reaction space or k-means clustering); however, applying this 

approach will lead to ill-defined groupings in cases where similar transformations proceed through 

distinct pathways. Including the response variable to be correlated in the clustering step is 

essential; thus, by design, the mechanistic features that linearly connect a set of reactions are 

identified in the process. To leverage regression for clustering problems, we implemented an 

optimization framework in Python specifically aimed at identifying groups of reactions that 

operate generally. By utilizing principal component regression with a single principal component 

for clustering, we minimize the effect of overfitting on the final results and our implementation is 

lightweight and computationally efficient. Despite the iterative nature of the clustering algorithm, 

we obtain high-quality, reproducible cluster configurations. However, in questioning the proper 

deployment of the algorithm, we were initially met with several challenges. Of these, perhaps the 

most important concerned the determination of the optimal cluster number, a critical 

hyperparameter. Reasoning that in ideal clustering the average of within-cluster R2 should be high, 

close to 1, we decided to implement a modified elbow method. This feature allows for determining 

a point where adding more clusters does not significantly improve the cluster quality. Because in 

some cases structurally related starting materials perform comparably under similar conditions, we 

purposely deploy k-means to initialize cluster labels and allow the algorithm to adjust the 

assignment for each data point as necessary. Given the sequential nature of the process, we 

anticipate that the final cluster configurations will be particularly altered by the order of operations 

performed during optimization, and this will vary widely. To address this limitation in simulating 

optimization runs iteratively, we deploy a customized ensembling technique to ensure that the final 

cluster labels correspond to the most common set of groupings. These data classifications can then 
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be analyzed further using a broad suite of mechanistic interrogation techniques including 

multivariate linear regression (MLR) and DFT transition state analysis.  

 

Reaction Platform Selection 
 

After evaluating our algorithm for the identification of linear relationships (see SI), we next 

sought to perform mechanistic analysis on a system that has proved challenging to generalize using 

traditional techniques. Accordingly, the field of transition-metal catalysis was appealing because 

despite the seemingly straightforward proposed factors that determine enantioselectivity, general 

models of stereoselectivity – even of a qualitative nature – have been rare. Recent reports of 

machine learning applied to this arena demonstrate that there are correlations to be found (29, 30), 

but that either (a) the reactions are difficult to study computationally meaning broad mechanistic 

insight must be assembled mostly through opaque chemical intuition; or perhaps more notably (b) 

several reaction paths contribute to enantioselectivity and their distinct sensitivities to reaction 

component structure are difficult to deconvolute. In this context, the palladium-catalyzed 

decarboxylative asymmetric allylic alkylation (DAAA) reaction was identified as a prototypical 

example (31).  

An intriguing mechanistic feature of this reaction class is highlighted by the observation 

that they often proceed with high levels of enantioselectivity with two disparate ligand classes, 

namely PHOX and Trost. Although these data allude to selectivity determination via a set of 

interactions common to different ligand designs and mechanistic pathways (i.e., inner- and outer-

sphere), such general determinants would be difficult to further characterize by traditional 

techniques. Indeed, major efforts by several groups using traditional bottom-up approaches have 

revealed the fundamental mechanistic features of the system and have found particular use in 

explaining reaction outcomes that align with one of two broad trends (Fig. 1C) (32–38). Whilst 

these simplistic trends describe a large amount of DAAA chemistry, they are necessarily 

incomplete (39, 40). This highlights the limitation in our current mechanistic understanding of the 

transformation, emphasizing the need to avoid relying solely on simple structure and response 

matching techniques, which may overlook valuable experimental insights and impose constraints 

on our capacity to conduct rational experimental design. Moreover, despite the potential for 

modularity the structural variation within the ligand classes is small, and although there is some 

catalyst-substrate matching, few catalysts have seen extensive use. In significant contrast to many 

asymmetric reaction classes, including those facilitated by organocatalysts, enantioselectivity 
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improvements are often made through reaction condition selection, which could introduce effects 

that have not yet been studied using data-driven approaches. Consequently, our goal was to apply 

clusterwise linear regression as a comprehensive mechanistic platform allowing for reaction 

generalization and the evaluation of how subtle structural features affect selectivity, using this 

reaction as an important case study. 

 

Data Set Modelling 

To initiate this workflow toward a more complete mechanistic assessment, an expanded 

inventory of 329 reactions was curated from the available literature. To achieve a significant spread 

of enantioselectivity values and to ensure the inclusion of complex mechanistic features, this 

comprehensive data search was designed to purposefully sample the reaction component and 

conditions that profoundly impacted the experimental outcomes. As a result, we obtained a dataset 

with a significant spread of absolute enantioselectivity, comprising a ΔΔG‡ window of 3.6 

kcal/mol. This dataset includes combinations of 6 ligands including both PHOX and Trost types, 

178 enolates, 5 allyl groups, and 14 unique solvents.  

Because our goal is to create statistical models characterized by simplicity and robust 

interpretability, we carefully considered the molecular features to be provided to the algorithm for 

model building (Fig. 2A). Parameter selection is typically accomplished using candidate structures 

that best represent the species relevant to the catalytic cycle. In this case, we implemented a 

truncation strategy which treated the allylic and enolate components of the starting material 

separately. We viewed this as a crucial but simple means to interrogate the impact that these 

individual components have on the overall process. Initially, catalyst parameterization efforts 

focused on computing the free ligand only; however, we expanded the process to include the base 

catalyst structure as a means to fix the ligand in the most relevant conformation. To define the 

parameter library, DFT optimizations were performed on these structures at the M06/def2-TZVP 

level of theory, and various descriptors were collected to probe structural effects of the reaction 

partners and ligands. This included NBO charges (41), molecular orbital energies, bond distances 

and bond angles. Sterimol descriptors (42) were collected to measure the size of the substituents 

at the different positions of the intermediate structures. To describe the asymmetry between the 

two ligand types and their surrounding environments, the catalyst structures were projected on a 

quadrant diagram and aligned. This approach allowed for the collection of Sterimol measurements  
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Fig. 2: Investigation of clusterwise linear regression for identifying general reaction 

behavior. (A) An overview of the molecular features collected for analysis and parameterization 

strategy for diverse ligand structures. Frontier molecular orbital (FMO) energies are a traditionally 

used descriptor for assessing reactivity. Charges from Natural bond orbital (NBO) analysis are 

deployed to capture electron density. Sterimol descriptors B1 and B5 describe the lowest and 
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highest width of a substituent perpendicular to a set axis, and Sterimol L describes the substituents 

length along that axis. (B) UMAP plot showing both high and low performing reactions distributed 

throughout chemical space. (C) Visual demonstrates the point where adding more clusters does 

not significantly improve the cluster quality.  (D) Factors considered in determining the optimal 

cluster number. 

 

that represent the size of the ligand portions occupying each quadrant.  Given the clear mechanistic 

importance of the solvent in determining the enantioselectivity we also sought to describe its 

impact through physical meaningful continuous variables like dielectric constant (see SI for full 

details).        

Our algorithm was then applied to the entire dataset shown in Figure 2B to identify 

correlations between the molecular structure of every reaction variable and the experimentally 

determined enantioselectivity, ΔΔG‡. To determine the optimal set of groupings and probe the 

algorithm behavior as the cluster number increases, a communicative visualization of the results 

is crucial. Thus, we elected to present the average R2 across clusters alongside each individual 

cluster R2 (Fig. 2C). Analysis of this data reveals that increasing the cluster number generally 

improves model quality but reduces interpretability. Certainly, low cluster numbers (fewer than 4) 

lead to more comprehensible separations, requiring fewer model comparisons (Fig. 2D); however, 

this can result in non-optimal clusters, where individual cluster R2 is much less than the average 

R2. This demonstrates that fewer cluster numbers result in groupings that include some reactions 

which do not behave analogously. A change in cluster number from 5 to 6 results in a sharp uptick 

in average R2, reflecting significantly improved model quality across all clusters and essentially 

no non-optimal clusters were generated. This factor combined with the minimal statistical gain 

observed for cluster numbers higher than 6, are the reasons for why we selected these cluster 

configurations to be optimal for downstream mechanistic analysis.  

To quantify the improvement in model quality, provided by our approach, we established 

several baselines for comparison. This involved benchmarking our model performances against 

those obtained from qualitative rule-based systems and those including similar structures. We 

envisioned this would provide a general assessment of the features that impact a key mechanistic 

step or related reactions, capturing the essential aspects a model should have to perform similarly 

to human experts in data-driven mechanistic analysis. Consequently, we segmented the data into 

subsets, categorized by ligand type (PHOX or Trost), as these are hypothesized to lead to 
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structurally distinct interactions with other components. In other words, this organizational scheme 

was viewed as a traditional means to facilitate the identification of the molecular features that 

affect particular mechanistic pathways identified by an expert. The second baseline strategy 

involved generating individual regressions from data groupings determined by k-means. 

Compared to the baselines, our models achieved improved accuracies and outperforms statistical 

models constructed by “experts” in both training set fit and prediction accuracy (see SI). 

We find that the clustering algorithm yielded unexpected groupings, as evidenced by 

situations in which seemingly similar substrates were placed into distinct clusters based on their 

enantiomeric excess results (Fig. 3A) (39). Although the individual clusters shown in Fig. 2B 

establishes the capacity of our algorithm to readout general aspects of this system, the ultimate 

goal of our workflow is to discern subtle underlying mechanistic phenomena. To truly interrogate 

the precise molecular features responsible for enantioselectivity, linear regression algorithms were 

then applied to the individual data groupings (see SI). Subsequently, analysis and refinement of 

the resultant models were used to produce explicit mechanistic hypothesis. The models depicted 

in Figure 3C were identified for each cluster and in each case a good correlation was determined 

(R2 = 0.77 – 0.89) using a small set of molecular descriptors. Combining the prediction statistics 

from all 6 models yields an R2 of 0.84 and test mean average error of 0.33 kcal/mol (Fig. 3B).   

 The simplicity of the linear regression models encouraged us to further explore the impact 

of the reaction components on the enantioselectivity outcome. Although the relatively small 

number of overlapping features between the models serves as a validation of our approach, it does 

create a challenge for model comparison. To address this issue, we sought to consolidate some of 

the mechanistic insights from the statistical models into a simple chart, illustrating the absolute 

importance of features grouped by reaction component structure and subclassified either as steric 

or electronic. Analysis of this data arrangement clearly highlights the significance of the enolate 

structure in determining the enantioselectivity result. By juxtaposing the enolate terms included in 

models I-II, III-IV, and V-VI, it becomes apparent that certain outcomes are more sensitive to the 

enolate steric profile than to the electronic features, and vice versa. Regarding the evaluation of 

ligand effects, several overlapping terms suggest that bulky PHOX or Trost ligands are compatible 

with the reaction if the enolate molecular requirements are met. This observation is reinforced by 

the construction of model I, where only the enolate structure influences the enantioselectivity 

result. The most compelling difference between the models is that for two of them, a solvent 

descriptor is not included as a weighted term in the equation. This suggests that for some reactions, 
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solvent properties do not have much effect on the stereoselectivity outcome, despite the large 

structural variance. This result, especially in the case of PHOX ligands, is non-obvious. Indeed, 

using non-polar solvents with PHOX ligands is an established practice, likely well-known among 

specialized groups, to favor selective inner-sphere mechanistic pathways (35, 37). Thus, an 

interpretation of the categorization would suggest that the enolate structure primarily governs the 

solvent effects, regardless of the ligand structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Mechanistic analysis by multidimensional clustering and regression modeling. (A) 

Clustering algorithm identifies non-intuitive groupings that match subtle changes in structure with 

variations in enantioselectivity. (B) Statistical model representing the combination of 6 individual 
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(C) Illustration and casual interpretation of the model terms. Across all the reaction components 

and models, steric descriptors include Sterimol L, B1 and B5 parameters, and ligand bite angle. 

Likewise, NBO charges, FMO energies, and FMO derived features like hardness and softness are 

recognized as electronic features.  

 

To interrogate this hypothesis, we attempted to link an enolate structural feature to the 

solvent dependent enantioselectivity outcomes (43) (Fig. 4A). Whereas the enolate descriptors did 

not provide any clear cut-offs for PHOX reactions involving non-polar solvents (i.e., dielectric 

constant < 3), the NBO charge on oxygen (NBO O) allowed for classification of enantioselectivity 

performance into selective and unselective bins with polar solvents (i.e., dielectric constant > 3), 

though several outliers were present with the former (Fig. 4B). The NBO O descriptor revealed a 

sharp cutoff in selectivity at a value of around -0.74, revealing the electronic requirement for good 

enantioselectivity in polar solvents with PHOX ligands. The observation that this distinctive 

charge profile at the oxygen was essential for good enantioselectivities in polar solvents raised 

questions about the relative energy differences of the competing pathways (Fig. 4A). Overall, these 

results suggest that a Pd-O interaction is established between the catalyst and the enolate 

intermediate during the enantioselectivity determining step, the strength of which is modulated by 

local electron density and solvent properties. Essentially, if a less basic enolate is paired with a 

polar solvent, the interaction weakens. This results in structures featuring Pd-O bonds being 

disfavored and raised closer in energy to those that do not rely on the Pd-O bond (i.e., outer-sphere 

pathways). Based on these hypotheses, and to specifically probe this putative interaction, we set 

out to calculate some of the key structures involved in selective and unselective reactions 

incorporating THF or Et2O as the polar solvent. The lower energy structures located along the 

inner-sphere pathway corresponded with a stronger Pd-O bond, as indicated through a shorter 

bond, and a reflection of the increased electron density at the oxygen atom with this enolate (Fig. 

4C, teal and purple). This favorable interaction stabilizing the key isomerization step along the 

inner-sphere pathway is compromised in the example involving the less basic enolate (Fig. 4C, 

grey), leading to small energy differences between the competing pathways and the low levels of 

enantioselectivity found experimentally. Collectively, these studies demonstrate the physical 

significance of the NBO O descriptor, and the -0.74 cutoff value observed experimentally.  
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Fig. 4: Studies deployed to probe the nonintuitive solvent dependent selectivity with PHOX 

ligands. (A) Mechanistic hypothesis for the identification of selective or unselective enolates in 

polar solvents. (B) Analysis of enantioselectivities against NBO O demonstrates the dependence 

of charge density at the enolate oxygen on solvent-dependent enantioselectivity outcomes. Light 

green points represent reactions evaluated in nonpolar solvents, green points represent reactions 

performed in polar solvents. (C) Visualizing a portion of the transition state structures located for 
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isomerization to the inner-sphere pathway. These structures are computed at the SMD-M06/def2-

TZVP//BP86-D3(BJ)/def2-TZVP(Pd)-def2-SVP level of theory. Palladium-oxygen bond is 

highlighted in pink with the distance labelled in Å. 

 

Based on these hypotheses, we evaluated our capacity to strategically modify the enolate 

and solvent components to achieve the anticipated reaction outcomes (Fig. 5). From the enolates 

surveyed, we identified a set of structures that had the potential to achieve good selectivity in polar 

solvents having calculated NBO O values below the observed threshold of -0.74 (Fig. 5A). These 

structures were previously evaluated experimentally with nonpolar solvents only (44); however, 

upon reassessment of several reactions with a polar solvent, we found moderate to good 

enantioselectivities, consistent with the classification and NBO O analysis (i.e., provide average 

ΔΔG‡ values greater than those found with NBO O > -0.74).  Next, we identified a seemingly 

similar set of enolates that contains the same types of substituents but differs only by a switch in 

the positions of the heteroaromatic and aromatic groups (45). The more positive NBO O 

characterized (i.e., NBO O > -0.74) these substrates similar to those that provide poor 

enantioselectivities in polar solvents but experimentally we found these led to no reaction (Fig. 

5B). We recognized this result as an extreme circumstance where the enolate properties have a 

profound impact on the reaction outcome, leading to virtually no levels of catalytic activity in polar 

solvents but high reaction yields when operated in a nonpolar medium. This further highlights the 

dependence of relative barrier heights on enolate basicity and solvent properties. 
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Fig. 5: Experimental reassessment of enolates characterized as (A) typically selective and (B) 

unselective in polar solvents.  

 

 

Summary and Outlook 

 

We have developed a workflow that utilizes a clusterwise linear regression algorithm for the 

automated identification of distinct mechanistic profiles from large, unstructured datasets. The 

applicability of this data-driven approach for mechanistic analysis was assessed, demonstrating its 

usefulness in predicting and studying complex asymmetric catalysis outcomes. Through the 

development of mechanism-specific correlations, this method reveals reaction similarities and 

reaction-specific mechanistic principles. For example, in the case of the palladium-catalyzed 

decarboxylative asymmetric allylic alkylation (DAAA) reaction, targeted mechanistic analysis 

provided new insights into the solvent-dependent enantioselectivity outcomes. Overall, this 

approach holds potential for simplifying the challenging process of mechanistic generalization and 

analysis, making it less subjective and more accurate. 

  

 
 

 

A. Experimental reassessment of enolates untested in polar solvents

typically selective enolates NBO O < -0.74

O
N

O

O
N

OPd2dba3 (0.25 mol%)
PHOX (0.6 mol%)

THF (0.1 M)
rt, 18 h

96% yield, 62% ee

95% yield, 61% ee

85% yield, 62% ee

88% yield, 58% ee

Me

Ph

iPr

Bu

unselective enolates NBO O > -0.74

N

O
Et

O

O
Pd2dba3 (0.5 mol%)
PHOX (1.2 mol%)

solvent (0.1 M)
rt, 72 h N

O
Et = Me, Br, H No Reaction

= Me, Br, H 70-82% yield

in THF

in optimal nonpolar

85-89% ee

B. Experimental reassessment in demonstrates dramatic differences in polar and nonpolar conditions
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