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Abstract 

 

Self-driving laboratories (SDLs) promise an accelerated application of the scientific method. 

Through the automation of experimental workflows, along with the autonomization of experiment 

planning, SDLs hold the potential to greatly accelerate research in chemistry and materials 

discovery. This review article provides an in-depth analysis of the state-of-the-art in SDL 

technology, its applications across various scientific disciplines, and the potential implications for 

research, and industry. This review additionally provides an overview of the enabling technologies 

for SDLs, including their hardware, software, and integration with laboratory infrastructure. Most 

importantly, this review explores the diverse range of scientific domains where SDLs have made 

significant contributions, from drug discovery and materials science to genomics and chemistry. 

We provide a comprehensive review of existing real-world examples of SDLs, their different levels 

of automation, and the challenges and limitations associated with each domain. 
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1 Introduction 

In the face of pressing global challenges such as climate change, energy sustainability, and 

current or emerging healthcare crises, we must seek efficient solutions in the context of a growing 

global population and increasing resource demands. The accelerated development of materials, 

technology, and scientific understanding emerges as a potential avenue for tackling these 

challenges. Traditional research methods, often characterized by gradual progress with limited 

efficiency, may prove insufficient for the urgency these challenges demand. The integration of 

laboratory automation and data-driven decision making can potentially facilitate a more rapid and 

efficient exploration of solutions, while offering multiple advantages over traditional scientific 

discovery.1,2 Notably, automated experimentations can perform experiments faster and with 

higher precision, while data-driven search algorithms can quickly and efficiently explore 

experimental space based on feedback from available data (“closed-loop” experimentation). 

Additionally, issues such as reproducibility challenges and the underrepresentation of negative 

results in the scientific literature have been identified.3–6 At the same time, automation encourages 

the further digitization of research.7 The utilization of automated systems enables more precise 

documentation of experimental protocols, enhancing repeatability and reproducibility, while 

digitization facilitates data recording and sharing, with particular emphasis on the significance of 

negative or null results, contributing to a more comprehensive and accurate portrayal of scientific 

endeavors. High quality large datasets made possible by autonomous experimentation would aid 

in the development of artificial intelligence (AI) for materials science and chemistry, creating better 

machine learning (ML) and deep learning (DL) models, and enhancing the decision-making 

capabilities of data-driven algorithms.  

Against this background, the concept of a self-driving laboratory (SDL) describes a scenario in 

which automated experiments are integrated with data-driven decision making, with the goal of 

accelerating the application of the scientific method. Early efforts in this direction date back to the 

1970s, and have been discussed under terms such as “autonomous laboratories,” “closed-loop 

experimentation,” or “materials acceleration platforms” since. The term SDL is more commonly 

used in the 21st century; to the best of our knowledge, the term SDL was first introduced by 

Maruyama and co-workers.8 In the context of chemistry and materials science, the main use 

cases of SDLs have encompassed the discovery of molecules or materials with optimized 

properties, or the optimization of reaction and process conditions. Before discussing these 

examples in detail in the later sections of the review, we want to start with a conceptual overview, 

introducing the main components of SDLs. The concept of SDLs has two critical defining 

dimensions: the automation of data-driven decision making (software), and the automation of 

experimental workflows (hardware). Hence, we classify SDLs according to the degrees of 

autonomy in these two axes.  

Concerning software autonomy, which pertains to experiment selection, SDLs can be classified 

into three categories: (1) single iteration of automated experimentation with a data-driven method 

to design the experiments, (2) multiple iterations on a closed-loop system, in which the 
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experimental results feedback to guide another round of automated experiments, and (3) 

generative approaches, in which multiple iterations of closed-loop optimization are performed in 

a search space or chemical space that is generated by an algorithm.  

On the other hand, hardware autonomy, which pertains to experiment execution, classifies SDLs 

into: (1) single-task setups primarily aimed at conducting a single type of experiments, (2) 

workflow configurations involving multiple tasks or experiments for design or discovery purposes, 

and (3) fully automated labs capable of executing a diverse range of experiments without human 

intervention. These dual categorizations offer a comprehensive framework for understanding the 

diverse landscape of SDLs and their applications in scientific exploration (Figure 1). 

 

Figure 1: Schematic for the autonomy levels of SDLs based on the category of hardware and 

software autonomy achieved. 

Similar to the hierarchical framework used to define levels of autonomy in self-driving cars, a 

similar classification system is applicable to SDLs.9 Level 5 SDLs attain the highest level of 

autonomy, achieving category 3 in both software and hardware autonomy. Level 4 SDLs, while 

not reaching the pinnacle of autonomy, achieve category 3 in either software or hardware, or 

category 2 in both. Level 3 SDLs attain a baseline of autonomy by achieving at least category 1 

in either software or hardware and at least category 2 in the other. Level 2 SDLs are characterized 

by relying on human ideation (software category 0) in combination with at least an automated 

workflow (hardware category 2) or on manual experiments (hardware category 0) with at least 

multiple iterations of computer proposed experiments (software category 2). Further, experiments 

with both software and hardware category 1 are also classified as Level 2 SDLs. The 
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categorization extends further to include experiments that reach category 1 or above in hardware 

autonomy but rely on human ideation (software category 0), which are termed automated 

experiments. Conversely, experiments that attain category 1 or higher in software autonomy but 

necessitate entirely manual experiments (hardware category 0) are termed ML-informed 

experiments. This hierarchical structure provides a nuanced understanding of the varying degrees 

of autonomy exhibited by SDLs, offering a comprehensive framework for characterizing their 

capabilities.  

For the purposes of this review, we cover in detail the SDLs that attain a minimum of category 1 

in both hardware and software autonomy. Level 2 and 3 SDLs make up the vast majority of SDL 

examples to date. For robotically “simple” tasks, a series of Level 4 SDLs have been 

demonstrated, however, a true Level 5 SDL remains an unattained goal in the field. Initially, the 

automation of laboratory workflows focused on more elementary tasks such as liquid handling, or 

data analysis. More advanced SDLs combining data-driven decision making with automated 

experimentation have flourished, driven by advancements in AI and ML. More recent 

developments in robotics and computer vision have allowed for automation of more complicated 

and general-purpose chemistry laboratory tasks, typically performed by human chemists.10–14 

While still in the early stages of development, such general-purpose SDLs have promising 

prospects for the future of scientific research. 

In this review, we provide a comprehensive overview of the development of SDLs and their 

applications in the domain of chemistry and materials science. We first provide a historical 

perspective, and then a discussion on the required infrastructure for SDLs. Before discussing 

SDLs for materials discovery in detail, we provide a comprehensive overview of SDLs for 

optimizing chemical processes and, in particular, chemical synthesis. This directly lays the 

foundations for SDLs in the field of drug discovery and biochemistry. In fact, the pharmaceutical 

industry has been a key driver in the field of SDL technologies, due to the industrial and 

commercial importance of drug discovery, pioneering both experimental and computational high-

throughput experimentation (HTE) and screening. Subsequently, we shift our attention to material 

design and discovery, covering structural materials, optoelectronic materials, and energy storage 

materials. Finally, we provide our perspective on the important challenges that need to be 

addressed by SDLs and the future outlook for their further development. 

1.1 Brief history 

The concept of SDLs has its roots in the broader field of laboratory automation, which began in 

the mid-20th century. The initial concepts of the SDL were focused on the design of experiments 

(DoE),15,16 a systematic approach of exploring parameters within a chemical process or 

experiment in order to optimize a particular outcome, for example the yield of a chemical reaction, 

and identify influential parameters within the process or experiment. The idea of using machines 

and robots to perform repetitive and time-consuming tasks in laboratories gained momentum with 

the advent of industrial automation in manufacturing processes. The first steps towards 

autonomous laboratories involved the automation of elementary laboratory tasks, such as liquid 

handling, sample preparation, and data analysis.17–19  
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In the 1940s, industrial forces led by chemists Bosch and Mittasch devised highly parallelizable 

robots with continuous flow platform that could perform grid searches for ammonia fixation 

catalysts for the Haber-Bosch process, testing up to 4000 compounds.20  Industrially, one of the 

first purpose-built robots appeared around 1960, developed by Unimation Inc., and was 

developed for automated die-casting processes.21  In 1966, Merrifield et al.22 demonstrated an 

automated stepwise synthesis platform for peptides, utilizing flow systems and batch reactors 

controlled by a “stepping-drum” programmer—a mechanical computer that activated 

microswitches through plugs on a rotating drum. Around this time, methods for optimizing black-

box functions were being applied to analytical chemistry, for example, the closed-loop 

optimization of measurement parameters to maximize the response signal.23 With more precise 

robotics and computer controls, smaller and more modular platforms were developed to automate 

specific chemistry tasks, allowing for automated workflows involving multiple instruments. By the 

1980s, Zymark led the development and commercialization of laboratory robotics which 

automated parts of sample production and data analysis of immunoassays, and created one of 

the first robotic arms for chemical laboratories.19,24,25 

With the rise of computers and computational power, experimental planning involved more 

sophisticated computational methods, such as simplex optimization,26,27 regression techniques,28 

Bayesian optimization,29,30 and evolutionary algorithms.31 Using AI to plan robotic experiments 

was first discussed by T. L. Isenhour in 1985.32 Dubbed the analytical director, the AI system 

would be capable of applying domain knowledge to reduce the search space in a DoE. Since 

then, the rise of AI and advancements in ML algorithms were instrumental in shaping the 

development of SDLs. AI technologies enabled these labs to process large amounts of data, make 

predictions, and even optimize experiments in real-time. Most importantly, AI methods can allow 

for the domain expert (i.e., the chemist) to be removed from the experimental planning process, 

as DL and ML techniques, with a sufficient amount of data, could be trained to recognize complex 

statistical patterns. Such models are capable of making data-driven decisions on future 

experiments, and learning from the experimental feedback. Such capabilities opened up new 

possibilities for exploring complex chemical and biological spaces in materials and drug discovery, 

and these SDLs will be the focus of this review.  

While the earliest examples of autonomous closed-loop workflows have been demonstrated in 

the 1970s, the integration of laboratory robotics with more sophisticated ML algorithms started to 

gain traction in the 2000s. As the cost and capabilities of higher-throughput robotics systems and 

computers became accessible to individual laboratories, the development of higher levels of SDLs 

became more widespread. For example, continuous flow systems with digital controls and 

automated characterization became more commonly used, particularly in the discovery of 

pharmaceutical compounds.33 In 2007, Krishnadasan et al.34 demonstrated a closed-loop flow-

based microfluidics SDL capable of synthesizing size-controlled CdSe nanoparticles by 

optimizing a custom utility function based on the data from an on-line spectrometer.35 And in 2009, 

King et al.36 created Adam, an autonomous SDL capable of generating genomics hypotheses 

from bioinformatics models, designing experiments, and performing biological assays. 

Subsequently, Eve was developed by Williams et al.37 exploring a large library of drug molecules 

for hit identification, performing assays and feeding back the results into a quantitative structure-

activity relationship (QSAR) cheminformatics model. 
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While still relatively early in their development, SDLs hold immense promise for the future of 

scientific research and are poised to revolutionize how we approach complex scientific challenges 

in the coming years. As the technology continues to mature and gain wider acceptance, SDLs 

have expanded to various scientific domains beyond materials and drug discovery. The 

continuous evolution and integration of AI, robotics, and laboratory automation will likely unlock 

even greater potential for these autonomous laboratories in the decades to come. 

2 Infrastructure 

SDLs encompass three fundamental components: (i) automated laboratory devices proficient in 

executing complex chemical operations, (ii) software packages designed to seamlessly handle 

laboratory operations and the resulting data, and (iii) an experimental planner capable of 

processing acquired data and guiding subsequent laboratory procedures. In this section, we 

provide an overview of the essential constituents of SDLs and discuss ongoing efforts to 

harmonize their integration and control. 

2.1 Hardware 

Chemical experiments require different types of operations including chemical handling, reaction 

execution, post-reaction processing/purification, and chemical property measurements. For 

certain steps, task-specific automated hardware systems have existed for decades, and many 

have been commercialized as standard laboratory instruments. Most of these systems have not 

been designed for fully automated workflows, but rather for interfacing with a human researcher. 

Prominent examples stem from the field of analytical chemistry, where automated solutions, often 

covering multi-step analytical workflows (e.g., chromatography-mass spectrometry from an 

autosampler), are routinely available in chemistry laboratories. The integration of such platforms 

with further automated solutions to enable SDLs presents a major challenge, and can be 

approached through different strategies. Fixed purpose-built automated systems couple multiple 

platforms in a static fashion, whereas partially automated workflows, requiring a human-in-the-

loop, allow for platforms that can be adapted and repurposed for different experiments.38 

Development in general-purpose robotic systems that can perform basic chemistry tasks and 

interface with the modules have allowed for completely automated yet modular SDLs.39 Moreover, 

open hardware for lab automation has been proposed to lower the financial barrier to building a 

SDL.40 In this subsection, we will review the various automated hardware modules, and provide 

a brief discussion on the development of general-purpose chemistry robotics platforms. (Figure 2) 

A summary of the distinctions between the hardware types are shown in Table 1. 
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Figure 2: Examples of types of automated hardware. (a)-(c) Categories of automated hardware 

for SDLs and (d)-(e) supporting software for automation. Bottom half show examples of each 

category: (a) OT-2 platform manufactured by OpenTrons;41 (b) robotic arm for chemical 

operations in Cooper’s autonomous laboratory, adapted with permission from reference.11 

Copyright 2020, Springer Nature; (c) 3D schematics of Sidekick, a low cost liquid dispensing 

platform developed by Keesey et al., adapted with permission from reference.42 Copyright 2022, 

Elsevier; (d) computer vision framework for laboratory glassware developed by Eppel et al.;12 and 

(e) solid weighting simulation software developed by Kadokawa et al., adapted with permission 

from reference.43 Copyright 2023, Institute of Electrical and Electronics Engineers (IEEE). 

Table 1: Comparison of special-purpose, general-purpose, and open hardware for SDLs. 

 Special-purpose 
hardware 

General-purpose 
hardware 

Open hardware 

Provider Commercial company Commercial company Community 

Price High (~$1M) Medium (~$10K) Low ($100 - 2K) 

Production-readiness High (typically 
shipped in working 
condition) 

Medium (additional 
cost of software 
development) 

Low (additional cost 
of software 
development and 
hardware building) 

2.1.1 Specialized hardware 

The automation of laboratory operations has come a long way since the high-throughput catalyst 

screening campaigns performed by Bosch and Mittasch using continuous-flow platforms. As of 

today, chemistry and materials discovery laboratories host a range of automated solutions for 

routine tasks. At the same time, there are still many operations that are routinely performed by 

human researchers in traditional laboratories, due to the need for operational flexibility and 

adaptive decision making.44 Finding automated solutions for these workflows requires 
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interdisciplinary efforts within chemistry and engineering, prompting a re-conceptualization of 

central laboratory processes. 

  

At the core of most laboratory routines lies a set of fundamental operations that are essential 

across various types of experiments. These include, most importantly, the handling and transfer 

of materials (most often as liquids or solids), or the precise control of vessel or reactor conditions 

like temperature, atmosphere, and pressure. Whereas the latter have largely benefited from 

technological advances outside of chemistry, the challenge of automated reagent handling 

remains specific to the chemical laboratory. 

  

The most straightforward and widely applied solution to automated liquid dispensing is the use of 

syringe pumps or peristaltic pumps. Commercial solutions to these technologies are widespread, 

and have facilitated the transfer and dispensing liquids in numerous SDLs. The automation of 

positive-displacement pipettes (PDPs) has also emerged as an alternative for robotic liquid 

dispensing, particularly in the context of biological experimentation. Gantry-based systems using 

PDPs (e.g. SPT LabTech Mosquito, or the OpenTrons OT systems), allow for substantial 

throughput increases of parallelized experiments in multi-well plates. Remarkably, the capabilities 

of PDPs to dispense microliter quantities have enabled the miniaturization of many experiments, 

particularly for biological assays. The downsides of PDP usage include a limited measurement 

range, along with challenges in handling e.g., highly viscous liquids and slurries. In contrast to 

liquid dispensing, dispensing powders or other types of solids presents a more significant 

challenge for laboratory automation. While automated liquid dispensing benefits from precise 

robotic volumetric displacement, automated solid dispensing requires real-time measurements of 

the dispensed quantities, making automated solid dispensing platforms more rare and costly. As 

a consequence, automated laboratories often resort to working with stock solutions of solid 

reagents when possible.  

  

In any SDL, these basic reagent handling operations are coupled to more problem-specific 

modules, including reaction execution (in environment-controlled reactors), separation and 

purification, or device fabrication. Given the large diversity between these modules, they will be 

discussed in the respective sections of this review.  Eventually, the necessary characterization 

feedback to “close the loop” is provided by the diverse library of analytical instrumentation, which 

are already used in a (semi-)automated fashion in traditional laboratories, but require dedicated 

integration into SDL workflows. One popular solution is the static combination of individual 

modules into a continuous flow sequential workflow connected through tubing. As a particularly 

prominent example, this strategy has laid the foundation for the field of flow chemistry and 

microfluidics (as discussed in more detail in section Reaction Optimization). Owing to the 

simplicity of this hardware setup, it has also found applications in a series of higher level SDLs, 

as discussed throughout the course of this review. 

  

An alternative strategy to statically coupling individual modules is the idea of flexible automation.39 

This approach emphasizes dynamic connections between modules using robotic systems for 

transfer between different workstations. This approach, imitating a human researcher operating 

the different modules, is particularly evident in the use of robotic arms, and, for example, has been 
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used in foundational SDLs in drug discovery (Adam36 and Eve,37 see section Drug Discovery and 

Biochemistry), and thin-film material synthesis (Ada, see section Optoelectronics). The 

Chemputer by Cronin and co-workers connects different modules, including vessels, reactors, 

pumps and further specialized units, using selection valves, enabling a diverse range of 

automated synthetic chemistry workflows.45 Recently, Cooper and co-workers have extended the 

concept of flexible automation to the use of mobile robots, operating multiple workstations which 

are distributed across the laboratory, mimicking a human researcher.11 The idea of flexible 

automation has recently spurred commercial solutions, particularly from companies such as 

Chemspeed Technologies and Unchained Labs, based on gantry systems reminiscent of the HTE 

platforms discussed above. Despite higher costs, these solutions have garnered considerable 

interest in both industrial and academic SDLs.  

2.1.2 General-purpose robot applied for chemistry 

While specialized chemistry hardware excels in conducting predefined experiments, their limited 

modularity can prove inconvenient for specific SDL configurations. Therefore, the application of 

general-purpose robotic arms for chemistry has been investigated due to their flexibility and multi-

purpose nature. A well-known example of demonstration of general-purpose hardware is the 

mobile robotic chemist by Burger et al.11 (Figure 2b) In the study, they used a mobile robot arm, 

capable of moving around a traditional laboratory and operating various instruments, to search 

for optimal photocatalyst mixtures. They also demonstrated the reconfigurability of the setup, 

repurposing the system to perform solubility screening and crystallization.46 General-purpose 

robots have advantages over purpose-built flow platforms in that they can perform experiments 

that require physical interaction with tools and objects in the laboratory, thereby minimizing the 

reconfiguration and/or adaption of proprietary equipment or instruments designed for humans. 

However, major challenges in perception and decision-making limit the robust deployment of 

general-purpose robotic systems for flexible lab automation. For this reason, many works in the 

literature address lab automation for specific tasks—for example, mechanical tasks such as 

retrieving samples of crystals by scraping the wall of a vial47 and grinding powder with a soft jig48 

have been demonstrated. Pouring liquid using visual feedback49 and weight feedback50 have been 

studied as an alternative method of transferring liquid. Custom hardware built to assist robots in 

handling liquids have also been proposed, for example, Lim et al. used a custom syringe pump 

operated by a robot arm to conduct a molecule synthesis experiment.51 Knobbe et al. developed 

a robotic finger for operating electronic pipettes,52 and Zhang et al. used a designed end-effector 

for operating manual pipettes. Solid dispensing has also been demonstrated using a dual-arm 

robotic manipulator.53 Yoshikawa et al. demonstrated the use of a robotic arm for the more specific 

task of polishing electrodes used in electrochemical experiments.54 Nevertheless, besides the 

advantages of generality, multi-purpose robotic arm systems are lower in efficiency and hard to 

parallelize compared to specialized systems.  

2.1.3 Open hardware for lab automation 

The cost of hardware automation is a limiting factor for SDLs. As a means of lowering the 

hardware cost and crowd-sourcing development and testing, various open hardware for lab 
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equipment has been proposed.55 Users typically print the published design files with their own 3D 

printer and build the equipment. In addition to labware for human use, lab automation devices 

such as liquid handlers have been developed as open hardware. FINDUS56 is an open-source 

handling workstation that costs less than US$400. OTTO57 demonstrated qPCR with a 3D printed 

liquid handler. Both systems benefit from readily accessible parts and sensors for error checking, 

though space efficiency and generalizability remain as challenges. PHIL58 is a personal pipetting 

robot that is compatible with microscopes, making it ideal for live cell studies but implementation 

in chemistry is limited. EvoBot59 is a reconfigurable liquid handling robot that improved modularity 

by introducing layers and modules. Building upon a well-established 3D printer technology, it is 

easy to implement, but the fixed tool design makes it challenging for complicated tasks. Jubilee60 

is an open-source multi-tool gantry-style motion platform also based on 3D printing technology, 

which has been used to demonstrate liquid-handling tasks for synthesis of nanoparticles (NPs).61 

It can mount/dismount tools automatically to perform multiple tasks, while community 

contributions are needed to develop more tools for chemistry applications. Sidekick42 is a liquid 

dispenser that features an armature-based motion system with a fully 3D-printed chassis and 

home-built syringe-pumps to realize lower costs, and can handle only a limited number of liquid 

identities at a time. 3D printers have been utilized for producing microfluidic devices62 or building 

a pipette for a two-finger robot hand to enable accurate liquid handling.63 Open hardware is 

beneficial to lowering the cost of building SDLs and their customizability is helpful in meeting 

individual requirements in different experimental settings which are not met by existing 

commercial hardware.64 However, the technical difficulty of setting up open hardware and the 

wide variety of similar hardware proposals hinder widespread adoption in laboratories other than 

the developers of the hardware. Further support by user communities is needed in facilitating the 

adaptation, and efforts in growing user communities have been made using online communication 

platforms.65 

2.1.4 Perception and computer vision 

Execution of chemistry experiments autonomously requires several layers of feedback. Mimicking 

the visual feedback of a chemists’ eyes, a perception system should track the progress of the 

chemistry experiment and provide information to the robot such that it can achieve the high-level 

goal or direction of a given experiment. Computer vision can play a key role in this aspect. For 

example, HeinSight can provide perceptual information about the chemistry experiments.14,66,67 

Connected to an experiment planning algorithm,68 that information can be used to guide the robot 

throughout the experiment. More recently, Sun et al. presented a vision-guided liquid-liquid 

extraction platform, using image processing and computer vision to identify phase boundaries.69 

In another example, authors used visual feedback to train a 3D-CNN model for viscosity 

estimation of fluids.70 At a lower level, the robot also requires visual and kinesthetic perceptual 

feedback in order to perform manipulation tasks successfully and robustly.  

Robots need to be equipped with accurate perception skills to work in unconstrained open 

workspaces. One of the characteristics in a chemistry laboratory is the use of transparent objects, 

such as glass containers. Transparent objects have different optical properties from opaque 

objects that make object detection challenging. Transparent glassware detection algorithms using 
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depth completion13 and multiple images71 have been proposed. Public datasets, such as Vector-

LabPics dataset,12 have been published in order to accelerate the development of ML models for 

laboratory related computer vision. 

2.1.5 Manipulation skill learning and digital twin 

In SDLs, general-purpose robots can interact with tools, objects, and materials within the 

workspace and require a repertoire of many laboratory skills. Those tools and objects can be in 

different forms, for example rigid objects like glassware, articulated objects with joints like cabinet 

doors, or soft objects like rubber tubes or powders and liquids. Some skills can be completed with 

existing heterogeneous instruments and sensors in chemistry laboratories, such as scales, stir 

plates, and heating instruments. Other skills are currently done either manually by humans in the 

lab or with expensive specialized instruments. In an SDL, robots should acquire those skills by 

effectively using different sensory inputs to compute appropriate robot commands. To effectively 

endow the robots with many skills in a scalable fashion, one approach would be to allow robots 

to “learn” those skills in a digital twin, a simulated laboratory environment in which the robotic 

system can interact with, using AI techniques.72 Digital twins can also be used for testing the 

workflows, algorithms, and scale-up developments.73 For example, ChemGymRL74 was proposed 

as an interactive framework for reinforcement learning in chemistry. 

Some examples of physics-based simulators include Gazebo,75 MuJoCo,76 and NVIDIA Isaac 

Sim.77,78 Recently, NVIDIA Isaac Lab,77 a modular framework on top of Isaac Sim, was introduced 

to simplify common workflows for robot learning that is pivotal for robot foundation model training. 

Some examples of robotic simulation environments and benchmarks are iGibson,79 MetaWorld,80 

and BEHAVIOR-1K.81 Closer to tasks related to laboratory automation, RB2 proposed a robotics 

simulation benchmark with pouring, scooping, and insertion tasks.82 In another work, a 

differentiable environment FluidLab83 was proposed for simulating complex fluid manipulation 

tasks. An example of using digital twin for the SDL is provided in Vescovi et al., where simulated 

environments have been used to visualize and compare tools, verifying the laboratory 

operations.73 These simulators leverage different physics engines, such as Bullet,84 FleX85 and 

PhysX86 and rendering happens via OpenGL87 or Unity.88 Although robot actions can be trained 

in a simulation environment at low cost, there are gaps between simulation and real-world 

settings. Multiple efforts have been made to close this sim-to-real gap,89 including for chemistry 

laboratory robotics. For example, Kadokawa et al. have trained a powder weighing action in a 

simulator and realized precise weighing in the real world.43 Nevertheless, high-fidelity and 

performant simulation of deformable objects and particle systems (such as fluids and powders), 

as well as the simulation of chemical phenomena in the context of SDLs, remain areas for future 

exploration. 

2.1.6 Robotics Safety in Laboratories 

In chemistry labs, several types of safety risks put humans and the environment in danger, 

including mechanical, electrical, and chemical hazards. Among these, hazards stemming from 

materials are predominant. Therefore, multiple levels of regulations and guidelines are 

implemented in chemistry labs for safety and accidents.90,91 
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The presence of robotic systems in chemistry labs can affect the risk of accidents in several ways, 

necessitating a diligent focus on safety and risk management. Generally, automated experiments 

with robotic systems inherently create a safer workplace for humans, as the users are less 

exposed to hazardous materials. Even when autonomous experimentation is not possible, 

chemists can tele-operate robotic systems to perform experiments with hazardous materials—

which has been pioneered, for example, in the handling of radioactive materials,92 or explosive 

compounds.93 

However, particular attention should be given when humans are in proximity to robots or in the 

same lab space, especially when employing mobile robots for tasks such as sample transfer. The 

choice of robotic systems, whether collaborative or industrial, can affect the safety protocols. For 

example, when using industrial robots, safety fences or laser scanners are commonly used in the 

robot workspace. Ensuring human safety in shared spaces requires a comprehensive approach 

that encompasses both physical and psychological aspects. For physical safety, the literature 

advocates employing control and motion planning techniques to facilitate safe physical 

interactions and address pre- and post-collision scenarios. In the realm of psychological safety, 

considerations such as robot motion, speed, adaptability, and appearance play pivotal roles in 

reducing stress and fostering a sense of safety in human-robot interactions. More information 

about robotics safety standards can be found in ISO 1021882, ISO/TS 1506683, and survey papers 

by Lasota et al.80 and Zacharaki et al.81 

Additional safety issues may arise from the manipulation and perception capabilities of robotic 

systems, as these remain open problems in the community. When deploying such robotic systems 

in chemistry labs, if manipulation policies and the robot's decision-making abilities are not robust 

enough, it may lead to failures, increasing the risk of accidents. An approach to rectify this 

shortcoming is to consider constraints on the robot policies. For example, Yoshikawa et al.94 used 

constrained motion planning when transferring liquids with a robotic arm to reduce the risk of 

spillage. Moreover, the ability of robots to detect accidents, take immediate actions, and notify 

humans are other important considerations. Overall, safety in laboratories with robotic systems is 

a multifaceted challenge that requires additional research at several levels, from generating 

potentially hazardous chemicals to experimental planning and automated experiments where 

robots are used. 

2.2 Software 

The software component of an SDL is composed of three distinct parts, which are executed by 

some orchestration software (Figure 3): (1) the control and communication system of the 

automated hardware of the laboratory, (2) the data extraction, management, and analysis of 

experimental output, and (3) the decision-making experimental planner. In recent years, the fields 

of chemistry and material sciences have undergone a paradigm shift with the rise of AI. ML 

algorithms, particularly DL models, have proven to be indispensable tools in deciphering complex 

patterns, predicting chemical properties, and accelerating the design of novel materials with 

tailored properties.  
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2.2.1 Orchestration 

The true potential of individual automated devices in chemistry is most evident when they are 

interconnected in order to orchestrate some comprehensive chemical tasks. Consider, for 

instance, the typical course of a chemical analysis, which involves a sequence of actions, 

including compound synthesis, thorough characterization, and meticulous processing of resulting 

raw data. The intricate interplay between these sequential steps underscores the indispensable 

need for standardized protocols to ensure the coherence and reproducibility of chemical 

experiments. Traditionally, these protocols were conveyed through research articles and 

manually executed by chemists. However, contemporary practices enable the translation of these 

protocols into orchestrated workflows executed by computational software, signifying a pivotal 

departure from historical methods. 

The integration of automated workflows has flourished within the field of computational chemistry, 

where the automation of repetitive and error-prone tasks is straightforward due to the 

programmatic nature of the field. This is evident in the emergence of tools such as AiiDA,95 

Fireworks96 and Snakemake97 among others,98–107 which excel in constructing and managing 

software workflows for ab initio simulations. On the experimental side, autonomous chemical 

laboratories constitute an emerging field where the adoption of such orchestration techniques has 

been hampered by the physical challenges inherent to wet laboratories, the lack of an 

orchestration standard, and the scarcity of resources for automated instrumentation.108 Thus, it is 

imperative to acknowledge that the development of orchestration software for SDLs faces 

numerous challenges rooted in the methods used by the majority of researchers. These 

challenges include: 

● The absence of standardized application programming interfaces (APIs) provided by 

instrument manufacturers, often necessitating the development and utilization of 

workarounds that place a substantial burden on researchers; 

● The inherent software complexity of managing and orchestrating the transporting of items 

between chemicals processing stations;40 

● Limited exposure to programming in current chemistry and materials science curricula. 
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Figure 3: Summary of the software components of SDLs, and how they interface with the 

hardware, and with each other. 

Addressing these challenges requires collective efforts from various stakeholders involved in 

current research, implementation, and deployment of SDLs. The widespread adoption of SDLs, 

particularly in industry, will compel manufacturers to provide user-friendly SDL solutions, efficient 

transfer systems between devices, and graphical user interfaces (GUIs) that facilitate the 

seamless integration of these platforms into the workflows of chemists. 

Numerous tools have surfaced in recent years to bridge this gap, with initiatives like the SiLA2 

standard,109 a communication protocol aiming to replicate a robot operating system (ROS) and 

adapt it for chemical devices. Within this context, various in-house orchestrators have emerged 

in different laboratories across diverse chemical fields, with notable examples including 

ChemOS,110,111 Helao,112 and AresOS,113 among others.46,73,114–121 These experimental 

orchestration platforms have achieved significant advancements in key orchestration features that 

are standard in computationally-oriented platforms, such as queue management, logging 

capabilities, data handling, and, more recently, the implementation of asynchronous execution of 

laboratory tasks and their integration with computational frameworks.122 However, a lack of 

consensus between these platforms still prevails, and they often remain tailored to specific 

laboratories, lacking the required level of generalizability to cater to the diverse spectrum of SDLs. 
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2.2.2 Communication and protocol management for SDLs 

In the context of SDLs, where human researchers are the intended users, effective 

communication between researchers and the orchestration manager is paramount. This 

communication enables researchers to issue complex commands to the orchestrator that will be 

transformed into chemical operations, while receiving feedback and real-time updates on the 

status of laboratory processes in a readable format. In this regard, programming languages serve 

as the essential communication bridge, allowing users to convey instructions and request 

information from the orchestrator. Although general programming languages are frequently used 

to program chemistry hardware,123 for example the MOCCA124 open-source Python package 

which directly analyzes HPLC raw data and extracts relevant information, or Chemspyd125 open-

source Python software for communication with proprietary Chemspeed software, specialized 

programming languages are proposed to efficiently describe chemistry experiments.  Chemical 

Description Language (χDL)126 is an XML-based language used to describe chemistry 

experimental procedures, which was demonstrated by translating chemistry literature into χDL, 

and then synthesizing the described molecules. Chemical Markdown Language127 is another 

chemistry domain specific language to describe or assist in experimental documentation. While 

such languages are more tailed for communicating chemistry specific tasks, they will require a 

low learning barrier to ensure adoption in other SDLs.  

In recent years, there have been multiple examples of asynchronous workflows, in which SDLs 

operating in separate regions, with different research teams and equipment, work on the same 

discovery or optimization task. This requires extensive software infrastructure for the 

communication and coordination of results between the SDLs and the respective research teams. 

Multiple studies have demonstrated the use of internet cloud servers to manage and control 

distributed laboratory equipment.116,128 Decentralized databases can then allow for 

communication of experimental protocols, experimental results, and coordinated experiment 

planning over multiple laboratories, which have been demonstrated in some SDL orchestration 

softwares.110,111,129 Dynamic knowledge graphs have been proposed130 and demonstrated131,132 

as an effective way of coordinating distributed SDLs. Ontologies are developed to capture various 

aspects of chemical research, including reactions, design of experiments, and hardware setups. 

Software agents are deployed at each lab site and act as executable knowledge components that 

can query, update, and restructure the knowledge graph autonomously, as the campaign 

progresses.   

Given the recent rapid developments in their capabilities, large language models (LLMs) have 

been investigated to accelerate chemistry research.133–136 In terms of communication, LLMs are 

able to interface with human users through text and conversation, translating between natural and 

machine language. For example, Boiko et al. demonstrated that LLMs can design and perform 

chemical experiments with a liquid handler based on natural language input from a user.137 The 

ability of LLMs can be expanded for specialized use cases by collaborating with external 

programs. ChemCrow138 is an LLM specially designed for chemical tasks, being able to observe, 

plan, and execute actions with integrated chemistry tools. CLAIRify139 introduced an iterative 

prompting strategy using automated verifiers to generate χDL, and demonstrated chemical 

experiments with a general-purpose robot. Likewise, ORGANA140 is an experimental planner that 

https://doi.org/10.26434/chemrxiv-2024-rj946-v2 ORCID: https://orcid.org/0000-0002-8470-6515 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-rj946-v2
https://orcid.org/0000-0002-8470-6515
https://creativecommons.org/licenses/by-nc/4.0/


 

 
 

uses a LLM to communicate with chemists, and then plans and interfaces with a robotic arm to 

perform parallel tasks in an SDL experiment. The role of LLMs is discussed further in the 

subsequent sections. 

2.2.3 Data management 

Automation accelerates data generation, and the large datasets must be managed efficiently in 

order to process and disseminate the generated data, particularly for the downstream use in data-

driven techniques such as ML. Data management can be categorized into private databases, 

adept at housing all laboratory-generated data, and public databases designed to share curated 

and processed data for widespread use. 

Individual research laboratories often use private databases to facilitate record-keeping of 

chemical processes within the laboratory, and track chemical inventory and equipment availability. 

Traditionally, researchers have relied on laboratory notebooks and inventory software for these 

purposes, manually recording and annotating changes in experimental procedures. Annotated 

data would then be transferred for curation and processing, although inconsistent information 

tracking, and missing or biased data due to human error remain as issues. However, 

improvements in information technologies have changed data collection practices, with electronic 

laboratory notebooks emerging as modern alternatives to traditional notebooks.141,142 Efforts have 

been made in integrating private databases with SDL orchestration frameworks to keep track of 

the status of the laboratory46,110–112 or the status of simulations.95 However, it's worth noting that 

the adoption of these tools is not standardized across the chemistry community. 

Conversely, public databases play an indispensable role in the open science paradigm, adhering 

to the FAIR (findable, accessible, interoperable, and reusable) data principles143 by providing 

transparent access to experimental data for other scientists, thereby enhancing reproducibility. 

Computational chemists hold a long tradition of publishing standalone computational databases 

hosted on cloud platforms like Zenodo.144 These encompass a broad spectrum of materials, 

including MOFs, organic molecules, and heterogeneous catalysis. More advanced platforms such 

as the Harvard Clean Energy Project,145 IoChem-BD,146 Materials Project,147 NOMAD,148 The 

Protein Databank,149 Materials Cloud,150,151 Open Quantum Materials Database (OQMD)152 and 

Catalysis-Hub153 serve as noteworthy examples of public materials databases. These are typically 

built on general-purpose database frameworks; for example, Materials Project147 uses MongoDB 

and OQMD152 uses SQL. The variety of public materials databases for computational data 

typically provide supplementary tools for data parsing, querying, and publishing. However, in the 

realm of experimental chemistry, there is a lack of tradition in publishing chemical results in 

structured and open databases; reaction and characterization data are commonly published as 

standalone or commercial databases. Notable examples include the Spectral Database for 

Organic Compounds,154 Reaxys,155 SpectraBase,156 and the chemical reaction patents from the 

United States Patent and Trademark Office.157 However, substantial efforts have been made to 

establish dedicated databases for storing experimental reactions and characterization data, with 

platforms such as Pubchem,158 Open Reaction Database,159 GNPS,160 Mass Bank of North 

America,161 Crystallography Open Database,162 MNRShiftDB163 and Molar.164 Due to the 

automation capabilities of SDLs, these databases are poised to play a critical role in the expansion 
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of SDLs as they serve as a common interface bridging diverse research laboratories, facilitating 

seamless collaboration and data sharing among geographically dispersed research teams. 

Before concluding this subsection, it is worth mentioning the recent emergence of HuggingFace 

Hub,165 introducing an open database focused on collecting datasets and ML models. While the 

effort is currently focused on DL research, the future standardization of SDLs will likely require 

the adoption of similar solutions. This will enable laboratories to share components of research 

workflows more effectively. For instance, a synthesis, characterization, and ab initio simulation 

workflow could be assembled for an SDL setup by downloading independent parts from the 

repository, connecting them, and subsequently customizing them to align with the specific 

laboratory needs. This collaborative approach facilitates the sharing and improvement of research 

components among different laboratories, fostering innovation and efficiency within the scientific 

community, as has been demonstrated for the AI community. 

2.2.4 Role of artificial intelligence in chemical discovery 

As large datasets of experimental and computational chemical data became accessible, data-

driven statistical methods became more relevant to chemical discovery.166 Cheminformatics have 

been developed since the 1970s, particularly driven by advances in computing technology, and 

the development of ab initio techniques such as density functional theory (DFT).167 Early work 

focused on prediction of chemical properties, identifying quantitative structure-activity 

relationships (QSAR), for virtual screening of large libraries of pharmaceutical compounds.168,169 

Statistical analysis of feature importance, such as through Shapley additive explanation (SHAP) 

values,170 have been used to provide intuition into the effect of certain chemical structures, 

properties, or experimental parameters in the model performance.171  

 

ML methods such as (1) tree-based methods: random forests (RF)172 or gradient-boosted trees;173 

(2) kernel-based methods:174 Gaussian process (GP)175 or support vector machine (SVM);176,177 

and (3) clustering algorithms: k-nearest neighbors (kNN)178 or k-means clustering,179 were used 

to capture complex QSAR in chemical and material space. Chemical compounds can be 

described by machine-readable chemical descriptors (Figure 4), represented by vectors of 

physicochemical descriptors,180,181 unique fingerprints182,183 (e.g. extended-connectivity, path-

based fingerprints),184,185 graph representations,186 and structured strings (e.g. SMILES,187 

SELFIES,188 and group SELFIES189).190,191 More complex forms of chemical representations 

include 3D information, such as through Z-matrix or cartesian XYZ coordinates.149 Additionally, 

chemical transformations can be represented as SMIRKS192 and SMARTS,193 which extend 

beyond SMILES to facilitate the textual representation of chemical reactions, while graph 

encoding has emerged as a powerful approach for capturing the complexity of reaction 

networks.194–197 
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Figure 4: Depiction of the different encoding techniques (left) and ML/DL models (right) used in 

SDLs. They are commonly combined to obtain a deeper knowledge of the studied system and 

acceleration of chemical exploration through experimental proposals. 

More recently, DL methods using neural networks have had successes in chemical applications, 

with the downside of sacrificing interpretability and requiring large amounts of training data.198,199 

Neural networks are highly expressive non-linear models that can be fit to complex data through 

backpropagation, capturing complex relationships in high-dimensional input data. DL methods 

are now state-of-the-art for many chemical prediction and classification tasks, for example, graph 

neural networks (GNN) on molecular chemical data.200–203 Additionally, successes in natural 

language processing have led to LLMs which are able to extract meaning and context from natural 

language, and generate coherent responses.204 Molecular language of string representations 

have been incorporated with language models for property prediction.205 Various applications of 

language models to SDLs include allowing for orchestrator-to-human interactions through 

language, or translating natural language to robotic commands.139 Language models have also 

been used to gather data from the scientific literature, generating datasets in an automated 

way.206,207 

 

Additionally, DL allows for data-driven generative modeling and ideation, reaching category 3 in 

software automation (Figure 1). Generative models incorporating neural networks have been 

used to generate novel chemical compounds and materials without human intervention, through 

the use of architectures like variational autoencoders (VAEs),208,209 generative-adversarial 

networks (GANs),210,211 gradient flow (i.e., diffusion) models,212,213 deep genetic algorithms,214,215 

language models for chemical strings,216,217 and deep reinforcement learning (RL).218–220 By 

directly learning the chemical space of a dataset, the model can interpolate and extrapolate new 

compounds, and even directly optimize within the latent space through inverse design.221 Various 

https://doi.org/10.26434/chemrxiv-2024-rj946-v2 ORCID: https://orcid.org/0000-0002-8470-6515 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-rj946-v2
https://orcid.org/0000-0002-8470-6515
https://creativecommons.org/licenses/by-nc/4.0/


 

 
 

in silico campaigns in generative inverse design and benchmarking have already been 

demonstrated,216,217,222–224 but issues with synthesizability and chemical stability of generative 

compounds remain a barrier to automated empirical validation. 

 

DL methods are capable of transfer learning, a technique commonly used in low-data settings, in 

which the model is pre-trained with more readily available data that provides the model with 

implicit information about the main task.220,225,226 By leveraging the libraries of computational 

results, and historical empirical results, models can be preconditioned with physicochemical 

information for SDL campaigns that typically start in the low-data regime. Such models can even 

be used to encode chemical compounds as task-specific descriptors, compressing the chemical 

information into expressive abstract representations.186,227 Both traditional ML and DL techniques 

are now commonly used as part of optimization algorithms and experimental planners, which will 

be discussed in the next section. 

 

2.2.5 Experiment planning 

The availability of data, coupled with the robust ML and DL models mentioned earlier, has created 

a demand for tools adept at processing the datasets. For practical examples, we direct the reader 

to various reviews that illustrate the utility of these techniques.198,228–234 

Traditionally, brute force methods like combinatorial grid-search and random sampling235,236 have 

been combined with high-throughput techniques to sample systems of interest. For instance, the 

Haber-Bosch process,237 which involved testing up to 4000 catalysts in 6500 experiments238 to 

identify suitable catalysts and experimental conditions for ammonia synthesis, required significant 

human effort and resources to complete. While such methods may work well and be preferable 

when dealing with a small number of parameters and low experimental costs, they quickly become 

unfeasible as the number of variables increases. In such cases, a methodical approach in the 

experimental space becomes necessary, particularly when computational or experimentation 

costs are a concern. Similarly, to make use of the improved precision of modern chemical 

apparatuses and sample preparation devices, exploring continuous variables in finer increments 

necessitates an increased number of experiments. 

Conventionally, scientists and engineers have used DoE strategies to systematically scan the 

experimental space, in an effort to reach the optimum, and identify the important parameters.239–

242 A naive approach may be the one-factor-at-a-time (OFAT) design, which involves manipulating 

a single parameter, assuming there are no correlated effects between the factors. In response 

surface methods such as Box-Wilson central composite design (CCD) and Box-Behnken design, 

the experiment list is populated by equally spaced points in design space, followed by polynomial 

fitting of the parameters to the response variable(s) for creating a response surface. This 

response surface can be then used for finding the optimum while the fitting parameters can be 

evaluated through statistical tests such as t-test,243 or analysis of variance (ANOVA)244,245 to 

assess the relative importance of variables as well as to confirm validity of the strategy. 
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While amenable to the computation power available at the time, a disadvantage of DoE methods 

is the rigidity of the list of experiments, which remains the same as the results are collected. 

Furthermore, the equal spacing of selected points gives a diverse yet course-grained sample of 

design space, sacrificing precision in identifying the optimum. As the dimensionality of design 

space increases, DoE strategies become impractical, and likely insufficient. Especially when 

targeting software autonomy levels 2 and 3, advanced experiment planning algorithms must be 

capable of realizing closed-loop workflows. Such iterative global optimization algorithms must 

fulfill the following requirements: (1) the algorithm must take into account experimental 

observations from previous iterations, and use this knowledge to make more informed 

experimental recommendations; (2) as experiments are generally expensive and time consuming, 

optimization should proceed with the minimum number of required experiments; (3) the algorithm 

must treat the underlying response surface as a "black-box"—the functional form of the 

optimization surface, or any gradient information, is usually not available from experiment.  

Some early approaches to the black-box optimization challenges in chemical and material 

domains is mimicking the successful strategies observed in biology, such as the evolutionary 

algorithms or genetic algorithms (GA) inspired by natural selection.246,247 In the context of 

experiment planning, each experimental setting refers to an individual species in a population. 

The fitness of each individual, which is associated with the quantities the algorithm is maximizing, 

is then used to assign a chance of producing offspring via crossover operations with other high-

fitness species. With each generation, the population evolves to a greater fitness while random 

variations can be introduced through mutations that help prevent the GA from getting stuck in 

local minima. Similarly, particle swarm optimization (PSO) is an optimization tool inspired by flying 

flocks of birds where each particle represents a point in experimental design space and the 

velocities of the particles are analogous to update rates of the experiment parameters.248–250 The 

covariance matrix adaptation-evolution strategy (CMA-ES) is another evolutionary strategy, in 

which the species of a generation are selected by a probability distribution based on high-fitness 

individuals.251 

Many of today’s pressing challenges such as catalyst discovery for sustainable energy 

applications, drug discovery, and synthesis optimization are analogous to finding a needle in the 

haystack, where only some narrow areas of the experimental space are highly promising and 

require detailed exploration. While GAs and PSO have proven suitable for complex problems, 

such methods tend to require a large number of samples as the design space grows. Simplex 

optimization, notably the modified simplex,252,253 has been another common heuristic optimization 

strategy that is also relatively simple and straightforward. Without any mathematical assumptions, 

simplex optimization gradually and systematically alters a virtual simplex constructed by vertices 

of previous experiments within the experimental design space, shrinking and expanding towards 

optimal settings with each subsequent evaluation. Despite multiple successful applications in 

chemistry254–262 since its first use in analytical chemistry26, simplex optimization’s final 

performance may be hindered by local optimality traps, noisy data and large number of variables. 

Another common systematic approach for experiment planning is Stable Noisy Optimization by 

Branch and Fit (SNOBFIT)34,263–265 which uses branching for exploration and bounding for 

elimination of irrelevant parts of experiment design space. SNOBFIT further aims to improve 

optimization efficiency by including local searches and deals with noisy data via robust sampling 
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combined with statistical modeling of the noise. Finally, gradient-based numerical methods for 

optimization have also been used in chemical process optimization, such as the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm.266,267 These algorithms require more computational 

power, but typically converge faster than non-gradient methods, like SNOBFIT or simplex 

optimization.268 We provide a comparison of some common experimental planning algorithms in 

Table 2. 

 

There are a number of aspects to consider when designing or choosing experimental planning 

algorithms in the context of SDLs. For example, SDLs in chemistry often involve the simultaneous 

optimization of continuous, discrete (i.e., ordinal discrete parameters), and categorical 

parameters. For example, the optimization of a reaction may involve parameters which include 

continuous variation of temperature, discrete increments of reaction times, and categorical 

selection of reagents. In scenarios where there are small amounts of data, or when experiments 

are too expensive to perform, multi-fidelity optimization may be used to accelerate optimization. 

Multi-fidelity learning leverages information from both low-fidelity (cheaper, faster, but less 

accurate), such as ab initio calculations, and high-fidelity (expensive, slower, but more accurate) 

data sources to guide the search for optimal conditions. This can be done, for example, through 

transfer learning with DL methods,269–272 or delta-learning optimization.273–275 And in many 

automated experimental platforms, batch experimentation is typically used to parallelize synthesis 

or characterization, such as through the use of well plates. Experimental planners need to be able 

to optimally suggest batches of solutions while balancing exploration and exploitation of the 

search space. This is also known as the multi-armed bandit problem.276–278 

 

Multi-objective optimization is particularly important in the optimization of chemical processes, 

and the design of new materials or molecules—for example, maximizing the activity of drug 

molecules, while targeting a specific solubility. Scalarizing functions are one of the simplest ways 

to incorporate multiple objectives into a single objective, with the simplest function being a 

weighted average of the various targets. Other more sophisticated scalarizers have been 

proposed, such as Chimera,279 which allows for user-specified hierarchical optimization of each 

objective, or the Pareto front hypervolume. The Pareto front represents the set of solutions where 

no single objective can be improved without degrading at least one other objective. Maximizing 

the hypervolume of the Pareto front yields a set of solutions that dominates a larger portion of the 

objective space, indicating better overall performance across all objectives and providing 

decision-makers with a diverse range of trade-off solutions. Some such methods include: parallel 

efficient global optimization (ParEGO),280 which uses the Chebyshev scalarization; non-dominant 

sorting genetic algorithm (NSGA)-II,281 and NSGA-III,282 which are GA approaches that optimizes 

by considering crowding distances of solutions within the Pareto front; s-metric evolutionary multi-

objective optimization algorithm (SMS-EMOA),283 which directly optimizes the hypervolume 

indicator. For more detailed discussion, we refer readers to Sharma and Kumar,284 Rangaiah et 

al.,285 Vel et al,286 and Angelo et al.287  

2.2.6 Bayesian optimization and active learning 

One of the most common strategies today for SDL experimental planning is Bayesian optimization 

(BO), which aims to maximize or minimize some black-box function, such as a measurable 
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chemical property, as a function of controllable experimental parameters.288,289 To do this, the 

surrogate model with some prior distribution is fit, or trained, on the available data, and the 

predicted posterior distribution is used to create an acquisition function. The acquisition function 

contains information about the prediction and the uncertainty of the prediction based on the 

posterior distribution, and can be used to control the exploitative or explorative nature of the 

subsequent experiments. Some common acquisition functions include the upper confidence 

bound (UCB), a linear combination of the mean and standard deviation of the posterior, and the 

expected improvement (EI), the expectation value of the next point that most improves upon the 

best value. In multi-objective optimization tasks, some commonly used acquisition functions 

include the expected hypervolume improvement (EHVI),290 the noisy EHVI (NEHVI),291 or 

ParEGO.  

 

First introduced in 1989, BO algorithms have since incorporated more complex non-linear models 

using ML and DL models as surrogates, and have found success in more difficult chemical 

optimization tasks. Similarly, active learning is a sequential optimization algorithm, however the 

goal is to improve the performance of the surrogate model with each additional data point. The 

goal of both algorithms is to optimize to the respective goals in as few evaluations as possible, 

minimizing the number of expensive black-box function calls. This entire loop of experimentation, 

model training, and decision making is repeated until a given experimental budget is reached or 

until the given target is achieved.  

 

While any model can serve as a surrogate model, GPs and RFs are typically chosen, as they train 

quite well with small amounts of data, which is typically the case in the early iterations of an SDL 

campaign. While GP models learn distributions of functions and intrinsically provide uncertainty 

estimates, RFs provide an uncertainty based on the ensemble of decision trees. DL surrogate 

models like multi-layer perceptrons (MLPs), convolutional neural networks (CNN), recurrent 

neural networks (RNN), or GNNs are less common in SDL applications, and usually require pre-

training from larger datasets, (e.g., computational datasets). However, probabilistic DL models 

such as Bayesian neural networks (BNNs)292 have been shown to work relatively well with lower 

amounts of data, due to the regularization effect of the neural network weight distributions.  

 

Given the versatility and recent success of the BO methods for experiment planning, there has 

been an intense effort to provide software libraries targeting multi-objective optimization, 

compatibility with specialized material/chemical optimization tasks, better handling of categorical 

variables, increased accessibility as well as benchmarking. Shields et al. introduced an open-

source Python package Experimental Design via Bayesian Optimization (EDBO)293 and provided 

multiple benchmarks. The authors showed BO with GP performs statistically better when 

compared to common DoE techniques suitable for both continuous and discrete variables in 

maximizing Suzuki and Buchwald-Hartwig reaction yields. While EDBO was capable of 

recommending experiments in batches with seemingly no performance loss, Tores et al. 

published EDBO+294 that extended the platform to tackle multi-objective tasks. They further 

augmented the platform with a cloud powered web-interface to provide accessibility to non-coder 

scientists as well. 
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Häse et al. developed the Bayesian optimizer Phoenics295 that addressed the issue of large 

numbers of samples required for chemical global optimization tasks, particularly where evaluation 

of a point in chemical design space is costly. By utilizing an autoencoder-like BNN for kernel 

density estimation from observations, a surrogate function can be constructed with higher 

efficiency. Phoenics was benchmarked on a reduced Oregonator model for the 

Belousov−Zhabotinsky reaction, and, when compared to RF, GP, PSO, and CMA-ES, Phoenics 

outperformed the other methods after only 25 evaluations. Later on, Häse et al. introduced 

Gryffin,296 an extension of Phoenics with a particular focus on handling categorical variables. 

Additionally, Gryffin considers the correlation among the variables through the use of descriptors; 

for example, the physicochemical descriptors of selectable solvents. Among multiple optimization 

strategies and packages such as PyEvolve,297 SMAC,298 HyperOpt,299 and GPyOpt,300 the authors 

reported the best performance with the Gryffin optimizer. Other chemistry specific BO algorithms 

include Gemini,273 which extends Gryffin to multi-fidelity optimization, Golem,301 which identifies 

optima that are robust to input or measurement uncertainties, and Anubis,302 which incorporates 

unknown experimental constraints into the acquisition function. Recently, Hickman et al. 

introduced Atlas,303 an open-source software library incorporating the functionalities of the 

aforementioned BO softwares, including mixed parameter BO with a priori known and unknown 

constraints, as well as multi-objective, multi-fidelity and robust optimization capabilities. With an 

emphasis on integration with SDLs, the authors showcased the Atlas library embedded in the 

ChemOS 2.0111 SDL orchestrator for oxidation potential optimization of metal complexes using 

electrochemical measurements.  

It is also worth noting that there are many off-the-shelf and general-purpose BO packages 

available. BoTorch304 is a modern BO library built on top of PyTorch305, offering modular 

components, Monte Carlo (MC) acquisition functions, and a variety of advanced optimization 

features such as high-dimensional, multi-fidelity, multi-objective, mixed-variable, and constrained 

optimization. Notably, the Ax (Adaptive eXperimentation) platform is a high-level wrapper to 

BoTorch managed by the same developers which significantly reduces the required learning 

curve and has seen recent usage in materials informatics.306–308 GAUCHE, by Griffiths et al.,309 is 

an open-source GP framework built atop GPyTorch,310 BoTorch304 and RDKit,183 with a suite of 

custom kernel functions for GPs, and built-in performance and BO benchmarks for molecular and 

reaction discovery. Dragonfly311 is an optimization library for handling both multi-fidelity and high-

dimensional optimizations, emphasizing adaptability to various domains. SMAC3 (Sequential 

Model-based Algorithm Configuration)312,313 combines BO with RFs, and is particularly suited for 

algorithm configuration tasks. GPyOpt300 utilizes GPs as surrogate models for BO, offering a 

variety of GP-based acquisition functions. HEBO314 (Hierarchical Evolutionary Bayesian 

Optimization) integrates evolutionary strategies with BO, presenting a hierarchical approach to 

enhance search efficiency. HyperOpt299 is a Python library for serial and parallel optimization over 

challenging search spaces, utilizing techniques like tree-structured Parzen Estimator (TPE)315 

rather than traditional BO. Thompson sampling efficient multi-objective optimization (TS-EMO)316 

is a general-purpose BO with a GP surrogate allowing both multi-objective optimization and batch 

suggestions.  
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While off-the-shelf models are convenient, studies have shown that careful selection of surrogate 

models can greatly influence the performance BO or active learning campaign. For example, for 

the GP surrogate, Noack and Reyes stress the importance of understanding the physical system 

in selecting hyperparameters, kernel and mean functions.317 Many studies commonly use 

standard kernels like the radial basis function, or Matérn kernels, without considering the 

underlying physics of the system, anisotropy in the input features, or stationarity of the data points. 

Ziatdinov et al. proposed GPax,318 a novel approach that augments GPs with structured 

probabilistic models to incorporate prior physical knowledge into BO and active learning tasks. 

Unlike standard GP-based BO, GPax balances the flexibility of non-parametric GPs with the 

rigidity of parametric models encoding known physical behaviors. The authors demonstrate 

GPax's capabilities on synthetic test functions, as well as physical lattice models like the 1D and 

2D Ising models, where it outperforms classical GPs in discovering optimal regions and 

reconstructing phase boundaries with fewer observations. Further studies have demonstrated the 

potential for GPax in improving optimization in high-throughput experimental studies,319–321 

increasing explainability of the surrogate model in hypothesis learning.322–325 

 

There can be significant performance variance between experiment planning approaches for 

different chemical and material optimization/engineering tasks, even for slightly different tasks 

within the same domain.326 Therefore, the benchmarks have been developed to evaluate the 

various methods, which can be useful when initially choosing an experiment planning algorithm 

and the associated hyperparameters. Olympus327,328 and Summit329 are examples of BO 

benchmarking platforms with realistic chemical tests and experiments. For finding efficient black-

box approaches, Tom et al. studied the effect of different chemical featurizations and surrogate 

models on the predictive performance and uncertainty calibration on different small chemical 

datasets, and the optimization performance in the context of BO.330 Liang et al. benchmarked 

different BO flavors specifically on the material science datasets covering a wide domain ranging 

from electrical conductivity of drop-casted composite blends to shape scores of 3D printed 

materials.331 The authors further defined useful metrics for evaluating the acceleration and overall 

performances of optimization. Rohr et al. compared performances of linear ensembles (LEs), RFs 

and GPs for active learning based minimization of multi-metal oxide catalyst compositions’ 

overpotential toward oxygen evolution reaction.332 We summarize some commonly used BO tools 

for experimental planning in Table 2. 
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Table 2: Comparative overview of some common optimization software packages for SDLs. 

   Natively supported variable types Natively supported optimization features  

Name Published Type Continuous Discrete Categorical Multi-fidelity Multi-objective Constrained Batch Highlights 

Nelder-Mead 

Simplex252 

1965 Heuristic Yes No No No No No No Simple to operate with quick 
convergence to local minima via 
updating simplexes. 

SNOBFIT333 2008 Heuristic Yes No No Yes No No Yes Branching for global exploration with 
local quadratic fit. 

HyperOpt299 2014 Heuristic Yes Yes Yes No No No Yes An easy-to-use optimizer with scikit-
learn compatibility. 

GPyOpt300 2016 BO Yes Yes Yes No No Yes Yes Off-the-shelf BO that allows custom 
surrogate and acquisition functions. 

Deep 
Reaction 

Optimizer334 

2017 RL Yes No No No No Yes Yes Unique with deep RL offering faster 
optimization than heuristic 
approaches. 

Phoenics295 2018 BO Yes Periodic 
Only 

No No Yes No Yes Increased sample-efficiency by BNN 
based kernel density estimation. 

TS-EMO316 2018 BO Yes No No No Yes Yes Yes Bayesian framework with smart 
sampling to efficiently deal with high-
dimensionality less prior knowledge. 

BoTorch304 2019 BO Yes No Yes Yes Yes Yes Yes Mature library with MC acquisition 
function, a good base for custom BO 
libraries. 

Dragonfly311 2020 BO Yes Yes Yes Yes No Yes Yes Emphasis on robustness via adaptive 
self-hyperparameter tuning along 
with scalability. 

pymoo335 2020 Multiple Yes Yes Yes No Yes Yes Yes Large framework with multiple 
algorithms, from EA and BO to 
simplex optimizers. 
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CMA-ES251 2021 EA Yes No No No No No Yes Robust noise handling and self-
tuning of internal parameters. 

GPax318 2021 BO Yes No No Yes Yes No Yes Unique with physics-informed 
guidance of GPs for more robust 
optimization. 

Gryffin296 2021 BO Yes Yes Yes No No No Yes Improved handling and interpretation 
of categorical variables. 

EDBO+294 2022 BO No Yes Yes No Yes No Yes Provides user-friendly web GUI with 
high performance batch suggestions. 

SMAC3312 2022 BO Yes Yes Yes Yes Yes Yes Yes Convenient library that performs well 
on small design spaces. 

Atlas303 2024 BO Yes Yes Yes Yes Yes Yes Yes A comprehensive BO toolbox 
including real and simulated chemical 
test data via Olympus. 
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3 Analytical Process Optimization 

The earliest examples of chemistry SDLs that automatically perform a sequence of experimental 

tasks, planned by a data-driven algorithm in a closed loop, largely stem from the field of analytical 

chemistry. As early as in the 1960s, the optimization of measurement parameters to maximize 

e.g., the response of a single instrument, has been addressed in an iterative closed-loop fashion. 

Whereas these approaches do not fall under the scope of this review, and are routinely 

implemented into modern (analytical) instruments, it is remarkable that this iterative optimization, 

taking into account data from previous iterations (in contrast to e.g., PID controllers) has already 

been achieved more than 50 years ago. As an example, Ernst et al. demonstrated the 

autonomous optimization of magnetic field homogeneity in a nuclear magnetic resonance (NMR) 

spectrometer by adjusting currents along the spinning axis, controlled by a gradient-based and a 

simplex-based algorithm.23 To the best of our knowledge, this work represents the first published 

example of a simple Level 2 SDL in the field of chemistry.  

 

Level 3 SDLs are realized when coupling an analytical technique to an upstream operation such 

as automated sample preparation or separation. In these setups, the goal definition of the SDL is 

the identification of those process conditions that optimize the detectability or quantifiability of 

specific materials. Whilst these tools can be regarded as components of larger SDLs in materials 

discovery, the development of robust analytical methods has been an active field of research for 

multiple decades, and has been addressed using SDL approaches early on. In this section, we 

will review the autonomous optimization of such analytical processes, and further related 

experimental procedures. Note that SDLs which address the condition optimization of chemical 

reactions are not included, but will be discussed in the section on Reaction Optimization. SDLs 

that target the conditions for the formulation of drugs are summarized in section Drug Discovery 

and Biochemistry.  

 

3.1 Composition and detection process optimization 

The identification of ideal measurement parameters for analytical processes is of enormous 

importance across all chemical industries, and has attained considerable attraction from the 

standpoint of autonomous optimization. Beyond simple PID-type controllers, however, due to the 

limitations of computational power and automated laboratories before the 2000s, experimental 

planning was done primarily by simplex optimization, and automation typically done through 

simple step motors and flow systems. Detailed reviews on these systems are provided by Deming 

and Parker,27 Rozycki,336 and Bezerra et al.253 In the following sections, we will provide a brief 

overview of SDL progress for analytical processes, with a focus on the more recent studies. 

3.1.1 Sample preparation  

The earliest examples of what would be considered a Level 3 SDL as per the definition of this 

review, have been reported in the 1970s, addressing the optimization of analytical procedures for 

spectroscopic detection. Typically, in these works, the optimization would target the automated 
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sample preparation for a subsequent spectroscopic detection, in order to maximize the 

spectroscopic response for the material of interest.  

 

One of the first examples of automated optimization of chemical detection was from King and 

Deming in 1974.337 The SDL used a rotating motor with attached pumps to dispense various 

reagents into a flow system. The chemical system studied was the formation of dichromate ions 

from chromate and hydrogen ions, introduced through hydrochloric acid. Characteristic peaks in 

the measured UV-Vis absorption spectra correspond to an equimolar solution. Using simplex 

optimization, the intensity of the characteristic absorbance peak was maximized as a function of 

the chromate pump speed over the course of 26 automated experiments.338 Following this initial 

work, a series of similar publications appeared that used automated continuous flow analyzers, 

available commercially as AutoAnalyzer from the Technicon Corporation, to perform Simplex 

optimizations over multiple variables for the detection of glucose.339,340  

 

Mieling et al. developed a more sophisticated flow system by introducing automated flow-

stopping, controlled by a magnetic-tape minicomputer with an analog-to-digital converter.341 The 

flow stopping method allowed for automated solution preparation. The authors demonstrated the 

capabilities of the platform by creating a series of solutions of varying concentrations. The platform 

was then used in the detection of titanium through its reaction with hydrogen peroxide in the 

presence of ethylenediaminetetraacetic acid (EDTA), monitored by absorption spectroscopy and 

optimized by simplex optimization. Further advances in analytical laboratory automation led to 

works involving the Zymark robotic arm, capable of sample preparation, solution addition, and 

sample transfer into a spectrophotometer. Lochmüller et al. utilized this SDL to optimize the 

concentration of MgIn-, monitored by UV-Vis absorption spectra, through a reaction that is 

dependent on Ca2+ ion concentration and pH. Lochmüller and Lung used a similar system with a 

robotic arm to detect phosphate through the molybdenum blue reaction.342 Both studies used 

simplex optimization for experimental planning. More recent studies of simplex optimization have 

included various spectroscopic methods and more automated methods, such as sequential 

injection analysis,254,343 stopped-flow analysis,344,345 and flow injection analysis.346–349 In-depth 

reviews of the applications of simplex optimization to analytical chemistry questions have been 

reviewed elsewhere. 

3.1.2 Separation and chromatography 

The most prominent and widespread class of coupled analytical techniques are chromatographic 

methods, in particular gas chromatography (GC) and liquid chromatography (LC). While, as of 

today, commercial instruments are sold as integrated solutions, the underlying process is 

composed of two major operations: first, separation of the analytes occurs on a stationary phase 

column, and the sample stream is transferred to a downstream detector (most commonly, flame 

ionization detection (FID) in GC, absorption spectroscopy in LC) for measuring the analyte 

response as a function of time. In this context, identifying the right conditions that enable good 

and efficient separation of unknown compound mixtures, represents a major challenge, and has 

been an active research question in the field of chemometrics for over 50 years.  
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Foundational work towards the use of data-driven algorithms, particularly the simplex algorithm, 

for chromatographic separation optimization had been performed in the 1970s.26,260,350 Shortly 

after, the first autonomous examples of separation optimization for high-performance liquid 

chromatography (HPLC) were reported by Berridge in 1982.257,351,352 Using the simplex algorithm 

for experiment planning, the authors optimized the eluent composition to maximize the 

chromatographic resolution for mixtures of 4–5 organic compounds, detected on a single-

wavelength UV spectrometer (Figure 5). Building on this foundational work, Berridge and co-

workers reported a series of further advancements, including multi-parameter optimization,256 

constrained optimization,256 multi-wavelength detection,261 as well as case studies in drug 

manufacturing.353 A similar study for ion chromatography was reported over 30 years later in 

2015.354 Key to success in all of these works was a “comprehensive, two-way communication 

between all units of the chromatograph and the computer controller,”355 which allowed the authors 

to set-up a fully autonomous Level 3 SDL. As discussed in the Software subsection, with 

increasing instrument complexity, and the economical driving force of proprietary software 

commercialization, such two-way communication interfaces have become rare, which poses a 

major barrier to the development of SDLs.  

 

 
Figure 5: Autonomous optimization of chromatographic separation by varying the eluent 

composition. Top: Schematic visualization of the experimental setup used by Berridge, and 

structures of four analytes in a sample mixture. Bottom: Visualization of the simplex optimization 

performance upon variation of eluent composition and flow rate (left). Development of the 

chromatographic response function (CRF), the objective, throughout the course of the 

optimization campaign (middle); the optimized chromatogram (right). Figure adapted with 

permission from reference.257 Copyright 1982, Elsevier. 
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As a result, advances on SDLs for chromatographic condition optimization have stagnated in the 

early 1990s. Over 20 years after Berridge’s work, O’Hagan et al. reported an automated 

framework for optimizing separations in gas chromatography-mass spectrometry (GC-MS).356 It 

is worth noting that the authors did not have access to a “comprehensive two-way communication” 

to control their system programmatically, but rather wrote a software to operate the supplier’s GUI 

by imitating mouse and keyboard inputs. The authors succeeded in optimizing multiple objectives 

including the signal-to-noise ratio, the number of peaks and the run time by automatically varying 

injection volume, flow rate and temperature gradient. All experiments were planned using a multi-

objective genetic optimization algorithm. Using a similar framework, the authors expanded their 

work to two-dimensional GC-MS (GCxGC-MS)357 and ultra-high performance LC (UPLC).358 

However, in all of these works, a custom GUI-controlling software was used. In order to 

circumvent this issue, and to develop a generalizable framework for self-driving chromatography–

mass spectrometry (MS) systems, Jenkinson et al. developed MUSCLE as an optimization 

framework in which interfacing to the instrument is performed by user-defined visual scripts that 

standardize the imitation of mouse and keyboard commands. This software, however, has only 

been rarely used, for example in metabolomics separation development.359 

 

As a notable exception from the trend of automating the use of GUIs in the early 21st century, I 

et al. reported a self-driving LC system in which direct programmatic control over the instrument 

is available.360 Interestingly, the authors follow a fundamentally different software approach, 

relying on an expert system in which knowledge and heuristics are encoded into a decision tree 

algorithm. Roch et al. later presented ChemOS for the orchestration of SDLs.110 In the work, the 

authors performed prototypical automated experiments such as optimizing the color, pH, and 

density of mixture solutions. Additionally, ChemOS was able to coordinate a robotic arm system 

with an HPLC remotely, optimizing the parameters for maximal response from the chromatograph. 

 

Very recently, Boelrijk et al. show the use of BO tools for a fully autonomous optimization of multi-

step gradients in HPLC.361 Using a multi-objective strategy for simultaneously optimizing 

resolution and elution time, the authors showcase the autonomous development of separation 

gradients for complex dye mixtures consisting of up to 50 different analytes while only performing 

~30 experiments. Importantly, the use of a multi-objective BO approach is shown to be superior 

to a simple scalarization of multiple targets into a single objective, emphasizing the importance of 

advanced multi-objective algorithms for efficient navigation of chemical spaces.  

 

3.2 Other properties 

Similar to the discussed works on automated sample preparation, other properties such as 

solution properties of pH or solute concentrations (for crystallization) have been addressed using 

automated liquid handling systems, instructed by data-driven algorithms in a closed-loop fashion. 

Solid state properties such as X-ray diffraction (XRD), and small-angle X-ray scattering (SAXS) 

signals have also been optimized in a closed-loop manner. 

 

As a prominent example, Clayton et al. used an automated flow system SDL to determine the 

solvent volume ratio and pH for liquid-liquid extraction.362 The authors studied the separation of 
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α-methylbenzylamine and N-benzyl-α-methylbenzylamine dissolved in toluene, while the solvent 

and hydrochloric acid flow rates, temperature, and the residence times were varied. The outputs 

from the separator were analyzed by an on-line HPLC, with the goal of maximizing the amine 

purity for the two compounds. Rather than using simplex optimization, the SNOBFIT algorithm 

was used for this experiment. To extend into multi-step process development, the liquid-liquid 

extraction was performed in tandem with the reaction of α-methylbenzylamine and benzyl bromide 

to form N-benzyl-α-methylbenzylamine. The purity of the product was the goal, with the reaction 

mixture containing unreacted reactants and various amine-containing impurities. The optimal 

purity was at 71% which was identified in 53 experimental iterations (Figure 6). 

 

  
Figure 6: Purity optimization results in multi-step reaction-extraction process. Four parameters 

are varied: the temperature, solvent ratio (VR), the residence time, and the inlet pH. The size of 

the dots corresponds to the temperature, and the color represents the purity of N-benzyl-α-

methylbenzylamine after the reaction. The star is the optimal purity obtained at experiment 53. 

Figure reproduced with permission from Clayton et al.362 Copyright 2020, Springer Nature. 

 

Pomberger et al. use BO to optimize pH in a solution using a robotics-integrated flow-platform.363 

While pH adjustment systems exist through control systems like proportional-integral-derivative 

(PID),364 information from previous iterations are not incorporated in preparation of a solution. In 

this study, the authors used a BO framework to plan experiments, and compared the performance 

of linear regression, RF, GP, and an MLP predictor. The SDL starts with a buffer solution and 

some random amount of HCl and NaOH. Subsequent amounts of HCl and NaOH were decided 

by a greedy sampling of the surrogate model. Aiming for a target pH of 6, the SDL was able to 

converge in the fewest iterations for the GP model, while the linear regression model performed 

the worse, since the pH response is non-linear with the amount of acid/base. Chitre et al. further 

extended the above work through the use of a closed-loop robotic titration platform, capable of 

handling viscous solutions of unknown compositions.365 The pH-bot used a translating stage with 

a probe head, capable of dispensing acid/base, measuring pH, and stirring the solution. For 

experimental planning, a GP surrogate was used, with the calculated effective strength of the 
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acid/base incorporated into the feature space. The probability of improvement acquisition function 

was used to close the loop. 

 

In addition to solution properties experiments, recently, solid crystalline properties have also been 

optimized in an SDL. Noack et al. presented SMART (Surrogate Model Autonomous 

expeRimenT)366 for autonomous exploration of multi-dimensional parameter spaces in scientific 

experiments. Kriging,367 a GP regression technique originating from geostatistics, is used to 

construct a surrogate model that fits the available experimental data and provides an associated 

error function. A GA iteratively maximizes this error function in an active learning campaign, 

suggesting the next sample location that maximally reduces model uncertainty. The method is 

validated on synthetic test functions, showing faster convergence to underlying test functions. The 

authors further applied SMART to autonomous SAXS experiments on block copolymer thin films 

and nanoparticle coatings. SAXS is a technique that measures the elastic scattering of X-rays by 

a sample at very low angles, providing information about the size, shape, and spatial arrangement 

of nanoscale and mesoscale structures. By integrating the SMART algorithm with beamline 

control, data acquisition, and analysis software, the authors demonstrate fully autonomous 

experiments without human intervention. The gradient of the surrogate model can be incorporated 

to emphasize high-gradient regions, enabling efficient reconstruction of sample features like 

edges. The SMART approach outperforms traditional grid-based and random sampling methods, 

rapidly converging to accurate approximations of the underlying experimental data while 

minimizing the number of measurements required.  

 

The authors extended this method to identifying ordered regions of gold nanorod films,368 studying 

the effects of fabrication parameters which varied spatially along the orthogonal axes of the film 

in the SAXS measurement. They demonstrate the importance of accounting for inhomogeneous 

measurement noise and anisotropy in GP surrogate decision-making algorithms for physical 

systems. The film was fabricated using a flow-coating method with gradients in coating velocity 

and substrate surface energy varying along the orthogonal axes of the film, enabling exploration 

of the effects of these parameters on the self-assembled nanoscale structure. The GP regressor, 

accounting for non-identically distributed noise levels and anisotropic correlation lengths in 

different parameter directions, guided the selection of subsequent measurement points to 

efficiently map the film's structure across the parameter space. The approach enabled 

identification of well-ordered nanorod regions within the first few hours, demonstrating the benefits 

of incorporating measurement noise heterogeneities and anisotropies for efficient autonomous 

experimentation.  

 

Liu et al. presented an autonomously driven experimental workflow for scanning probe 

techniques, such as piezoresponse force microscopy (PFM) and spectroscopy (PFS).320 In 

scanning probe techniques, an atomically sharp probe is raster scanned across a surface to 

measure interactions with the sample, providing a spatially-resolved mapping of the 

measurement. PFM was used to identify the ferroelectric domains in PbTiO3 thin films. In their 

study, the authors combine ML algorithms with physics insights to actively guide the microscope 

towards locations of interest for PFS, in which the sample-tip voltage is varied to generate a 

hysteresis loop. They use a deep kernel learning (DKL) approach, which uses a deep neural 
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network to project high-dimensional data (e.g., domain structure images) into a low-dimensional 

latent space, where a GP establishes correlations between the domain structure and polarization-

switching characteristics encoded in the hysteresis loops. The workflow iteratively acquires 

hysteresis loops, updates the DKL model, and selects the next measurement location based on 

the acquisition function and associated uncertainties. Liu et al. also utilized a similar autonomous 

workflow for the PFM study of ferroelectric domain writing on BaTiO3 thin films, using Bayesian 

inference and GPs.323 The physics informed surrogates were used for hypothesis testing in 

elucidating mechanisms of ferroelectric domain growth. The proposed methodology is 

generalizable to various scanning probe modalities, and electron microscopies, enabling 

autonomous experiments for investigating femtolitre-scale structure-property relationships in 

functional materials relevant for applications to solid state materials development.369 

 

Szymanski et al. proposes ML guided XRD measurements in a closed loop.370 The experiment 

starts with an automatic scan of 2θ between 10°–60°. With the user-defined elements that make 

up the chemical space, the algorithm, pre-trained on all Inorganic Crystal Structure Database 

(ICSD)371 extracted phases, identifies probable phases within the chemical space and assigns 

each probable phase a confidence score, using a CNN. The confidence score enables the 

algorithm to identify the most informative regions, where the difference in confidence between 

different phases is highest. The algorithm guides the diffractometer to make additional scans, 

either with higher resolution in known regions of the spectrum or in new regions of the spectrum. 

The authors utilize their platform to demonstrate a higher detection rate for phases with low 

weight-percent compared to conventional XRD measurements in both the Li-La-Zr-O and Li-Ti-

P-O chemical spaces, respectively. Further, the authors also demonstrate improved in situ XRD 

measurements, relevant for the synthesis of battery materials, where the adaptive algorithm 

strikes a balance between speed and accuracy, allowing to identify phases during the reaction 

that were not observed with either fast (high speed, low accuracy) or slow (high accuracy, low 

speed) conventional XRD approaches. The authors later incorporated this work into an SDL 

platform for synthesis of metal oxides and phosphate powders, discussed in Solid state materials 

synthesis. 

 

4 Reaction Optimization 

For over a century, materials discovery has been governed and constrained by the ability to 

synthesize chemical compounds, and make materials. This applies to molecular discovery (drug 

discovery, agricultural chemistry, molecular optoelectronics) in particular, where synthesis often 

represents a tailored sequence of highly specific reaction steps, each of which comes with a set 

of variable parameters and process conditions. Both the discovery of optimal synthetic routes and 

the optimization of optimal reaction conditions for each step is therefore critical to all fields of 

materials discovery, and chemical industries. In fact, the industrial need for economic and 

ecological synthesis processes has led to the discipline of process and reaction chemistry, 

targeting route identification, reaction conditions, as well as design and engineering of reactors 

for synthesis on scale.  
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Due to the importance of reactions in chemistry and chemical applications, a range of closed-loop 

workflows for reaction optimization have been developed over the last decades, particularly 

targeting the identification of optimal reaction conditions. This section aims to summarize these 

literature-known approaches and examples of self-optimizing reactors. In contrast to the following 

chapters of this review, we will not focus on the optimization of materials properties, but rather on 

optimizing the ways to synthesize a specific material. Given that the vast majority of studies has 

focused on organic reactions in solution, this chapter will introduce the major concepts using this 

class of transformations. In the following subsections, approaches toward other solution-phase 

reactions, as well as non-solution-phase reactions, will be discussed. Afterwards, this section will 

provide a comprehensive overview of all works in which the automated integration of robotic 

reaction execution and data-driven optimization has been demonstrated in multiple iterations for 

enabling autonomous reaction or process optimization (i.e., Level 4 SDLs, Figure 1). For a more 

global discussion from the perspective of reaction optimization, we refer the reader to existing 

reviews and perspectives in the field.372–380 

 

 
Figure 7: General components of a closed-loop system for reaction condition optimization, 

consisting of an automated reactor system for automated reaction execution, a monitoring 

system for quantifying the reaction outcome, and an optimization algorithm for decision making.  

 

For solution-based reactions, the search space comprises a wide series of categorical (identity of 

reagents, catalysts, solvents, additives etc.) and continuous (relative stoichiometries, 

concentration, temperature(s), reaction time(s) etc.) variables. With the goal of automating the 

optimization process, the choice of the appropriate automation platform for performing the 

reaction (see Hardware) facilitates or complicates the variation of specific parameters. Generally, 

the variation of continuous parameters, particularly reaction quantities, can be readily performed 

on a wide variety of experimental systems (Figure 7). This has led to a large number of studies 

for optimizing continuous reaction parameters in an automated fashion. On the other hand, 

optimizing over categorical parameters, such as specific choices of chemicals, poses additional 

challenges both from the hardware and the software side; the physical availability of reactants 

and reagents, as well as the storage capacities on the automated platforms, pose physical 

constraints to the number of available categorical options. As a consequence, most examples of 

closed-loop reaction condition optimization have operated on comparatively few options (usually 

< 10) for categorical variables. Additionally, categorical parameters are not readily represented 
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numerically, and lack an unambiguous order or measure of similarity (e.g., between solvents, or 

catalysts). This requires human decision in selecting an appropriate representation for chemicals 

for the optimization algorithm. Optimization algorithms that operate on molecular entities, as well 

as mixed continuous–categorical parameter spaces, are discussed in detail in Software. 

4.1 Specialized hardware and software 

The primary objective of optimizing a synthetic reaction is generally the reaction yield, i.e., the 

quantity of the desired reaction product that is formed. Reaction selectivity, defined as the ratio 

between the desired product and an undesired side product (e.g., a constitutional isomer or a 

stereoisomer) can be regarded as an auxiliary measure of product formation. In terms of 

prediction, this a particularly challenging objective; reaction yields do not only depend on the rates 

of all steps in the desired reaction sequence, but also on the rates of a multitude of possibly 

unknown side reaction pathways, which renders the physics-inspired modeling of reaction yields 

highly difficult. Added complexity stems from the coupling of chemical reaction kinetics with 

physical transport phenomena (e.g., mass transfer/diffusion, and heat transfer). This dependence 

on unknown steps and mechanisms can lead to cross-dependencies between the assumedly 

independent variables, and unforeseen activity cliffs upon small variations. In these scenarios, 

traditional OFAT optimization approaches, which have been the method of choice for reaction 

optimization in most laboratories, face severe challenges. In this context, the optimization of 

chemical reaction yields is particularly well–suited for data-driven, system-agnostic optimization 

approaches (see Software for further details).  

 

When it comes to larger-scale reactions and industrial process optimization campaigns, reaction 

yield or selectivity is no longer the sole optimization objective. Economic and ecological 

considerations present further constraints to the optimization problem, which can include: reagent 

and energy costs, atom economy, or environmental impact factors, such as measures of waste 

formation, or operational and environmental hazards.  

4.1.1 Reaction execution  

On a laboratory scale, the execution of solution-phase chemical reactions can be classified into 

two complementary strategies: batch and continuous-flow operation (Table 3). Both strategies 

come with distinct chemical (dis)advantages for performing specific types of reactions, which have 

been thoroughly discussed in the literature, and are outside the scope of this review. Instead, we 

aim to provide a discussion of these strategies in the context of automation, and developing 

autonomous self-optimizing reactors.  

 

For over a century, solution-phase reactions have been predominantly performed in batch 

reactors381—a fact well reflected in the practical chemistry education, where synthesis is mainly 

taught using beakers, flasks and vials as batch reaction vessels. In a teaching laboratory, and in 

many research laboratories, this approach is highly advantageous, as it allows the execution of a 

variety of different chemistries with minimal hardware requirements. In fact, most reactions can 

be executed by a human operator in standard, general-purpose glassware. However, batch 

reactions face severe challenges when it comes to isolation and purification, or the execution of 
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multi-step reactions. The human-centric approaches to reaction workup and purification, such as 

extraction, crystallization or chromatography, are often based on specific operations that require 

large degrees of adaptive, intuition-guided decision making. This has rendered their direct, 

programmatic translation into automated workflows challenging, and may be one of the reasons 

why batch reactors have not found widespread application in closed-loop discovery workflows 

yet.  

 

Recent advances in biotechnology and the corresponding liquid handling systems (see section 

on Hardware for further details) have enabled the miniaturization and parallelization of batch 

reaction execution in multi-well plates. In such cases, analyzing directly on the crude reaction 

mixture can significantly increase the automated experimental throughput, particularly when it 

comes to varying categorical variables such as the identity of reactants, reagents, catalysts or 

solvents. Therefore, such HTE systems have been primarily used for large condition or substrate 

screening campaigns for important catalytic reactions.  

 

Table 3: Autonomous reaction optimization in batch and flow reactors.  

 Batch Reactors Flow Reactors 

Achieving high throughput Parallel experiments Sequential experiments 

Varying quantities 
(stoichiometry and concentration) 

Easy Easy 

Varying other continuous variables  
(e.g., temperature, time) 

Difficult  
(in parallel) 

Easy 

Varying categorical variables 
(e.g., reactant or reagent identities) 

Easy Difficult 

Intermediate purification and multi-step 
reactions 

Difficult Easy 

Increasing reaction scale 
Difficult  

(requires increasing the 
reactor volume) 

Easy  
(requires increasing the 

reaction time) 

 

As a complementary approach, the past decades have seen the development of flow reactors, in 

which reactions are performed in a continuously flowing stream of liquid. Importantly, with the 

requirement to continuously pump the reagent, reactant and reaction streams, this strategy to 

reaction execution is inherently automated. Still, flow reactions require highly specialized 

hardware and software, preventing the widespread adoption of this technology as a tool for 

chemical synthesis. Reactants and products must also be gaseous or liquid, and the liquid 

medium cannot be too viscous. Developments in microfabrication have led to miniaturization of 

flow systems into microfluidic systems (sometimes called lab-on-a-chip).382 The small footprint 

and low reagent consumption of microfluidic systems make them useful for high-throughput 

synthesis of compounds at small scales. The operation of chemical reactions in microfluidic 
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systems provides a series of distinct advantages in terms of heat and mass transfer, interphase 

reactivity or safety. For more detailed discussions on flow and microfluidic reactors, we refer the 

reader to reference.382–384 As such, both academic researchers and industrial teams have focused 

on developing automated in-flow synthesis platforms, leading to a large variety of specific, 

custom-built setups, with few standardized solutions on the market.  

 

From the perspective of autonomous optimization, the inherently automated nature of flow 

reactors made them ideal platforms for early explorations of autonomous operation modes, and 

a vast majority of examples of closed-loop reaction optimization (see below) have been performed 

on continuous-flow platforms. These platforms have allowed for optimization of continuous 

parameters such as stoichiometries, reaction times, and temperatures, which can be readily 

varied in sequential experiments, leading to high experimental throughput. The exploration of 

larger numbers of categorical entities such as reactants or reagents, however, comes with 

increased hardware requirements and experimental efforts. Recent work has also demonstrated 

autonomous flow systems in Schlenk lines, allowing for studies involving highly reactive or 

sensitive compounds.385 Another major advantage of flow chemistry lies in the ability to telescope 

individual operations (including purification steps) into longer sequences, enabling the automated 

operation of multi-step sequences. This capacity, which has been reviewed comprehensively in 

the literature,386,387 has enabled the closed-loop optimization of multi-step reactions in solution, 

which will be discussed in the Multi-step organic reaction section. 

 

For screening and optimization purposes, segmented-flow approaches (often referred to as 

droplet reactors) provide an attractive approach for high-throughput experimentation in flow 

systems.383,388,389 Rather than having a continuous flow of liquid in which the reaction occurs, the 

stream is divided into small separated segments by an inert gas (such as argon) or immiscible 

liquid (such as perfluorinated oil). Each of these segments can be regarded as an individual batch, 

and precise operational control can allow for screening distinct reaction conditions (e.g., reagent 

identities or quantities) in each of these batches. Moreover, the smaller reaction volumes and high 

surface-to-volume ratios have demonstrated significant acceleration of reactions, leading to 

micro-droplet approaches such as microfluidic flow droplet reactors, and even free-standing non-

flow systems.389 

 

4.1.2 Reaction analysis 

Irrespective of the reaction execution platform, the second major component of a self-optimizing 

reactor is a module to quantify the optimization objective, such as the reaction yield.  The most 

widespread, general-purpose approach to this is the use of an automated chromatographic 

separation technique, usually LC, or GC, coupled to a quantitative detection technique. In this 

approach, an aliquot from the reaction mixture is taken and analyzed on the external instrument 

(Figure 7). Importantly, the required instruments have been commercialized for decades, and 

offer robust hardware solutions, which are available in most experimental laboratories.  

 

As an alternative, in situ monitoring techniques can be used to directly analyze the crude reaction 

mixture and monitor changes in the reaction composition to quantify possible optimization 
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objectives. Spectroscopic tools such as NMR spectroscopy (implementable through benchtop 

spectrometers with flow cells) or infrared spectroscopy (flow cells or in-situ probes) can be used 

to identify and quantify compounds if unique, compound-specific signals exist. Further, in situ 

probes such as UV-Vis spectroscopy or conductivity cannot, in most cases, be used to quantify 

specific materials, but allow for the monitoring of global properties of the reaction mixture, which 

can serve as a valuable proxy for the actual optimization objective.  

 

Analytical techniques that enable the quantification of reactants, intermediates or products 

throughout the course of a reaction can enable decision making in real time, e.g., for adjusting 

reaction times, temperatures or reagent quantities. Such adaptive optimization of reaction 

conditions, however, does not follow the iterative closed-loop definition of SDLs, and therefore 

exceeds the scope of this review. 

4.1.3 Early examples of autonomous condition optimization 

Attempts to develop SDLs for autonomous reaction condition optimization date back to the 1970s, 

when Winicov et al., from pharmaceutical company Smith, Kline & French, describe a fully 

automated batch reactor which shows remarkable similarities to modern open-source systems for 

automating batch reactions such as the Chemputer.390 The authors describe automated modules 

for liquid addition (through pumps), stirring, heating and cooling, as well as reaction analysis by 

coupling to an HPLC-UV system. Remarkably, they even discuss the coupling of their platform 

with a simplex algorithm for automated experiment planning. However, no actual experiments 

have ever been publicly reported with this platform, neither in the initial publication from 1978, nor 

in any follow-up works; this is likely due to the proprietary nature of the research at Smith, Kline 

& French laboratories. 

 

To the best of our knowledge, the first published example of a self-optimizing reactor stems from 

1987. Matsuda et al. reported the autonomous optimization of the adduct formation reaction 

between phosphotungstic acid and basic drug molecules, namely, chlorpromazine hydrochloride 

and levomepromazine hydrochloride.259 For this purpose, the authors had developed a robotic 

platform consisting of a Zymark robotic arm (see Figure 8 for a related experimental setup by 

Frisbee et al.391) with two exchangeable tools for liquid transfer and vial transport, respectively. 

The reagents were added as solutions to a batch reactor vial, and the entire vial was first 

transported to a vortex mixer for stirring, and subsequently to a water bath for heating. Since the 

desired adducts are strongly colored, they can be detected quantitatively via steady-state 

absorption spectroscopy. After completion of the reaction, the vial is transferred to a UV-Vis 

spectrophotometer by the robotic arm, and the absorption at wavelength 538 nm was recorded 

as a proxy for the reaction yield. The simplex algorithm was used for iteratively planning the next 

experiment, varying the quantity of phosphotungstic acid and the reaction time. Remarkably, the 

authors show that the optimal reaction conditions can be found in less than ten iterations for both 

drug molecules.  
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Figure 8: Example of an early automated robotic synthesizer centered around a Zymark robotic 

system. A: Robotic arm. B: Reactor station. C: Remote dispenser. D: Aliquot archive station. E: 

Workup station. F: Syringe and needle wash station. G: Turntable. H: Reporting integrator for 

analytical instrumentation. I: Reagent station. J: Robotic tool parking station. Figure reproduced 

with permission from Frisbee et al.391 Copyright 1984, American Chemical Society. 

 

Using the same experimental setup, the authors demonstrated the optimization of a significantly 

more complex reaction in 1988 (see Figure 9)258: the conversion of a carboxylic acid to the 

corresponding hydroxamate using N,N’-dicyclohexylcarbodiimide (DCC) and hydroxylamine, 

followed by the complexation of the hydroxamate with an iron(III) salt to give a colored, UV-Vis-

detectable complex. The authors demonstrate the optimization of up to four continuous 

parameters (quantities of DCC and hydroxylamine, reaction times of both steps), showing that 

optimization can be performed in under 30 experiments. The authors benchmarked their optimizer 

against a grid search strategy, demonstrating a significant reduction (>75%) in the number of 

required experiments.  

 

 
Figure 9: Schematic of early example of autonomous reaction condition optimization in solution 

performed by Matsuda et al.258 Coupling reaction of carboxylic acids with N,N’-

dicyclohexylcarbodiimide (DCC) and hydroxylamine, and detection of the resulting hydroxamic 

acid as its iron(III) complex through UV-Vis absorption spectroscopy. 
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Inspired by these early results, and the sophisticated automation platforms developed in the 

1980s (see e.g., Figure 8), Lindsey and co-workers made a series of contributions to early SDLs 

in solution-based synthesis. On the hardware side, the design of their “automated chemistry 

workstation”392 is of note; in parallel with the developments of small-scale pipetting robots in 

biochemistry that spilled over to chemistry only a decade later, their system enables the 

miniaturization of chemical reactions (to µL scale), as well as advanced analytical techniques, 

including, but not limited to, automated thin-layer chromatography.  

 

In addition to a series of automated data generation workflows, as a proof-of-concept, they 

demonstrated the closed-loop optimization of an “optical filter,” creating a specific absorption 

profile by mixing different dye solutions. Experiments are planned iteratively by the simplex 

algorithm, and are executed sequentially on the automated platform until the desired absorption 

profile is reached.393 Showcasing an application in synthetic chemistry, the authors perform the 

closed-loop optimization of the synthesis of porphyrin dyes from aromatic aldehydes and pyrrole 

under acidic conditions.394 The concentrations of both reactants (in 1:1 stoichiometry) and of the 

acid additive were used as independent variables. The yield of the product, obtained by 

quantitative DDQ oxidation, was determined by UV-Vis spectroscopy. The authors demonstrate 

accelerated experimentation by comparison with a full factorial design approach (Figure 10).  

 

 

 
Figure 10: Closed-loop optimization of porphyrin synthesis conditions, as reported by Lindsey 

and co-workers. Optimization was performed under variation of the concentration of reactants, as 
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well as the quantity of trifluoroacetic acid (TFA). The bottom row shows the response surface, as 

obtained by factorial design experiments (left), as well as the optimization trajectory of the simplex 

algorithm (right). Figure adapted with permission from reference.394 Copyright 1992, Elsevier. 

DDQ: Dichlorodihydroquinone.  

 

Beyond these works, Lindsey and co-workers made a series of important contributions to advance 

optimization and decision-making algorithms beyond the native simplex algorithm,372 for example, 

using decision tree algorithms to handle screening and optimization of categorical variables. While 

such systems may have been utilized in industrial settings, given the research effort from both 

academic and industrial researchers,395 publications from the late 1990s for SDL optimization of 

synthetic reactions are sparse. The cost and reproducibility of the robotic hardware, as well the 

transferability of software may be influential factors in this regard.  

4.2 Single-step organic reactions 

The rise of flow chemistry as a versatile, automated tool for reaction execution, as well as the 

increased accessibility and distribution of software via the internet, have sparked new interest in 

the development of self-optimizing reactors in the late 2000s and early 2010s. Since then, a large 

number of examples focusing on the optimization of organic reaction in solution have been 

reported in the literature. This section will present the most important concepts and advances 

using selected examples. A complete, to the best of our knowledge, list of further examples from 

the literature, including the target reaction, independent optimization variables, hardware, 

software and optimization objectives is given in Table 4. Detailed discussion of single- and multi-

step reactions optimization are provided after. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.26434/chemrxiv-2024-rj946-v2 ORCID: https://orcid.org/0000-0002-8470-6515 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-rj946-v2
https://orcid.org/0000-0002-8470-6515
https://creativecommons.org/licenses/by-nc/4.0/


 

 
 

Table 4: Comprehensive overview of “modern” examples of self-optimizing reaction platforms. A description of the performed reaction, 

the parameters considered in the optimization, the used hardware and optimization algorithms and the objective to be optimized is 

provided. 
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Reaction Optimization 
Parameters 

Synthetic 
Hardware 

Analytical 
Hardware 

Optimization 
Algorithm 

Optimization Objective 

Heck coupling of 4-
chlorobenzotrifluoride and 2,3-

dihydrofuran396 

Residence time, ratio of 
reactants 

Microfluidic 
system 

HPLC Nelder-Mead 
Simplex 

Yield of mono-coupled product 

Knoevenagel condensation of p-

anisaldehyde and malononitrile268 

Temperature, residence 
time 

Microfluidic 
system 

HPLC Steepest 
Descent; 
Nelder-Mead 
Simplex; 
SNOBFIT 

Custom objective function consisting of flow rate 
and product yield 

Oxidation of benzyl alcohol with CrO3
268 Temperature, residence 

time, reactant 
concentration 

Microfluidic 
system 

HPLC Simplex Yield of benzaldehyde 

Dehydration of ethanol in supercritical 

CO2
397 

Temperature, pressure, 
CO2 flow rate 

Flow GLC Super-Modified 
Simplex 

Yield 

Carboxymethylation of 1-pentanol with 

DMC in supercritical CO2
397 

Temperature, pressure, 
CO2 flow rate 

Flow GLC Super-Modified 
Simplex 

Yield 

Methylation of 1-pentanol with dimethyl 

carbonate in supercritical CO2
397 

Temperature, pressure, 
CO2 flow rate 

Flow GLC Super-Modified 
Simplex 

Yield 

Methylation of 1-pentanol with dimethyl 

carbonate in supercritical CO2
397 

Temperature, pressure, 
CO2 flow rate, ratio of 
reactants 

Flow GLC Super-Modified 
Simplex 

Yield 

Methylation of 1-pentanol with methanol 

in supercritical CO2
397 

Temperature, pressure, 
CO2 flow rate, ratio of 
reactants 

flow GLC Super-Modified 
Simplex 

Yield 

Methylation of 1-pentanol with dimethyl 

carbonate in supercritical CO2
398 

Temperature, pressure, 
reagent flow rate 

Flow GLC Super-Modified 
Simplex 

Yield; space-time yield; E-factor; E-factor+ (E-
factor including waste); product of space-time 
yield and yield 

Paal-Knorr synthesis between 2,5-

hexanedione and ethanol-amine399 

Temperature, residence 
time 

Microfluidic 
system 

IR steepest 
descent; 
conjugate 
gradient 

Custom objective functions considering 
conversion and residence time 
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Methylation of 1-pentanol with dimethyl 

carbonate400 

Temperature, residence 
time 

Flow IR, GLC Super-Modified 
Simplex 

Yield 

Condensation of 4-fluorobenzaldehyde 

and aniline401 

Residence time, ratio of 
reagents 

Flow NMR modified 
Nelder-Mead 
Simplex 

Custom objective function related to the space-
time yield 

Etherification of n-propanol in 

supercritical CO2
128 

Flow rates, temperature Flow GLC Super-Modified 
Simplex 

Yield 

Methylation of 1-butanol with dimethyl 

carbonate in supercritical CO2
128 

Flow rates, temperature Flow GLC Super-Modified 
Simplex 

Yield 

Mono-alkylation of trans-1,2- 
diaminocyclohexane with 4-

methoxybenzyl chloride402 

Temperature, residence 
time, reagent 
concentration 

High-throughput 
microfluidic 
system 

LC/MS feedback DoE 
search 
algorithm 

Yield 

Hydrolysis of 3-Cyanopyridine117 Temperature, residence 
time, reactant 
concentration 

Flow MS Modified 
Simplex 

Ratio of product MS peak over reactant MS peak 

Appel reaction of 1-phenylethanol117 Temperature, residence 
time, reagent 
equivalents, overall 
concentration 

Flow IR Modified 
Simplex 

Custom objective function considering terms for 
throughput, conversion, consumption 

Amidation of methyl nicodinate with 

aqueous MeNH2
403 

Temperature, reactant 
flow rate, reactant 
equivalents 

Flow MS SNOBFIT Yield 

Reaction of 2,4-dimethoxyaniline to 

acrylamide derivative404 

Temperature, reactant 
flow rate 

Flow HPLC SNOBFIT Yield 

Synthesis of AZD9291 acrylamide404 Temperature, reactant 
flow rate 

Flow HPLC SNOBFIT Yield 

Multiple Suzuki-Miyaura couplings405 Catalyst precursor, 
ligand, temperature, 
residence time, catalyst 
loading 

Droplet 
microfluidic 
system 

HPLC Custom 
algorithm 

TON with lower boundary for yield 
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Heck-Matsuda reaction for the arylation 

of cis-buten-1,4-diol406 

Temperature, residence 
time, ratio of reagents, 
catalyst loading 

Flow GC/MS modified 
Nelder-Mead 
Simplex 

Yield, production cost; throughput 

C-H activation of aliphatic secondary 

amine to generate azetidine407 

Temperature, residence 
time, ratio of reagents, 
ratio of catalyst to 
reagents 

Flow GC Active 
Learning 

Cost; yield 

Synthesis of o-xylenyl C60 adducts265 Reagents flow rate, 
temperature 

Flow HPLC SNOBFIT Minimization of mole-fraction of third-order 
adduct; minimization of mole-fraction of third-
order adduct, with additional constraint on total 
mole fraction of first- and second-order adducts; 
minimization of mole-fraction of third-order 
adduct, with additional constraints on total mole 
fraction of first- and second-order adducts and 
mole fraction ratio of first-order adduct to second-
order adduct; minimization of mole-fraction of 
third-order adduct, with additional constraints on 
total mole fraction of first- and second-order 
adducts and mole fraction ratio of second-order 
adduct to first-order adduct 

Pomeranz−Fritsch synthesis of 

isoquinoline334 

Flow rate, voltage, and 
pressure applied on the 
spray source 

Microdroplet 
flow platform 

MS Deep RL Yield 

Friedländer synthesis of a substituted 

quinoline334 

Flow rate, voltage, and 
pressure applied on the 
spray source 

Microdroplet 
flow platform 

MS Deep RL Yield 

Synthesis of ribose phosphate334 Flow rate, voltage, and 
pressure applied on the 
spray source 

Microdroplet 
flow platform 

MS Deep RL Yield 

Reaction between 2,6-
dichlorophenolindophenol (DCIP) and 

ascorbic acid334 

Flow rate, voltage, and 
pressure applied on the 
spray source 

Microdroplet 
flow platform 

MS Deep RL Yield 

Photoredox Ir−Ni dual-catalyzed 
decarboxylative arylation with several 

substrates408 

Temperature, residence 
time, base; 
Temperature, residence 
time, Ni precatalyst; 

Segmented 
oscillatory flow 
('microslug') 
reactor with 

HPLC Custom 
algorithm 

Yield, productivity 
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Temperature, residence 
time 

custom 
photochemistry 
module 

Suzuki-Miyaura coupling with 3-
chloropyridine and pyridine boronic 

ester409 

Precatalyst scaffold, 
ligand, catalyst loading, 
temperature, residence 
time 

Flow LC mixed-integer 
nonlinear 
program 

TON with lower boundary for yield 

[2+2] Paterno-Büchi reaction between 

furanes and benzophenones410 

Reagent flow rates Flow system 
with 
photoreactor 

IR Modified 
Simplex 

Conversion 

Claisen-Schmidt condensation of 

benzaldehyde and acetone411 

Temperature, reagent 
flow rates 

Flow HPLC SNOBFIT Yield 

Semi-hydrogenation of 2-methyl-3-

butyn-2-ol over Pd/SiO2
412 

Flow rate of substrate, 
flow rate of catalyst 
poison, flow rate of IPA 
solvent 

Flow GC Super-Modified 
Simplex 

Yield 

Allylation of sesamol413 Temperature, residence 
time, stoichiometry 

Flow HPLC Nelder-Mead 
Simplex and 
golden section 
search 

Yield 

[3,3]-Claisen rearrangement of allyl 

sesamol413 

Temperature, residence 
time 

Flow NMR Nelder-Mead 
Simplex and 
golden section 
search 

Product productivity 

Isomerization to esmethoxycarpacine413 Temperature, residence 
time, base loading 

Flow HPLC Nelder-Mead 
Simplex and 
golden section 
search 

Yield 

Oxidative dimerization of 

desmethoxycarpacin to carpanone413 

Temperature, residence 
time, catalyst loading 

Flow HPLC Nelder-Mead 
Simplex and 
golden section 
search 

Yield 
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Buchwald-Hartwig coupling between p-
Methoxyaminobenzene and p-

Methoxybromobenzene264 

Reagent equivalents, 
temperature, residence 
time 

Modular flow 
system 

HPLC, 
MS, IR, 
Raman 

SNOBFIT Yield 

HWE Olefination of 4-

phenylcyclohexanone264 

Reagent equivalents, 
temperature, residence 
time 

Modular flow 
system 

HPLC, 
MS, IR, 
Raman 

SNOBFIT Yield 

Reductive amination of o-
Methoxybenzaldehyde with 

benzylamine264 

Reagent equivalents, 
temperature, residence 
time 

Modular flow 
system 

HPLC, 
MS, IR, 
Raman 

SNOBFIT Yield 

SNAr of o-nitrochlorobenzene and tetra-

hydro-quinoline264 

Reagent equivalents, 
temperature, residence 
time 

Modular flow 
system 

HPLC, 
MS, IR, 
Raman 

SNOBFIT Yield 

Multi-step photoredox-catalyzed 
oxidative 𝛼-functionalization of 

amines264 

Reagent equivalents, 
temperature, residence 
time 

Modular flow 
system 

HPLC, 
MS, IR, 
Raman 

SNOBFIT Yield 

Multi-step ketene generation and [2+2] 

cycloaddition264 

Reagent equivalents, 
temperature, residence 
time 

Modular flow 
system 

HPLC, 
MS, IR, 
Raman 

SNOBFIT Custom objective function considering yield and 
selectivity 

Grignard Addition in the second step in 

the synthesis of tramadol116 

Temperature, residence 
time, equivalents of 
Grignard Reagent 

Flow IR Modified 
Simplex 

Custom objective function consisting of 
throughput, conversion and consumption 

Amidation in the first step in the 

synthesis of lidocaine116 

Temperature, residence 
time, reagent 
equivalents 

Flow IR Modified 
Simplex 

Custom objective function consisting of 
throughput, conversion, consumption and energy 

Second step in the synthesis of 

lidocaine116 

Temperature, residence 
time, reagent 
equivalents 

Flow IR Modified 
Simplex 

Custom objective function consisting of 
throughput and conversion 

Alpha bromination of ketone in the first 

step in the synthesis of bupropion116 

Temperature, residence 
time, stoichiometry 

Flow IR Modified 
Simplex 

Custom objective function consisting of 
throughput, conversion and consumption 

Amine alkylation in the second step in 

the synthesis of bupropion116 

Temperature, residence 
time, stoichiometry 

Flow IR Modified 
Simplex 

Custom objective function consisting of 
conversion 
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SNAr reaction between 2,4-

difluoronitrobenzene and morpholine414 

Residence time, reagent 
equivalents, reagent 
concentration, 
temperature 

Flow HPLC TS-EMO Pareto-front between space-time yield and E-
factor 

N-benzylation of α-methylbenzylamine 

with benzyl bromide414 

Reagent flow rates, 
reagent equivalents, 
reagent concentration, 
temperature 

Flow HPLC TS-EMO Pareto-front between space-time yield and 
impurity formation 

Methanolysis of 2-cyanopyridine with 

MeONa415 

Temperature, residence 
time, reagent 
equivalents 

Flow HPLC modified 
Nelder-Mead 
Simplex 

Yield 

Acid-catalyzed condensation of imidate 

with α-amino alcohols415 

Temperature, residence 
time, reagent 
equivalents 

Flow HPLC modified 
Nelder-Mead 
Simplex 

Yield 

Hydrogenation of benzaldehyde over 

Pd/C416 

Temperature, flow rate, 
H2 pressure 

H-Cube 
microreactor 

IR Simplex Conversion 

Hydrogenation of an alpha-ketoester 

over Pd/C416 

Temperature, flow rate, 
H2 pressure 

H-Cube 
microreactor 

IR Simplex Conversion 

Hydrogenation of a quinoxaline over Ir 

NP on carbon nanotubes416 

Temperature, flow rate, 
H2 pressure 

H-Cube 
microreactor 

IR Simplex Conversion 

Hydrogenation of a qunialdine over Ir 

NP on carbon nanotubes416 

Temperature, flow rate, 
H2 pressure 

H-Cube 
microreactor 

IR Simplex Conversion 

Cross-coupling between aniline and p-

tolyl trifluoromethanesulfonate417 

Temperature, residence 
time, amount of base, 
type of base 

Microfluidic 
system 

LC Custom 
algorithm 

Yield 

Cross-coupling between benzamide 

and p-tolyl trifluoromethanesulfonate417 

Temperature, residence 
time, amount of base, 
type of base 

Microfluidic 
system 

LC Custom 
algorithm 

Yield 

Cross-coupling between 2-phenylethan-
1-amine and p-tolyl 

trifluoromethanesulfonate417 

Temperature, residence 
time, amount of base, 
type of base 

Microfluidic 
system 

LC Custom 
algorithm 

Yield 
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Cross-coupling between morpholine 

and p-tolyl trifluoromethanesulfonate417 

Temperature, residence 
time, amount of base, 
type of base 

Microfluidic 
system 

LC Custom 
algorithm 

Yield 

Sonogashira coupling of 3,5-

dibromopyridine with 1-hexyne418 

Residence time, reagent 
equivalents, 
temperature 

Flow HPLC TS-EMO Custom objective function considering the 
conversion and space-time-yield 

Claisen-Schmidt condensation of 

benzaldehyde and acetone418 

Flow rates of reagents, 
flow rates of aqueous 
and organic solvents, 
temperature 

Flow in a 
miniature CSTR 
cascade 

HPLC TS-EMO Custom objective function considering purity, 
space-time yield and reaction mass efficiency 

Photocatalytic hydrogen evolution 

reaction11 

Concentration of 
catalyst concentration, 
concentration of hole 
scavenger, 
concentration of 8 other 
additives 

Mobile chemist 
operating 
between 
workstations 

GC BO H2 Production 

Palladium-catalyzed direct C-H arylation 
of indole-3-acetic acid derivatives with 

arene diazonium salts419 

Reagent equivalents, 
temperature, residence 
time 

Flow HPLC Simplex Yield 

Aldol-condensation of benzaldehyde 

and acetone420 

Reagent equivalents, 
temperature, residence 
time 

Flow HPLC TS-EMO Pareto front between: yield & cost; space-time-
yield & E-Factor 

AuNP catalyzed reduction of 4-

nitrophenol with NaBH4
421 

NP surface area, NaBH4 
conc., residence time 

Flow UV SNOBFIT Conversion 

Stereoselective Suzuki-Miyaura 

coupling422 

Phosphine ligand, 
phosphine to Pd ratio, 
Pd loading, arylboronic 
acid equivalents, 
temperature 

Chemspeed 
SWING 

HPLC BO Multi-objective with decreasing priorities: E-
product yield (max), Z-product yield (min), Pd 
loading (min), Arylboronic acid equivalents (min) 

Thioquinazolinone with a telescoped 

lithium-halogen exchange and phenyl 

isocyanate addition423 

Flow rate, reactor 
volume, temperature 

Flow FT-IR BO Yield 

Thioquinazolinone with a telescoped Flow rate, reactor Flow FT-IR BO Yield 
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lithium-halogen exchange and phenyl 

isocyanate addition423 

volume, temperature, 
lithiating reagent 

Oxidation of methyl phenyl sulfide to 

sulfoxide424 

Temperature, residence 
time, H2O2 concentration 

Flow GC/MS TS-EMO, EIM-
EGO 

Multi-objective considering conversion, 
selectivity, space-time-yield 

Suzuki-Miyaura cross coupling425 Catalyst concentration, 
temperature, residence 
time, catalyst 

CSTR cascade HPLC BO Yield 

Metallaphotoredox-catalyzed sp3–sp3 
cross-coupling of carboxylic acids with 

alkyl halides425 

LED Brightness, 
residence time, 
temperature, base 

CSTR cascade HPLC BO Yield 

Metallaphotoredox-catalyzed cross-
coupling reaction between trans-4-
hydroxy proline and 4-

bromoacetophenone425 

Reagent ratio, 
temperature, residence 
time, photocatalyst 

CSTR cascade HPLC BO Yield, diastereoselectivity 

Photocatalyzed C-C bond forming 
reaction between an aryl iodide and 

tert-butyl vinyl carbamate426 

Reagent equivalents, 
loading of co-catalyst, 
residence time 

Flow HPLC-IR BO Yield 

Photocatalyzed cyclization reaction426 Equivalents of oxidant, 
photocatalyst 
concentration 

Flow HPLC-IR BO Yield 

SNAr between dimethylmorpholine and 

a nitrohalopyridine427 

Residence time, 
temperature, equivalent 
of reagents, equivalent 
of base, halide leaving 
group 

Modular flow 
system 

LC/MS & 
IR 

BO Custom objective function considering yield, 
productivity and cost  

Nitro reduction and amide coupling for 

the synthesis of sonidegib427 

Amide coupling 
activation agent, 
activation residence 
time, equivalents of 
reagents, temperature in 
amide coupling, reactor 
size in amide coupling 

Modular flow 
system 

LC/MS & 
IR 

BO Yield and productivity of product 
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Large set of Suzuki-Miyaura cross 

couplings428 

Solvent, base, catalyst 
and ligand, and 
temperature 

Robotic system LCMS BO Generality (average yield over multiple reactions) 

Suzuki coupling towards 4-(2,3-
dimethoxyphenyl)-1H-pyrrolo[2,3-

b]pyridine429 

Catalyst, ligand, base, 
solvent 

Batch LC/MS Hybrid 
dynamic 
optimization 
(GNN & BO) 

Conversion, yield 

Buchwald coupling towards N-(4-
methoxyphenyl)-N-phenylpyrimidin-5-

amine429 

Catalyst, ligand, base, 
solvent 

Batch LS/MS Hybrid 
dynamic 
optimization 
(GNN & BO) 

Conversion, yield 

Buchwald coupling towards N,N-

diphenylquinoxalin-2-amine429 

Catalyst, ligand, base, 
solvent 

Batch LC/MS Hybrid 
dynamic 
optimization 
(GNN & BO) 

Conversion, yield 

Telescoped reaction from Boc-protected 
5-Bromo-1-methyl-
tetrahydroisoquinoline to Boc-protected 
5-Acetyl-1-methyl-

tetrahydroisoquinoline430 

Residence time in first 
reactor, equivalents of 
reagent, temperature in 
first reactor, flow rates 

Flow HPLC 
(multi-
point 
sampling) 

BO Yield 

SNAr reaction between 2,4-

difluoronitrobenzene and morpholine431 

Solvent, residence time, 
concentration, 
equivalent, temperature 

Flow HPLC mixed variable 
multi- objective 
optimization 
(MVMOO), 
using GPs 

Pareto-front between yield of ortho-product and 
yield of para-product 

Sonogashira coupling of 2-Bromo-4-
(trifluoromethyl)benzonitrile and 3,3-

Dimethyl-1-butyne431 

Phosphine ligand, 
residence time, reagent 
equivalents, 
temperature 

Flow HPLC mixed variable 
multi- objective 
optimization 
(MVMOO), 
using GPs 

Pareto-front between space-time-yield and 
reaction mass efficiency 

Sulfide oxidation to sulfoxides432 Equivalents catalyst, 
equivalents H2O2, 
temperature, residence 
time 

CSTR cells GC/MS BO Yield 
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Several palladium-catalyzed C−H 
activation reactions yielding oxindoles 
from their corresponding 

chloroacetanilides433 

Residence time, 
temperature, catalyst 
concentration, solvent, 
ligand 

Flow HPLC Multi-Task BO Yield 

Schotten-Baumann reaction for 

acetylation of benzylamine434 

Reagent equivalents, 
flow rates, electrophile, 
solvent 

Flow HPLC BO, TS-EMO Space-time yield, E-factor 

Lithium-halogen exchange435 Residence time, 
temperature, reagent 
equivalents 

Flow UPLC-MS TS-EMO Pareto front between: yield & impurity 

C-H alkylation via photocatalytic HAT436 Substrate concentration, 
THF loading, catalyst 
loading, residence time, 
light intensity 

Flow Inline 
NMR 

BO Yield 

R-H trifluoromethylthiolation via 
photocatalytic HAT (multiple 

substrates)436 

Reactant concentration, 
H-Donor loading, 
catalyst loading, 
residence time, light 
intensity 

Flow Inline 
NMR 

BO Pareto front between: yield, throughput 

Oxytrifluoromethylation via 
photocatalytic SET (multiple 

substrates)436 

Reactant concentration, 
CF3 source loading, CF3 
source, catalyst loading, 
residence time, light 
intensity 

Flow Inline 
NMR 

BO Pareto front between: yield, throughput 

Aryl trifluoromethylation via 
photocatalytic SET (multiple 

substrates)436 

Reactant concentration, 
Catalyst, Reagent 
loadings, residence 
time, light intensity  

Flow Inline 
NMR 

BO Pareto front between: yield, throughput 

C(sp2)-C(sp3) cross-electrophile 

coupling (multiple substrates)436 

Reactant loading, 
reactant concentration, 
ligand type, 
photocatalyst type, 
photocatalyst loading, 
residence time, light 
intensity 

Flow Inline 
NMR 

BO Pareto front between: yield, throughput 
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Alkyne iodination (multiple substrates, 

joint optimization)437 

Alkyne group, iodinating 
reagent, iodinating 
reagent, equivalents, 
catalyst, catalyst 
equivalence, 
temperature 

Robotic system HPLC BO-based 
proprietary 
algorithms 

Conversion, yield 

Hydroformylation of 1-octene (multiple 
optimization campaigns with different 

phosphine ligands)438 

Reagent flow rates, total 
reaction pressure, 
temperature, dilution, 
ligand to metal ratio, 
olefin to metal ratio 

Flow GC BO Yield, selectivity 

Four-component Ugi reaction439 Reactant volumes, 
solvent volume, time, 
temperature 

Flow 19F NMR BO Yield 

Van Leusen oxazole synthesis439 Reactant volumes, time, 
temperature 

Flow HPLC SNOBFIT Yield 

Manganese-catalyzed styrene 

epoxidation439 

Catalyst volume, 
reactant volume, 
addition speed, time 

Flow Online 
Raman 

Phoenics BO Product / reactant peak area ratio 

Trifluoromethylation reactions after 

chemical space exploration439 

Reactant volumes, 
temperature, time 

Flow 19F NMR BO Yield 

Cyclization reaction between 
toluenesulphonylmethyl iso- cyanide 

and benzylidenemalononitrile439 

 

Concentration, solvent 
volume, temperature, 
time 

Flow HPLC BO Yield 

Cyclization between phloroglucinol, 
benzylidenemalononitrile and 1,8-

bis(dimethylamino)naphthalene439 

 

Concentration, solvent 
volume, temperature, 
time 

Flow HPLC BO Yield 

Aldol reaction between benzaldehyde 

and acetone131 

Acetone equivalents, 
NaOH equivalents, time, 
temperature 

Flow HPLC TS-EMO Pareto front between cost and yield 
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4.2.1 Self-optimizing flow reactors and analytical advances  

The first modern examples of self-optimizing reactors were reported by Jensen and co-workers 

in 2010.268,396 In their first work, McMullen et al. show the optimization of reaction conditions for 

the Heck-coupling between 4-chlorobenzotrifluoride and 2,3-dihydrofuran in a flow 

microreactor.396 The optimization was carried out to maximize the HPLC-determined yield of the 

mono-arylated reaction product, which is prone to undergo an undesired second coupling. 

Categorical parameters such as solvents, phosphine ligands and palladium sources were 

systematically screened to find conditions under which ammonium salts are soluble and the 

formation of  palladium black is minimized, as this leads to clogging of the microreactor. 

Subsequently, a closed-loop optimization campaign over the continuous parameters residence 

time and alkene:aryl chloride ratio was carried out using the Nelder-Mead simplex algorithm. The 

authors show that the optimal conditions were also carried out in a meso-reactor while preserving 

the optimum yield, demonstrating the successful transfer from micro- to meso-scale systems. 

Notably, even though over 20 years had passed since the initial demonstration of self-optimizing 

reactors, the selected optimization algorithm is highly similar to the early works discussed above. 

Using a similar setup, McMullen et al. reported the evaluation of multiple “black-box” optimization 

algorithms,268 namely the steepest descent algorithm, the Nelder-Mead Simplex algorithm252 and 

SNOBFIT,333 for the closed-loop optimization of the Knoevenagel condensation of p-anisaldehyde 

and malonitrile in a flow microreactor (see Figure 11).268 All algorithms converged to essentially 

the same optimum conditions within 12 hours. The authors optimized a weighted objective 

function of product yield and flow rate, thereby showcasing the first multi-objective self-

optimization.   
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Figure 11: Micro-reactor self-optimizing platform for a Knoevenagel condensation and the 

oxidation of benzyl alcohol towards benzaldehyde. (a) Overview of the system consisting of a 

control center to adjust residence time, temperature and concentrations to control the flow from 

the syringe pumps in the micro-reactor. Products are detected via HPLC, which returns the data 

to the control unit. (b) Image of the used micro-reactor. (c) Packaging scheme for the microreactor 

including fluidic connections in the top plate (1), a recessed plate (2) to house the microreactor 

and TE device, and baffled heat exchanger (3) for sufficient heat removal and additional 

temperature control. Figure adapted with permission from McMullen et al.268 Copyright 2010, 

American Chemical Society.  

 

Shortly after, in 2011, Poliakoff and co-workers reported a series of examples in which they 

employ their SDL for the optimization of reactions using 𝛾-alumina as a heterogeneous catalyst 

in supercritical CO2 as the solvent.397 Parrott et al. optimized the yield of the dehydration of 

ethanol, the yield of the carboxymethylation of 1-pentanol with dimethyl carbonate (DMC), and 

the yield of the methylation of 1-pentanol with DMC. All of these optimization runs used a super-

modified simplex algorithm to optimize temperature, pressure and CO2 flow rate as variables (see 

Figure 12). The latter optimizations were each completed in approximately 1.5 days, whereas a 

combinatorial search in the condition space would have taken more than 50 times longer, 
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showcasing the efficiency of self-optimizations. Later, Bourne et al. re-evaluated the methylation 

of 1-pentanol using different methylating agents in a four-variable optimization, using the super-

modified simplex algorithm.440 In a following study, Jumbam et al. evaluated different objective 

functions for optimizing this transformation:398 the yield, the space-time yield, the E-factor, E+ (the 

E-factor including all wastes) and the weighted space-time yield, calculated by the product of the 

space-time yield and the yield. The different criteria were shown to result in different optimal 

conditions. Surprisingly, a low E-factor led to a high value of E+. Overall, this shows the 

importance of designing an appropriate objective function when considering multiple inherently 

competitive optimization targets.  

 

 

 
Figure 12: Self-optimization campaigns for the dehydration of ethanol and methylation of 1-

pentanol in supercritical CO2 as reported by Poliakoff and co-workers. The optimizations varied 

the CO2 flow rate, temperature and pressure to optimize the yield of the products colored in brown. 

Bottom figures show the layout of the used reaction hardware (left) and the optimization campaign 

of the final reaction (right). Figure adapted with permission from Parrot et al.397 Copyright 2011, 

John Wiley and Sons.  

 

After these initial developments of self-optimizing reactors, a diversification of analytical 

techniques took place rapidly, allowing researchers to harness the different advantages of each 

technique (see discussion above). In 2012, Moore and Jensen reported an in-line flow IR cell to 

optimize the Paal-Knorr synthesis of pyrroles.399 With this IR setup (Figure 13), steady-state 
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conditions can be ensured before objective functions are evaluated. As a first objective function, 

the authors aimed to maximize the ratio between conversion and residence time. However, this 

led to poor conversions, and a quadratic loss function was applied to yields lower than 85%. The 

newly designed objective function resulted in an optimum of 81% conversion, demonstrating the 

difficulty of selecting combined objectives in multi-objective optimization, and highlights the 

importance of multi-objective optimization algorithms. This initial development has inspired the 

adoption of in-line IR techniques in a variety of self-optimizing platforms, such as the optimization 

of an Appel reaction,117 a [2+2] cycloaddition410 and others,116,264,400,416 pointing out the efficiency 

improvements, owing to the ability to circumvent time-intensive chromatographic methods. 

 

 
Figure 13: Demonstration of a ReactIR system in the self-optimization of the Paal-Knorr synthesis 

of a pyrrole. In the bottom, a scheme of the utilized flow system is demonstrated along with results 

of the two-dimensional optimization campaign (left) and a sample IR spectrum (right). Figure 

adapted with permission from Moore and Jensen399 Copyright 2012, American Chemical Society.  

 

In 2015, Sans et al. reported the use of in-line NMR spectroscopy for the self-optimization of the 

acid-catalyzed imine formation between 4-fluorobenzaldehyde and aniline.401 Recorded 1H NMR 

spectra were automatically phased and baseline-corrected, and the peak integrals were 

automatically evaluated to optimize an objective function related to the space-time-yield (Figure 

14). Even though benchtop NMR spectrometers are commercially available at a reasonable price, 

their low sensitivity, as well as the difficulty of identifying and resolving characteristic signals, have 

prevented a more widespread usage in self-optimization platforms. A notable exception is the 

synthesis of the natural product Carpanone by Felpin and co-workers.413 
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Figure 14: Demonstration of an NMR system in the self-optimization of the condensation between 

aniline and p-Fluorobenzaldehyde. (A) Scheme of the utilized flow system is demonstrated 

showing the input streams of the reagents and trifluoroacetic acid (TFA) as catalyst, leading to 

the NMR spectrometer for analytical measurement. (B) Sample NMR spectrum from the 

optimization campaign, indicating characteristic product and reactant peaks. (C) Results of the 

optimization campaign to optimize objective function J over multiple iterations. Figure adapted 

with permission from Sans et al.401 Copyright 2014, Royal Society of Chemistry. 

 

In the same year, Holmes et al. demonstrated the usage of online quantitative MS for self-

optimizing the synthesis of N’-methyl nicotinamide from methyl nicotinate and aqueous 

methylamine, varying the flow rate of methyl nicotinate, the quantity of methyl amine and the 

temperature as continuous independent variables (Figure 15).403 Before the self-optimization 

experiments, HPLC was used to calibrate a benchtop MS, in order to use the latter for product 

quantitation without prior purification in the SDL campaign. The authors compared a self-

optimization using the SNOBFIT algorithm333 with a classical DoE statistical design approach, 

finding that both methods found high-yielding conditions. However, while the SNOBFIT algorithm 

took 12 hours to find the optimum, the DoE approach only took 5.5 hours, due to the human 

intuition provided in the DoE: heating and cooling of the reactor is time-consuming, so avoid large 

jumps of temperature in the selected experimental parameters. Despite being commonly used for 

product identification in conjunction with HPLC, online MS was not widely adopted for 

quantification in  self-optimizing platforms. Other examples are the hydrolysis of 3-Cyanopyridine 

by Ley and co-workers,117 and the optimization of multiple reactions with RL by Zare and co-

workers (vide infra).334 
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Figure 15: Demonstration of an MS spectrometer in the self-optimization for the amidation of 

methyl nicotinate with aqueous MeNH2. The optimization considered the temperature, the 

reactant flow rate and MeNH2 equivalents to optimize the yield of the product drawn in brown. In 

the bottom row, a schematic overview over the used hardware is given (left) and the 

experimentally tested conditions in the optimization campaign (right). Figure adapted with 

permission from Holmes et al.403 Copyright 2016, Royal Society of Chemistry. 

  

In addition to the integration of more analytical techniques into self-optimizing systems, the used 

reaction platforms have also seen a significant diversification. On the level of equipment 

demonstration, Fitzpatrick et al. have demonstrated the LeyLab, whose components were 

designed to communicate via the Internet and are thus accessible through every browser with 

Internet Access.117 The LeyLab consists of four parts, a graphical user interface (GUI), a database 

for information storage, an equipment communication module and an equipment command 

module. Among others, they used this platform to optimize the Appel reaction of 1-phenylethanol, 

or the hydrolysis of 3-Cyanopyridine over a heterogeneous MnO2 catalyst using a flow reactor 

setup. The same group further used their internet-based lab in an across-the-world optimization 

of the syntheses of multiple active pharmaceutical ingredients.116 The optimization was initiated 

by a researcher residing in Los Angeles (California, USA), directed by remote servers in Japan 

and carried out in Cambridge (UK). Similarly, Skilton et al.  demonstrated remote controlled self-

optimizing reactors,128 where collaborators from China, Ethiopia and Brazil directed the self-

optimization of n-propanol and methylation of n-butanol and n-propanol through the cloud. In their 

commentary, the authors note that “watching an optimization in progress can be quite addictive, 

rather like watching the bids rising during an eBay auction” and further comment on the safety 

issues, intellectual property and financing of such cloud-based laboratories. 

 

A modular flow system was introduced in 2018 by Bédard et al. for autonomous reaction 

optimization.264 The system consisted of several bays that each could fit a modular unit, e.g., a 

photo-reactor, a heated reactor, a cooled reactor, a packed bed reactor, a liquid-liquid separator 

or a bypass (Figure 16). Moreover, the system was connected to in-line analytics such as HPLC, 
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MS, IR and Raman. The authors showcased the modularity of the platform by optimizing the 

conditions for maximal yield of a multitude of reactions, namely a Buchwald-Hartwig Cross 

coupling, a HWE Olefination, a reductive amination, a Suzuki-Miyaura cross coupling, an SNAr 

reaction, a photoredox reaction and a multi-step ketene generation followed by a 2+2 

cycloaddition. For each reaction, the authors manually designed the appropriate flow system, 

which was then used to autonomously optimize reagent equivalents, residence times and bay 

temperatures as independent variables. After each successful optimization campaign, the optimal 

conditions were examined for different substrates. In one case, where the conditions did not lead 

to a satisfactory yield for a specific substrate, a re-optimization was conducted with a subset of 

variables within 6 hours, improving the yield from 67% to 97%, demonstrating the flexibility and 

efficiency of the flow platform. 

 

 
Figure 16: Modular reaction platform as proposed by Bédard et al. (A) The general four-step 

workflow consisting of the design of the synthesis path, loading the module, the self-optimization 
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and obtaining the final results. (B) Construction of the modular system consisting of several bays 

that can contain multiple different modules and reagent inlets, leading to an in-line analytics 

system. (C) CAD representation of the LED reactor. (D) Schematic picture of the modular reactor 

platform. Figure adapted with permission from Bédard et al.264 Copyright 2018, American 

Association for the Advancement of Science. 

 

Despite the prevalence of flow reactors, other reactor types have also been applied recently in 

self-optimization campaigns. In particular, Clayton et al. demonstrated multiple cascaded CSTR 

reactors which can provide conditions similar to a flow system while decoupling mixing 

performance from flow rate, thereby facilitating multiphasic reactions.418 Further, they also allow 

experiments with reactions involving solids and slurries, for which clogging is often a problem in 

conventional flow systems. The latter was utilized by Nandiwale et al. in 2022 for the successful 

self-optimization of a Pd-catalyzed Suzuki-Miyaura coupling, as well as two metallaphotoredox-

catalyzed Csp3–Csp3 and Csp3–Csp2 couplings of alkyl carboxylic acids and halides, respectively.425 

Each of the investigated reactions involved at least one solid reactant, catalyst, additive or 

product, which could be transferred as a slurry in the CSTR.  

 

Leonov et al. report the development of an integrated self-optimizing programmable chemical 

synthesis and reaction engine.439 They incorporated various sensors, including those for 

monitoring color, temperature, conductivity, pH, and liquid transfers, into their previously 

discussed Chemputer robotic platform. Additionally, they integrated analytical instruments like 

HPLC, NMR, and Raman spectroscopy, enabling closed-loop reaction optimization via feedback 

control. Adaptive execution of chemical procedures on the Chemputer was made possible by the 

dynamic χDL programming language. The authors demonstrated the platform's capabilities 

through temperature-controlled reagent additions, optical endpoint detection, and hardware 

failure detection. The authors optimized several organic reactions, including the Ugi four-

component reaction, Van Leusen oxazole synthesis, manganese-catalyzed epoxidation, and 

trifluoromethylation reactions, utilizing various optimization algorithms like BO with GP surrogate, 

Phoenics BO, SNOBFIT, and genetic algorithms. The optimization led to improved product yields 

of up to 50%. Furthermore, the authors showcased an experimental pipeline for exploring 

unknown reaction spaces, combining digital discovery and optimization, exemplified by the 

discovery and optimization of two previously unreported reactions. 

 

4.2.2 Discrete and categorical optimization and batch-type reactors 

The previously discussed studies have primarily focused on the optimization of continuous 

variables such as reagent stoichiometry, temperature or reaction time. Chemical reactions, 

however, are highly governed not only by the continuous parameters defining the process details, 

but also, most importantly, by the involved reactants and reagents, which are inherently 

categorical parameters. As discussed above, such optimization over categorical variables 

requires specific adaptations both in terms of software and hardware, and are often better suited 

for parallel batch reactor setups.  
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To the best of our knowledge, the first example of autonomous, closed-loop reaction optimization 

in batch reactors (since the early examples from the 1980s) was reported by Burger et al. in 

2020,11 tackling the homogeneous photocatalytic water splitting reaction. Notably, their work 

stands out owing to the highly advanced robotic setup used for performing and analyzing 

reactions (Figure 17). In this work, the authors introduce their “mobile robotic chemist” (for a more 

detailed discussion, see section on Hardware), a KUKA mobile robot that is designed to operate 

human-centric workstations. The robot transfers reactors between workstations for solid 

dispensing, liquid dispensing, inertization, capping and GC analysis. They utilized their robot to 

investigate the water splitting reaction catalyzed by the photoactive polymer P10. However, to 

circumvent the need for categorical optimization, the authors treated the quantities of each 

additive as a continuous variable, enabling the use of an off-the-shelf GP surrogate with an upper 

confidence bound acquisition function for BO. With their highly advanced experimental setup, the 

authors demonstrate 43 fully autonomous batches of experiments in approximately 8 days, 

resulting in an almost 10-fold increase in hydrogen evolution. 

 

  
Figure 17: Mobile robotic chemist as demonstrated by Burger et al. Schematic (left) shows the 

ten chemicals for which the concentrations were varied to optimize H2 production. Picture (right) 

portrays the (a) mobile robotic chemist with several workstations as well as (b) the general layout 

of the laboratory, with the mobile robot transferring the samples between the stations. Figure 

adapted with permission from Burger et al.11 Copyright 2020, Springer Nature. 
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Figure 18: Demonstration of an example of a micro-droplet reactor for a Suzuki-Miyaura cross-

coupling. (a) In the beginning of the reactor, droplets are generated with reagents selected by the 

optimization algorithm. Further down in the reactor, a base is added and the reaction mixture 

reacts further down in the reactor within the droplet, creating “batch in flow” conditions. After the 

reaction, the droplet is quenched and directed to an online analysis station. (b) Diagram shows 

the integration of the micro-droplet reactor into a self-optimization platform. Figure adapted with 

permission from reference Reizman et al.405 Copyright 2016, Royal Society of Chemistry. 

 

Similarly, Ha et al. recently reported SynBot,429 a platform for autonomous organic synthesis in 

batch reactors, which was demonstrated for carbon-coupling reactions. SynBot consists of an AI 

layer, an AI–Robot layer and a Robot layer. As the AI layer, the authors trained a retrosynthesis 

model as well as a GNN that proposes suitable reaction conditions in combination with BO on a 

search space that consists of commonly used catalysts, bases and solvents for multiple reactions: 

Suzuki coupling, Buchwald amination, and Ullmann reaction. The SDL features an integrated 

robotic system capable of executing various tasks, including chemical dispensing, reaction 

handling, sampling, and analysis. The system aims to iteratively refine and optimize synthetic 

routes and reaction conditions in order to maximize the reaction yields.  

 

As an alternative to classical batch reactors, Jensen and co-workers reported a series of SDLs 

using a segmented-flow system in which each droplet–-i.e., each “batch”–-contains a specific 

reaction with a unique set of conditions (Figure 18).402 In their first work from 2015, Reizman et 

al. use this platform for screening potential solvents and optimizing continuous reaction conditions 

for the mono-alkylation of trans-1,2-diaminocyclohexane. To address this mixed categorical–

continuous optimization, the authors performed an initial fractional factorial DoE for every solvent, 

followed by another fractional factorial design at experimental conditions close to the predicted 

optimum, and a feedback DoE search to minimize the uncertainty on the maximum predicted yield 

for each solvent separately. Subsequently, insufficiently performing solvents were disregarded 

and an automated gradient-based search around the predicted optimum was carried out for the 

remaining solvents to optimize the yield. Similar principles for the incorporation of categorical 
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parameters in self-optimizations were subsequently used to select optimal precatalyst scaffolds 

and ligands for a Suzuki-Miyaura coupling,405,409 organic base and Ni precatalyst for a photoredox 

Ir−Ni dual-catalyzed decarboxylative arylation,408 organic base for several Pd-catalyzed C-N 

coupling reactions,417 catalyst for a Suzuki-Miyaura coupling, base for a metallaphotoredox-

catalyzed sp3–sp3 cross-coupling of carboxylic acids with alkyl halides or photocatalyst for a 

metallaphotoredox-catalyzed decarboxylative cross-coupling reaction.425  

 

Slattery et al. made use of readily available internet-of-things phase sensors to detect the relevant 

reaction slugs in their flow system, dubbed RoboChem.436 The authors integrated off-the-shelf 

hardware and custom software to build a modular platform, which contained a GUI to enable 

operation by non-expert chemists. The platform contained a light source with tunable intensity, 

enabling the autonomous optimization and scale-up of a multitude of photo-catalyzed reactions. 

The RoboChem platform employs multi-objective BO, as implemented in Dragonfly, to 

autonomously plan and execute experiments. This autonomous experimentation capability allows 

the system to explore complex chemical spaces efficiently, identifying optimal reaction conditions 

tailored to each substrate. The authors demonstrated the platform's versatility by optimizing a 

diverse set of 19 photocatalytic transformations, including hydrogen atom transfer photocatalysis, 

photoredox catalysis, and metallaphotocatalysis, which are relevant to pharmaceutical and 

agrochemical synthesis. 

 

An alternate approach integrates the selection of categorical reaction variables directly through a 

suitable encoding of chemicals into appropriate optimization variables, rather than creating a 

separate response surface for each categorical reaction variable and comparing the response 

surfaces. This was done by framing the choice of each categorical variable through one-hot 

encoding all categorical possibilities or calculating descriptors for each categorical variable. The 

former method was used to find an optional base for a regioselective SNAr reaction, a suitable 

phosphine ligand for a Sonogashira coupling,431,441 optimal solvents and phosphine ligands for 

multiple C-H activation reactions,433 optimal electrophiles and solvents for a Schotten-Baumann 

reaction.442 

 

The selection of expert-crafted, physically meaningful descriptors is an important strategy to 

introduce additional knowledge into the optimization campaign.363 In 2021, Christensen et al. 

reported on this concept for the optimization of a stereoselective Suzuki–Miyaura coupling.422  

Notably, the authors used a batch system for reaction execution, namely a Chemspeed SWING 

platform coupled to a HPLC-UV system, to run parallel reactions in 96-well plates. The use of this 

batch reactor system enabled the authors to optimize a wide, representative set of 23 phosphine 

ligands selected in a fully data-driven fashion. Furthermore, the authors considered several other 

continuous parameters such as reaction temperature, palladium loading, boronic acid equivalents 

and phosphine to palladium ratio to optimize the yield of the E-diastereomer, while minimizing the 

Z-diastereomer yield and the quantities of used reagents. Mixed continuous-categorical 

optimization was performed using the Gryffin package relying on a BNN surrogate.443 While 

finding a similar optimum, the descriptor-based optimization campaign converged slower than a 

reference campaign based on one-hot encoding only, which was attributed to the introduction of 

unproductive bias through the selected descriptors. 
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A remarkable example of categorical optimization was reported by Angello et al. in 2022, who—

rather than optimizing reaction conditions for a single substrate combination—targeted the 

discovery of general reaction conditions.428 The authors defined the most general conditions of a 

reaction type as those conditions that provide the highest average yield across the widest range 

of substrate space. The authors showcase this concept at the example of heteroaryl Suzuki–

Miyaura couplings using protected boronic acids. To identify the “widest range of substrate 

space”, data-driven clustering techniques were employed to identify a set of 11 representative 

reactions for which general conditions should be identified. Optimization was performed over the 

identity of solvent, base, catalyst and ligand, and the reaction temperature as independent 

variables. Experiments are performed on a custom-built automated reaction platform that is 

capable of performing 36 parallel batch reactions with 20 distinct reagents under inert gas 

conditions.444 The authors developed a custom BO workflow for maximizing generality, the yield 

over multiple reactions. Notably, the fully explorative acquisition strategy is designed in a way that 

it does not require evaluating each of the 11 representative reactions in every iteration. Using this 

approach, the authors managed to efficiently cover a wide space of conditions and substrates, 

ultimately identifying conditions that double the average yield compared to benchmark general 

conditions. Related work in optimization of generality of reaction conditions have also been done, 

although no automation is involved.445 

 

While not optimizing for general reaction conditions, Schilter et al. recently performed a 

simultaneous optimization over multiple substrates.437 Using a robotic batch system containing 

six reactors, the authors performed a single optimization campaign in which the yield and 

conversion for an alkyne iodination was jointly optimized for multiple substrates. Notably, in the 

optimization campaign, the substrate was a parameter that could be chosen by the optimization 

algorithm to optimize the reaction conditions. In order to find the optimal conditions for all of the 

substrates, a substrate could not be selected by the algorithm after a satisfactory performance 

(conversion > 80%) was obtained. Remarkably, the optimization campaigns showed high 

transferability as the optimization run was primarily conducted on one of the substrates, and after 

a satisfactory performance was obtained for this substrate, the same was achieved for the other 

substrates of interest, requiring a total of only 23 experiments to find suitable conditions for all 

substrates.  

4.2.3 Pareto optimizations and further algorithmic advances 

So far, all discussed SDL reaction optimization campaigns were conducted as a single-objective 

optimization, where the objective is reaction yield in most cases. Optimizing for multiple objectives 

allows researchers to consider multiple metrics of a reaction, such as yield, conversion, 

productivity or ecological factors. The most straightforward approach is to scalarize multiple 

objectives into a single objective value, which, however, requires pre-defining an often unknown 

trade-off between different objective values. In an earlier example of this section, we have shown 

that this can lead to undesirable outcomes of the optimization campaign, particularly if the two 

objective functions show opposing trends. 
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In 2018, Schweidtmann et al. used the TS-EMO algorithm316 to identify the Pareto front between 

the space-time yield and E-factor for a regioselective SNAr reaction (Figure 19), as well as 

between the space-time yield and impurity yield for a benzylation reaction of a primary amine.414 

The elucidation of the entire Pareto front allowed the researchers to identify suitable trade-offs, 

which was particularly useful in the SNAr reaction, where the space-time yield could be 

significantly improved while almost not impacting the E-factor. Such a relation would not have 

been uncovered if only one optimal point was identified.  

 
Figure 19: Exemplary results for a Pareto front optimization of the E-factor and the space-time 

yield for an SNAr reaction. Identified Pareto optimal points are marked in orange, the interpolated 

Pareto front is drawn in red. In the left part of the Pareto front, a strong increase in space-time 

yield can be achieved by a minimal increase in E-factor, whereas the right side of the plot shows 

a strong increase in E-factor with only a small increase in space-time yield. Figure adapted with 

permission from reference Schweidtmann et al.414 Copyright 2018, Elsevier. 

 

Building on this work, Jeraal et al. evaluated the Pareto front between yield and cost of the mono-

aldol-condensation of acetone and benzaldehyde using the TS-EMO algorithm.420 In order to 

benchmark the algorithm’s performance, the authors ran the campaign twice, once with 20 

experiments and once with two low-yield (3% and 5%) experiments as a starting set. Both 

campaigns converged to the same Pareto front, even though the latter run needed roughly twice 

as many experiments. In addition, the authors demonstrated the general applicability of their 

approach by further uncovering the Pareto front between the space-time yield and the E-factor. 

Similarly, Karan et al. also employed the TS-EMO algorithm for the Pareto optimization of the 

yield and impurity for an ultra-fast lithium-halogen exchange reaction.435 The authors performed 

three optimization campaigns with either different initial experiments or different reactant mixing 

equipment, showing that the algorithm efficiently converges to similar Pareto fronts.  
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Since the TS-EMO algorithm is computationally expensive for categorical parameters, a GP-

based BO with the qNEHVI acquisition function290 to find the Pareto front for an optimization with 

continuous and categorical parameters.442 After demonstrating improved efficiency over TS-EMO 

in silico, experimental optimization revealed the Pareto front between the space-time yield and E-

factor for a Schotten-Baumann reaction. Similarly, using their GP-based mixed-variable multi-

objective optimization (MVMOO) algorithm,441 Kershaw et al. identified the Pareto front for the 

yield of ortho- and para-products of a SNAr reaction, where the optimization variables included 

continuous and categorical (solvent) variables.431 Interestingly, their method showed that different 

solvents are responsible for different regions of the Pareto front, enabling researchers to select 

the right solvents for the desired product. In a further experiment, the authors uncovered the entire 

Pareto front between the reaction mass efficiency and space-time yield for a Sonogashira cross-

coupling, finding that the Pareto front is almost exclusively dominated by one phosphine ligand.  

 

In 2017, Zhou et al. demonstrated the applicability of RL for optimizing chemical reactivity.334 RL 

was used to learn a policy that determines the next experiment to conduct, where RNNs were 

used to fit the policy function. Owing to the high cost of experimental data, the algorithm was pre-

trained on cheap simulated reaction data, obtained from non-convex mixture Gaussian density 

functions with multiple local minima. The performance of the RL algorithm was benchmarked 

against the Nelder-Mead simplex method, the SNOBFIT algorithm and the CMA-ES446 on the 

simulated data, and was found to outperform all of the established methods on average. However, 

no benchmarking against standard BO algorithms was performed. The pre-trained policy was 

then integrated into an SDL using micro-flow reactors with MS quantification, and was used to 

optimize the conditions of four different reactions: the Pomeranz-Fritsch synthesis of isoquinoline, 

the Friedländer Synthesis of a Substituted Quinoline, the synthesis of Ribose phosphate and the 

reaction between 2,6-Dichlorophenolindophenol and ascorbic acid. Again, the RL algorithm was 

compared with CMA-ES and a OFAT optimization, showcasing that RL consistently outperforms 

the other two methods. The optimization campaigns were carried out successively, with the policy 

improving after each completed optimization campaign, demonstrating the function and 

generalizability of the pre-trained DL agent model (Figure 20).  
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Figure 20: Reactions considered for self-optimization using deep RL. The bottom shows the 

different optimization runs for each of the reactions, respectively; comparing the algorithmic 

performance of RL (orange), one variable at a time (green) and the CMA-ES (blue). In all cases, 

the RL methods performed the optimization most efficiently. Figure adapted with permission from 

reference Zhou et al.334 Copyright 2017, American Chemical Society. 

 

Recently, Bennett et al. developed Fast-Cat,438 a gas-liquid segmented flow platform suitable for 

high temperatures and pressures. The platform enables the rapid identification of Pareto fronts 

for transition-metal catalyzed reactions through BO with the qNEHVI acquisition function. The 

authors utilized Fast-Cat to identify the Pareto front between the yield and the linear/branched 

selectivity of the hydroformylation of 1-octene for six different phosphine ligands. Each ligand 

encompasses different trade-offs between yield and selectivity, demonstrating the importance of 

efficient automation to uncover optimal conditions. The modular system integrates advanced 

process automation, in-line reaction characterization using GC, and closed-loop feedback 

algorithms to dynamically update its belief model and autonomously select new experimental 

conditions. By leveraging AI approaches, Fast-Cat accelerates reaction space exploration, rapidly 
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identifies optimized conditions, and generates high-quality in-house experimental data to 

construct digital twins of the catalytic reactions under study.  

 

Bai et al. demonstrated a closed-loop distributed SDL within The World Avatar project, aimed at 

creating a comprehensive digital twin based on a dynamic knowledge graph.131 This architecture 

utilizes ontologies to capture data and material flows in the design-make-test-analyze cycle, and 

employs autonomous agents to execute the experimental workflows. The authors demonstrated 

the framework's application by linking two robotic systems in Cambridge and Singapore for a 

collaborative optimization of a pharmaceutically relevant aldol condensation reaction, mapping 

out the Pareto front for cost-yield optimization within three days. The optimization was done with 

the TS-EMO algorithm. This setup involved flow chemistry platforms with automated liquid 

handling and reagent sourcing, showcasing the integration of dynamic ontological knowledge 

graphs to streamline and coordinate separate SDLs. 

4.3 Multi-step organic reactions 

The synthesis of most organic molecules can hardly be achieved in a single step, and can easily 

require tens of steps for complex natural products. From an SDL standpoint, multi-step reactions 

can be approached in two distinct ways: (1) each reaction step considered and optimized 

separately, and the reaction product is purified and isolated before being subjected to the 

subsequent step; while purification, particularly in batch systems, poses significant hardware 

challenges, condition optimization can be performed following the approaches discussed in the 

previous section; (2) alternatively, all steps are run sequentially in the same batch reactor or 

sequential flow reactors, which is referred to as “one-pot synthesis” or “telescoped synthesis,” 

respectively. In the latter approach, optimization does not only become a higher-dimensional 

problem, but the presence of impurities and by-products can complicate the optimization of down-

stream steps. For example, Coley et al. demonstrated a system with a robotic arm that can 

assemble the required unit operations (reactors, separators) into a continuous flow path according 

to the recipe, connect reagent lines, and carry out the telescoped reactions.447 Furthermore, in 

telescoped systems, flow rates and reaction times cannot be modified independently, posing an 

additional optimization constraint. This section will first summarize examples that fall under 

approach (1) and optimize each step individually, before discussing SDLs that feature self-

optimizing telescoped reactors (approach (2)).  

4.3.1 Sequential single-step optimizations 

To our knowledge, the first published example of autonomous optimization of a multi-step reaction 

was presented by Cortés-Borda et al. in 2018, where the authors described the synthesis of the 

natural product Carpanone.413 For the four-step synthesis, the authors performed four different 

self-optimization campaigns, involving allylation, [3,3]-Claisen rearrangement, base-catalyzed 

isomerization and oxidative dimerization (Figure 21). For each campaign, up to three continuous 

variables, corresponding to temperature, residence time and stoichiometry/loading of one 

reactant species were optimized using a modified simplex algorithm. Depending on the reaction, 

either the HPLC or an in-line benchtop NMR spectrometer was used. Overall, the authors 

managed to optimize the synthesis to yield 67% of the natural product Carpanone with a total of 
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only 66 experiments. The fact that it was manageable to conduct multiple different reactions 

resulting in a highly complex product on the same self-optimizing platform demonstrates the 

adaptability and efficiency of such systems. 

 

 
Figure 21: Multi-Step Synthesis of the natural product Carpanone, where each reaction was 

considered as a separate self-optimization experiment. The synthesis was performed via a four-

step route, consisting of an allylation of a phenol, a [3,3]-Claisen rearrangement, an isomerization 

and ultimately an oxidative dimerization. (A) shows the schematic overview of the reactor system 

for the first step with an HPLC/UV unit as an analytical unit, as well as the results of the 

optimization campaign (B) per experiment, and (C) as a function of the varied parameters. (D) 

Schematic experimental overview over the second step is provided, with an in-line NMR as an 

analytical unit. No further purification was necessary, since the product was obtained in 100% 
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NMR yield. (E-F) The results of the optimization of the second reaction are shown. Figure adapted 

with permission from reference Cortés-Borda et al.413 Copyright 2018, American Chemical 

Society. 

 

A similar example of multi-step synthesis was reported by the same group in 2019, targeting the 

two-step synthesis of pyridine-oxazoline (PyOX) ligands (Figure 22, top panel).415 Performing two 

sequential optimization campaigns (three and four continuous variables, respectively) using a 

custom modification of the Nelder-Mead Simplex algorithm, Wimmer et al. managed to obtain a 

yield of 75% with only 34 experiments. Notably, the use of the flow system allowed for a significant 

divergence from the conditions originally reported in batch reactors: Whereas the first step of the 

original batch route took place at room temperature overnight, due to the thermal instability of the 

reaction product, the high heat transfer efficiency of flow systems allowed for shorter reaction 

times under thermal activation, as revealed by the sequential optimization. Transferability of the 

conditions was further demonstrated through the synthesis of six similar ligands, with yields 

ranging from 66%–92%. Related examples of multi-step synthesis SDLs were reported by Jensen 

and co-workers (Figure 22, middle panel), as well as Ley and co-workers (Figure 22, bottom 

panel).  

 

 

 
Figure 22: Examples of multi-step reactions by combining multiple single step self-optimization 

platforms. Top: Exemplary synthesis of PyOx ligands by Felpin and co-workers.415 Middle: Photo-

catalytic two-step synthesis of a 2-oxazolidinone derivative performed by Jensen and co-workers.426 

Bottom: Two-step synthesis of lidocaine by Ley and co-workers.116  

 

From a practical standpoint, maximizing the yield alone is not a sufficient criterion for successful 

synthesis—the product needs to be isolated from the crude reaction mixture in high purity, which 
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is usually achieved through phase transfers and phase separations (e.g., extraction, filtration, 

chromatography). Ley and co-workers, using the LeyLab, reported the autonomous optimization 

of two two-step syntheses of lidocaine and bupropion, respectively, where each step was 

optimized separately.116 In the case of bupropion synthesis, after successful optimization of the 

reaction conditions for both steps, the authors demonstrated the telescoping of both steps into a 

single, continuous synthesis process (Figure 23). For this, the authors joined the crude product 

stream of the first step (bromination) with an aqueous sodium bisulfite stream to quench excess 

bromine. After mixing and subsequent phase separation, the organic phase was joined with the 

solvent stream for the second reaction (amination) before being transferred to a thin-film 

evaporation column, in which the dichloromethane from the first reaction step was selectively 

evaporated. The outflow of this evaporation column, ideally containing the purified product, was 

then transferred to the reactor in which the amination occurs. This discussion illustrates the 

hardware considerations required for successfully telescoping individually optimized reactions 

into a single production workflow – and showcases the existing constraints to a simultaneous 

optimization of telescoped reaction sequences.   

 

 
Figure 23: Two-step synthesis of bupropion performed by Ley and co-workers. Initially, the two 

steps are optimized separately. The two optimized reactions are then combined with a work-up 

consisting of the addition of an aqueous sodium bisulfite solution and subsequent phase 
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separation to yield one optimized reaction platform. Figure adapted with permission from 

reference Fitzpatrick et al.116 Copyright 2018, John Wiley and Sons. 

4.3.2 Simultaneous multi-step optimization  

Owing to the hardware challenges regarding purification, the first examples of telescoped reactor 

SDLs did not involve any purification steps, but performed the second step directly using the crude 

reaction mixture from the previous step. Whilst this enables the use of simpler hardware setups, 

it not only requires that both reaction steps are compatible with the same solvent, but also 

necessitates some chemical “cross-compatibility.” In other words, the first reaction step either 

needs to proceed in a clean fashion without producing major by-products, or the second reaction 

must be robust and selective enough that side products do not interfere with the desired reaction 

step. 

 

While telescoped syntheses had been reported in the flow chemistry literature for some time, the 

first examples of autonomous optimization have been described by Bédard et al. in their report 

on the modular flow platform, as described above. In this work, the authors show the sequential 

combination of multiple reactor bays to a telescoped reactor system, with the addition of further 

reagent streams between two reactors. Using this setup, the automation of two two-step 

sequences is shown: a photoredox-catalyzed oxidative 𝛼-functionalization of amines, and a 

Lewis-acid-catalyzed [2+2]-cycloaddition of phenylacetic acid chlorides with alkenes. In both 

cases, the first reaction step consists of the generation of a reactive intermediate (an iminium ion 

or a ketene, respectively), which is subsequently reacted with an appropriate reaction partner.  

 

A further example of a telescoped reaction was shown by Ahn et al.,423 where they conducted an 

ultrafast lithium-halogen exchange reaction directly followed by an addition-cyclization reaction of 

phenyl isocyanate. The authors designed an automated microreactor platform, which integrates 

a microreactor system with syringe pumps, solenoid valves, a thermostat and an in-line FT-IR 

spectrometer for real-time reaction monitoring. The authors use this platform to optimize the 

synthesis of a biologically active thioquinazolinone compound. The authors performed 

optimization campaigns over both only continuous (temperature, flow rate, reactor volume) as 

well as continuous and categorical (lithiating reagent) parameters. The BO algorithm employed 

by the authors achieved the same yields within 10 experiments that the authors previously found 

within 80 experiments of manual planning. Lastly, the authors also optimized the conditions to 

synthesize a library of S-benzylic thioquinazolinone derivatives. 

 

A telescoped Heck coupling of a vinyl ether, followed by selective O-deprotection, was reported 

by Clayton et al. in 2022 (Figure 24).430 The authors utilized a flow system combined with HPLC 

for quantifying the reaction yield, and a GP-based BO algorithm for iterative experiment planning. 

Notably, in order to obtain insights into their reaction, HPLC multi-point sampling, inspired by 

daisy-chaining from electrical engineering, allowed the sampling and investigating reactor outputs 

from both reactors separately. With this, the authors were able to uncover an alternative (but 

preferred) reaction mechanism for the deprotection step, which deviated from the initial working 

hypothesis, and turned out to be crucial for the identified deprotection conditions. This was only 

https://doi.org/10.26434/chemrxiv-2024-rj946-v2 ORCID: https://orcid.org/0000-0002-8470-6515 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-rj946-v2
https://orcid.org/0000-0002-8470-6515
https://creativecommons.org/licenses/by-nc/4.0/


 

 
 

possible since the reaction was optimized as a telescoped process; if all of the three originally 

assumed steps had been optimized individually, a suboptimal process would have been found. 

 

 

 
Figure 24: Demonstration of the telescoped synthesis of a Heck-coupling followed by a selective 

O-deprotection, as reported by Bourne and co-workers. (A) A schematic overview of the used 

reaction platform. In the initial reactor, the Heck coupling is performed. TsOH is added to the 

output of the first reactor to perform the selective O-deprotection. The output of both reactors is 

analyzed via one HPLC device connected via multipoint sampling (B). (C) The reaction pathway 

of the telescoped reaction. Analysis of the optimization data shows a different dominant pathway 

(3 → 5) compared to the pre hoc assumed one (3 → 4 → 5), underlining the utility of the 

optimization of a telescoped reaction. (D) Selected demonstrations of the HPLC chromatograms 

of the output of the first (top) and second (bottom) reactor. Figure adapted with permission from 

reference Clayton et al.430 Copyright 2022, John Wiley and Sons. 
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A highly complex example of multi-step synthesis was reported by Nambiar et al. in 2022 for the 

synthesis of Sonidegib.427 The authors started out with the planning of the synthesis by a 

Computer-assisted Synthesis Planning (CASP) algorithm, which proposed a two-step route, 

consisting of an SNAr reaction and an amide coupling reaction. Due to unfavorable electronics in 

the SNAr step, the authors opted to synthesize the product via a three-step route, consisting of an 

SNAr reaction, a nitro reduction and an amide coupling (Figure 25). The reactions were carried 

out in a robotically reconfigurable continuous-flow synthesis platform that allowed for the 

exchange of different modules by a robotic arm. As analytical modules, FT-IR and LC-MS were 

integrated to allow for monitoring reactor outputs. In their optimization, the authors considered a 

series of continuous parameters, including reaction times and stoichiometries, as well as multiple 

categorical parameters, such as the leaving group for the SNAr reaction, the identity of the amide 

coupling reagent, or the reactor size for the last reaction step. Their modular platform allowed the 

robot to exchange the reactor, which in turn enabled the researcher to alleviate constraints on the 

interdependencies on residence times due to the flow rate of earlier steps. 

 

The computer-proposed and human-refined synthesis pathway was subsequently attempted to 

be optimized in one telescoped reaction. In preliminary experiments, the LC-MS module after the 

first reaction showed that the SNAr reaction proceeded with > 80% yield, however the FT-IR 

module after the nitro reduction revealed catalyst deactivation. Further experiments showed that 

this deactivation was caused by a by-product of the SNAr reaction, rendering a fully telescoped 

process without thorough intermediate purification impossible. Thus, the authors decided to run 

the first reaction separately, and subsequently perform a telescoped reaction for the last two 

stages. As a consequence, the SNAr reaction was run as a multi-objective optimization campaign, 

optimizing the yield, productivity and cost with respect to temperature, residence time, 

stoichiometry of reagent and base, as well as the leaving group as a categorical parameter. 

Optimal conditions were found in thirty experiments over 10 hours, with the algorithm providing 

multiple Pareto optimal points. The offline-purified product was subsequently used as a starting 

material for the telescoped reaction towards Sonidegib, optimizing yield and productivity 

simultaneously. Optimal conditions were found after fifteen experiments and 13 hours with a total 

yield of > 90%.  
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Figure 25: Multi-step self-optimization of the synthesis of Sonidegib as proposed by Jensen and 

co-workers. The synthesis was performed over three steps: an SNAr reaction with a morpholine 

derivative as a nucleophile followed by a hydrogenation and an amide coupling. The latter two 

steps were performed as one telescoped synthesis. From a computer proposed and human-

refined synthetic route, an approximate recipe was generated and continuous and categorical 

parameters were optimized in an automated robotic platform using a multi-objective BO 

algorithm (middle panel). Figure adapted with permission from reference Nambiar et al.427 

Copyright 2022, American Chemical Society. 

 

The above-mentioned SDL example reflects the challenges in fully autonomous, self-driving 

systems for organic synthesis particularly well. On the hardware side, telescoping multiple 

reaction steps offers a highly attractive solution to operating complex multi-step synthesis in a 

continuous fashion. However, generalizability of this strategy requires the development of 

advanced purification modules to minimize undesired cross-influences between individual 

reaction steps, e.g., to remove side products, or to enable solvent exchange. From an analytical 

standpoint, the introduction of automated reaction monitoring systems at multiple stages of the 

process provides access to important data that, in turn, can enable invaluable insights into the 

reaction progress and potential failure modes.448 At the same time, the fully automated 

interpretation of this data, as well as downstream open-ended decision making, usually require 

large degrees of expert knowledge, laboratory experience and adaptive decision making (often 

referred to as “chemical intuition”). This applies to the integration of automated algorithms for 

synthesis planning in particular, where, at the current stage, human decision making is required 

for ranking routes or identifying reasonable condition search spaces. Integration of these 

advanced, and often open-ended decision-making capabilities into AI systems represents an 

active challenge for the field – and leaves room for future developments towards true, reliable 

SDLs for small-molecule synthesis. 
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4.4 Further solution-phase reactions 

The concepts discussed above can readily be translated to synthetic chemistry domains beyond 

traditional small-molecule synthesis. Importantly, many polymers—with numerous applications in 

plastics, fibers, electronics, or drug delivery (materials-focused SDLs are discussed in later 

sections)—are synthesized in solution-phase processes, which makes these amenable to self-

optimization. The major distinction to the previous discussions of small-molecule synthesis is the 

analytical methodology. Whereas for small molecules, a single, well-defined molecular entity 

needs to be determined in a quantitative fashion, the quantification of a “polymer yield” is less 

straightforward; in addition to the amount of formed polymer, the targeted size distribution, degree 

of (co-)polymerization, or other physical properties need to be controlled, which leads to a greater 

variability in the analytical methods and the resulting optimization objective.  

 

One of the earliest examples of polymer SDL was performed in 2002. Vieira et al. demonstrated 

the closed-loop optimization of molecular weight and composition for copolymer latex.449 Using a 

series of pumps and agitators, the authors automated emulsion polymerization, in which the 

monomers are dispersed as tiny droplets in aqueous phase, with emulsifiers and stabilizers to 

initiate and terminate polymerization, respectively. The copolymers were characterized by a near 

infrared spectroscopy (NIRS) probe of the solution, detecting the monomer concentration, 

polymer holdup, and the mean polymer size through the use of the partial least squares (PLS) 

model.450 The goal was then to minimize the fitness, a weighted sum of differences between the 

desired and current molecular weights, over the feed rates of precursors, which was done using 

the iterative dynamic programming (IDP) method.451,452 IDP looks at discrete time intervals of 

previous iterations, and adjusts the flow rates to drive the system toward the desired synthesized 

polymers.  

 

Houben et al. performed similar experiments with the use of multi-objective ML techniques to 

optimize the emulsion polymerization reactions.453 The authors used a setup similar to the one 

described before, however the analysis of particle sizes and conversion rates were done off-line, 

using dynamic light scattering and chromatography, respectively. Rather than only considering 

the flow rates, the 12 other experimental parameters were also varied. After each iteration of 

experimentation, the results were fed into the multi-objective active learner (MOAL) algorithm, 

with suggestions produced by a GA, and predictions generated from a GP model.454 Starting with 

5 random initial experiments, and 15 additional experiments guided by MOAL, the authors found 

the conditions needed to produce high conversion polymers with particle sizes of 10 nm. 

 

Rubens et al. used a continuous flow microreactors, rather than batch emulsion polymerization, 

to develop an SDL capable of high-throughput synthesis of reversible addition fragmentation 

chain transfer (RAFT)455 polymers with precise molecular weights.456 The polymer from the flow 

reactors were then characterized in situ by size exclusion chromatography (SEC), measuring the 

molecular weight, and dispersity of the polymers. The results were then fitted using a linear 

regression model with the results at each iteration. The flow rates with the best predicted results 

were then used for the next iterations.  
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Most recently, Knox et al. studied the same RAFT polymers with an SDL guided by BO 

algorithms.457 Furthermore, the automated characterization techniques included both an in-line 

chromatography and an online NMR spectrometer. Using TS-EMO with a GP regressor surrogate, 

the authors were able to map out the Pareto-front for the polymer conversion and molar mass 

dispersion with higher resolution when compared to DoE. The BO iterations would suggest the 

next experimental parameters: the temperature and the residence time of the reactor. 

 

4.5 Catalyst and reaction discovery 

4.5.1 New catalyst materials 

Beyond the optimization of reaction conditions for a specific synthesis process, the discovery of 

novel highly active catalysts can allow for novel and more efficient synthetic processes, and can 

open up new production avenues. While a catalyst is formally defined as a species that 

accelerates a given reaction, in reality, catalysis enables reactions that would otherwise only 

occur under impossible conditions. As such, catalysis has an enormous economic value, and it is 

assumed that >80% of all synthetic consumer products have gone through at least one catalytic 

process in their production. At the same time, discovering new catalysts is a considerable 

challenge, since their design requires the knowledge of a series of reaction pathways and modes 

of action, which also makes it extremely difficult to simulate catalytic efficiency from first principles. 

As a result, the last century has mainly seen empirically or heuristically driven campaigns for 

catalyst discovery. One of the most prominent examples is Mittasch’s large-scale screening for 

heterogeneous catalysts for the Haber-Bosch process,20 where they empirically test over 4000 

possible catalysts – yielding an optimal catalyst that is still used as of today in almost unaltered 

form. More recently, Lai et al. demonstrated a LLM capable of suggesting catalyst synthesis 

conditions, drawing from the decades of results in the scientific literature.458 

 

Major challenges in automating such a discovery process, and implementing it into an SDL, stem 

from the requirement to first synthesize and purify the catalyst candidate, which can involve a 

series of intricate experimental steps, and subsequently evaluate its activity in the catalytic 

reaction of interest. This challenge is illustrated in a pioneering example from Corma et al., who 

tackled the challenge of identifying heterogeneous titanium silicate catalysts for olefin 

epoxidation.459 Here, the catalyst synthesis alone involves gel formation from all involved 

reagents, followed by hydrothermal crystallization and post-synthesis treatment. The authors use 

a sophisticated robotic setup to automate these steps. The efficacy of the newly synthesized 

catalyst in the epoxidation of cyclohexene with a peroxide oxidant is then evaluated in a parallel 

batch reactor, which is coupled to ultrafast GC for on-line analysis. Even though the authors 

demonstrate an advanced level of automation (especially given that the work was published in 

2005), transfer of samples between the workstations required a human experimentalist. 

Experiment planning is performed through a GA,460,461 enhanced by a neural network for applying 

a selection pressure on the newly proposed candidate generation, to optimize the quantities of 

four catalyst ingredients. The authors demonstrate three generations of 21 experiments each, 

and show the discovery of two new families of catalysts with improved activity, which are 

structurally characterized in detail.  
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Figure 26: Experimental setup of the microfluidic platform for methane oxidation catalyst 

discovery. Left: Photograph of the 96-well plate for pre-mixing the catalyst components. Right: 

Schematic depiction of the microdroplet reactor containing a reaction droplet (left), and an 

indicator droplet (right). Figure adapted with permission from Kreutz et al.462 Copyright 2010, 

American Chemical Society. 

 

In 2010, Kreutz et al. reported an SDL for homogeneous catalyst discovery for the partial oxidation 

of methane with molecular oxygen.462 The catalytic system, which can be prepared by mixing all 

ingredients in an aqueous solution, is composed of three components: the active metal, a co-

catalyst, and a ligand. These three categorical variables are optimized through a GA. To perform 

the required experiments, the authors have developed a sophisticated experimental setup based 

on droplet-flow reactors (Figure 26). Solutions containing the different catalyst compositions are 

prepared in 96-well plates, and are then injected into a microfluidic reactor. Both methane and 

oxygen are added by diffusion through the teflon walls of the flow reactor. The formed methanol 

was quantified by diffusion into neighboring microdroplets that contained a methanol-selective 

indicator, thereby allowing for semiquantitative analysis using UV-Vis spectroscopy. Per 

generation, the authors performed 48 experiments (in quadruplicate), and demonstrated that over 

8 generations, a significant improvement in methanol formation (up to 3-fold increased catalytic 

activity) can be obtained.  

 

Zhu et al. reported an autonomous system for discovering catalysts for the electrochemical 

oxygen evolution reaction (OER) from Martian meteorites, simulating the development of an 

oxygen-generating system on Mars.463 For this purpose, the authors demonstrate a complex 

synergistic workflow consisting of multiple experimental and computational components. By 

analyzing the available Martian ores through automated atomic emission spectroscopy, the 

available elements—and therefore, the accessible materials search space—are defined 

autonomously by the platform. Within this search space (>3 million combinations of 6 metals in 

discrete quantity steps), a diverse set of ~30,000 possible catalyst compositions are first screened 

computationally, by molecular dynamics and DFT calculations. This data is used to train a 

surrogate neural network model for the computed catalytic properties as a function of the 

elemental composition. These computed properties, together with the elemental composition, are 

then used as inputs to a second neural network for predicting the experimental catalytic activity. 

The latter network was trained on a small seed dataset of < 300 experiments, which were 

conducted in a fully automated fashion using a robotic arm operating multiple workstations for 
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dissolving the raw ores, creating reagent stock solutions, precipitating, drying and formulating the 

catalysts, and determining their catalytic activity in an electrochemical measurement. The authors 

then performed virtual BO within the entire search space, using the predictions of the trained 

neural network as their objective, and validated that the identified best candidate indeed 

outperforms all previously obtained catalysts. Even though the authors do not demonstrate 

multiple iterations of closed-loop of experiments and data-driven decision making, the 

computational definition of the search space, as well as the advanced automation workflows are 

remarkable—making this work a Level 3 SDL, as by the definition of Figure 1.  

 

In 2024, Ramirez et al. demonstrated the optimization of a heterogeneous catalyst for the 

reduction of CO2 using BO.464 As a catalyst, the authors  explored systems containing up to 

three metals among iron, cobalt, copper, zinc, iridium and cerium with a maximum loading of 5 

wt%. Additionally, the algorithm could choose between the presence or absence of potassium 

as a promoter, the amount of water as solvent as well as having silica, alumina, titania or 

zirconia as support. The authors synthesized 144 catalysts over six generations. Over the 

performed experiments, the BO algorithm was able to identify a catalytic system that maximizes 

the CO2 conversion and MeOH selectivity while minimizing the CH4 selectivity and the cost, 

where the latter was only considered throughout five generations to demonstrate the 

adaptability of the algorithm. Even though the algorithm is capable of finding a performant 

catalyst, the authors point out that this is performed within a well-studied and expert-restricted 

chemical space, demonstrating the hurdles for autonomous novel catalyst discovery. 

 

The discussed works showcase examples of how catalyst discovery could be addressed in a 

closed-loop fashion—provided that the search space is sufficiently narrow, and the experiments 

can be automated in a useful manner. Particularly catalyst synthesis poses a major challenge in 

this regard; the diversity of catalyst space, and the fine nuances that can influence catalytic 

activity, however, render the development of generalizable automation schemes difficult. In 

homogeneous catalysis, making new catalysts requires synthesizing new molecular species, 

which usually require multi-step reaction and purification sequences, which, in turn, we had 

previously identified as a major challenge for automation. On a purely computational level, this 

bottleneck can be circumvented, which has led to impressive and experimentally validated 

examples of closed-loop catalyst design, for example in organocatalysis.465 In heterogeneous 

catalysis, on the other hand, synthesis requires intricate thermal treatment and annealing steps, 

which possess inherent automation constraints, and can often lead to structurally ill-defined 

materials, adding further complexity to the data-driven prediction problem. As a consequence, the 

last decade has produced rare examples of true SDLs for catalyst discovery, which remains a 

grand challenge for autonomous discovery, both from the software and the hardware standpoint.  

 

4.5.2 New reactions and reaction types 

While all previous discussions have focused on specific reactions—the product (and reactants) 

are given, and the goal is to find the catalysts, reactants, reagents or reaction conditions that 

maximize the product quantity—SDLs can also be used to search for new reactions or products.466 

In fact, this problem of discovering new reactivity or catalytic activity has been an active field of 
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research in organic chemistry for more than a century. While the predominant search strategy in 

this field has been rational design, the importance of “serendipitous” discoveries has been 

emphasized numerous times.467 As an example from an SDL, Amara et al. reported the detection 

of an unexpected side product when attempting the self-optimization of a 𝛾-Al2O3-catalyzed 

methylation in supercritical CO2 (for a more detailed discussion of these reactions and the self-

optimization algorithms used, see the section on Self-optimizing flow reactors).468 Careful 

characterization of the side product by a human researcher allowed for its unambiguous 

identification, and a second closed-loop campaign towards the yield of this side product was 

carried out, which eventually resulted in the discovery of optimized conditions for a new reaction 

type. This example demonstrates the possibility of discovering new reactions through SDLs. At 

the same time, especially from the standpoint of automation and experiment planning, it poses 

the open-ended analytical challenge of detecting and identifying newly formed, unknown reaction 

products from a crude reaction mixture, which is often addressed by analyzing changes in the 

bulk properties of the reaction mixture (UV-Vis spectra, IR spectra, NMR spectra), or through 

coupled separation–detection techniques (GC- or HPLC-MS).  

 

Early examples in the field of “untargeted” reaction discovery have focused on non-iterative 

screening campaigns using combinatorial chemistry and high-throughput experimentation, which 

have been reviewed elsewhere.469,470 The first example of a truly closed-loop campaign for 

discovering new reactivity was reported by Cronin and co-workers in 2018, who developed an 

SDL for finding new two- or three-component reactions in a pool of reactants (Figure 27).471 In a 

proof-of-concept work, Granda et al. selected a set of 18 reactants with diverse functional groups, 

which can be reacted under fixed reaction conditions in a fully automated fashion. Crude reaction 

mixtures were analyzed by automated IR and 1H-NMR spectroscopy, and the spectra, along with 

the spectra of the starting materials, were processed by a pre-trained SVM classifier to label the 

reaction as “reactive” or “non-reactive”. Based on this data, a linear discriminant analysis (LDA) 

model was trained to predict reactivity across the entire search space, and new experiments were 

selected in a fully exploitative fashion. With this search strategy, the authors demonstrate a 

significantly improved hit rate compared to trivial random search algorithms, and report a series 

of nontrivial reactions which had not been published before.  
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Figure 27: Schematic workflow of the reaction discovery SDL developed by Cronin and co-

workers. Figure reproduced with permission from Granda et al.471 Copyright 2020, Springer 

Nature. 

 

Later work from the same group, Caramelli et al. used a similar platform to discover new 

unreported reactions in an automated fashion:472 the photochemical reaction of phenyl hydrazine 

and bromoacetonitrile, and the reaction of p-toluenesulfonylmethyl isocyanide (TosMIC) and 

diethyl bromomalonate. For decision making, Reactify is a CNN that is trained on the NMR 

spectral data of 440 reactions with reactivity classified by a chemist. A neural network, using the 

junction-tree VAE embedding of the molecules as features, is trained to then suggest new 

reactants for the SDL platform. Both the Reactify and the surrogate neural networks were 

retrained at each iteration. The reaction mechanisms of the novel reactions were further studied 

by the authors. In related work, Mehr et al. demonstrated a probabilistic approach to reaction 

discovery, both in silico and as part of an SDL.473 Reactants were assigned prior distributions 

which were then combined to form a joint probability prediction of the reactivity between them. 

Following Bayes' theorem, the distributions were updated based on the feedback results of an 

automated high-throughput experimentation platform. The experiments were carried out in a flow-

based system, with on-line NMR, HPLC, and MS characterization. The authors were able to re-

discovery known reactions such as the Buchwald-Hartwig amination, and the Wittig-Horner 

reactions. 

 

The question of whether an identified reaction can be considered “novel” has been subject of an 

ongoing debate. While the previously unknown formation of a reaction product—the definition 

used by Granda et al. and Caramelli et al.—clearly constitutes a new reaction, the term novelty 

lacks an unambiguous definition. In both studies, the authors were maximizing the reactivity, or 

rather, maximizing the number of reactions classified as reactive. Any SDL targeting the discovery 

of novel reactions therefore requires a series of assumptions and simplifications for defining the 

optimization objective. Porwol et al. later applied a similar discovery strategy for finding new 

polyoxometalate clusters composed of metal ions and bridging ligands.474 Following in situ 
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assembly of the ligands in a three-component coupling, a metal precursor is added to form 

potential polyoxometalates. By using a series of characterization techniques including UV-Vis 

spectroscopy, MS, and pH measurements, novelty is measured as the cumulative difference 

between the data of starting materials and products, respectively. As independent variables, the 

authors selected the ligand precursor identities, metal ion, reagent volumes, reaction temperature 

and reaction time. To maximize the novelty, the authors used a custom surrogate-free search 

algorithm, which samples each experiment in a given distance from the previous experiment, 

depending on the novelty of the previous experiment. Following this strategy, the authors 

discovered a range of new polyoxometalate clusters. This is discussed further in the section on 

state materials synthesis optimization. 

 

4.6 Determination of reaction kinetics 

Especially on the process chemistry level, knowledge about the reaction conditions that lead to 

optimized reaction yields is not sufficient for safe and reliable reactor operation. In these contexts, 

detailed information about the kinetics of a reaction is required in order to predict and adjust the 

behavior of a reactor system. At the same time, kinetic knowledge can enable important insights 

into the mechanism of a reaction – which is of high relevance for informed decision making, both 

at the discovery and at the process stage. SDLs can, and have been, used to iteratively acquire 

kinetic data, refine kinetic hypotheses, and eventually obtain reliable kinetic models. This has, in 

a simple proof-of-concept study, already been demonstrated in the late 1970s in the context of 

derivatization reactions for analytical chemistry.475 

 

Decades later, in 2011, McMullen and Jensen utilized a microfluidic system to optimize the 

parameters of a kinetics model for the Diels-Alder reaction of isoprene with maleic anhydride.476 

Following the Box and Hill method, the probability of a particular rate model describing an 

experiment can be formulated in a Bayesian context by a posterior probability function based on 

the experimental conditions and the outcome concentration.477 Using an in-line HPLC, the 

microfluidic system returns the output concentration of isoprene, which is used to update the 

distribution until some probability threshold is met. After deciding the rate law, the microreactor 

was then used to optimize the parameters of the rate constant through plug-flow reactor kinetics. 

Finally, for validation, the authors performed 4 additional experiments and found good agreement 

with predictions from the optimized rate law. 

 

In a related study, Reizman and Jensen presented a continuous-flow SDL for studying multi-step 

reaction kinetics.478 Using high-throughput synthesis methods enabled by flow reactors, the 

authors studied the conversion of 2,4-dichloropyrimidine to 4,4′-(2,4-pyrimidinediyl)bis-

morpholine. There are two reaction pathways, each with two reactions, which are all modeled as 

second-order bi-molecular reactions. The product concentrations were measured after the 

reaction by online HPLC, and the kinetic model parameters were least-squares fit to the results. 

The sensitivity coefficients, a measure of how sensitive the predicted concentrations are to the 

synthesis parameters, were then calculated for the optimal parameters. By minimizing the 

sensitivity coefficient, the next experimental conditions were generated, and the reaction kinetic 

models’ parameters were iteratively optimized. 
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Most recently, Sheng et al. applied a closed-loop SDL to study the electrochemical reaction of 

cobalt tetraphenylporphyrin (CoTPP) with organohalides.479 The electrochemical platform uses a 

flow system to control the flow of reactants into a 3-electrode cell, which is monitored by a 

potentiostat for cyclic voltammetry (CV). The platform first identified reactions which can be 

modeled by the EC mechanism, which consists of an electron transfer step followed by a solution 

reaction. This was done by analyzing the CV data with a ResNet CNN previously trained to extract 

relevant electrochemical quantities.480 In the second stage, the EC mechanism is probed by 

optimizing the rate constant (k0) of the solution reaction step as a function of the voltammetric 

scan rate, and the organohalide concentration. Both stages were guided by a Bayesian optimizer 

from Dragonfly.  

 

4.7 Solid state materials synthesis 

Solid state materials, such as molecular crystals, zeolites, metal-organic frameworks (MOFs), 

covalent organic frameworks (COFs), polyoxometalates and alloys, have a variety of applications, 

particularly in catalysis of reactions. Porous materials like molecular crystals, MOFs, COFs, and 

zeolites are characterized by voids in the crystalline structure, typically on the nanometer to 

micrometer scale, and high surface areas, giving the material the ability to adsorb molecules for 

storage or catalysis. This has applications in gas storage and separation (i.e., methane, hydrogen 

gas), filtration, and drug delivery.481,482 While there are many applications of solid state materials, 

most SDL works in this field are focused on optimizing the structure and crystallinity of the 

material, rather than the function of the material. For SDLs related to energy storage and 

optoelectronic applications, we refer the reader to the respective sections. 

 

The primary advantage of solid state materials is their tunability beyond the chemical component; 

by varying both the composition and synthesis parameters, the material properties and structure 

can be tuned for specific applications. Considering the space of possible materials and structures 

is intractably large, traditional approaches based on manual synthesis are insufficient to explore 

these materials efficiently. A number of high-throughput methods, both computational,370,483–486 

and experimental,487–489 have been developed and successfully applied to combinatorially 

exploring the material space. These have resulted in large datasets of possible structures and 

materials, as well as their measured or predicted properties, paving the way for data-driven 

strategies.151,490,491  

 

Conventional data-driven applications of these high-throughput methods are through compound 

screening: a predefined space of compounds and structures are filtered down based on 

predictions from statistical models trained on the datasets, or theoretical calculations.492,493 There 

are extensive works in the literature completely within the computational domain: developing 

descriptors and models that can predict the properties of interest from the datasets,483,494–496 and 

extending these models for computational SDLs, performing active learning campaign based on 

in silico model predictions from models trained on high-throughput experimental or computational 

results.497,498  
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In the synthesis of zeolites, Moliner et al. utilized a high-throughput robotic arm platform capable 

of liquid/solid handling, stirring, and crystallization to generate a combinatorial DoE study of 144 

triethylamine:SiO2:Na2O:Al2O3:H2O zeolites.488 Using the MLP model, the authors were able to 

attain better predictions of the crystallinity of the zeolites from the experimental dataset than the 

typical multivariable quadratic models. The crystallinity is measured via XRD: the spectral peaks 

are fitted with Gaussian functions, and the average full-width half-maximum (FWHM) of the peaks 

are used as a measure of crystallinity. In a related study, Corma et al.  performed a similar study 

for SiO2:GeO2:Al2O3:F-:H2O:4-(2-methane sulfonylphenyl)-1,2,3,6-tetrahydropyridine 

hydrochloride zeolites, which have demonstrated successful crystallization into ITQ-21 and ITQ-

31 zeolites.499 The authors improved the crystallinity predictions by including structural descriptors 

derived from the XRD spectra, along with the synthesis descriptors, in the MLP neural network 

input. 

Nikolaev et al. demonstrated an Autonomous Research System (ARES)500 capable of 

autonomously conducting iterative materials experiments to study carbon nanotube (CNT) 

synthesis—a pioneering example of an autonomous SDL for materials research. Experiments 

were conducted by heating catalyst-coated silicon pillars, which each serve as CNT 

microreactors, with a laser while varying growth parameters like temperature, pressure, and gas 

composition. Raman spectroscopy measured the CNT growth rate in real-time. Using linear 

regression models, the authors were able to map out the effect of experimental conditions on the 

resulting growth of single-wall or multi-wall CNTs.501 In a later study, the same system was 

providing feedback to a RF model and genetic algorithm to propose new experimental conditions. 

Over hundreds of closed-loop iterations with minimal human intervention, ARES successfully 

learned to grow CNTs at targeted growth rates by optimizing the multi-dimensional parameter 

space. More recent work from the group modified ARES to use BO with GP surrogates for the 

maximization of CNT growth rate.502 These demonstrations showcase ARES's ability to 

autonomously navigate complex experimental domains and obtain insights into growth kinetics, 

which is valuable for controlled nanotube synthesis. As one of the first implementations of SDL 

for materials science, this work highlights the potential of autonomous research systems to 

accelerate the scientific understanding and development of complex functional materials.  

Similar ML directed discovery have been demonstrated in the synthesis of MOFs, for example 

Raccuglia et al. further incorporated reactant and reaction descriptors in the prediction of 

successful synthesis and crystallization of organic templated vanadium selenite materials.503 

Training a SVMs on experimental results from both failed and successful reactions, and 

comparing the recommended reactions from a human chemist, the model was shown to have a 

higher success rate and provide more diverse reactions. More recently, Xie et al. utilized 

XGBoost, a gradient boosting tree-based model, to determine the reaction parameters for 

crystallization of metal-organic nano-crystals.504 To test their model, validation experiments not 

found in the training set were conducted to demonstrate the use of the XGBoost model for 

extrapolating to new MOF nano-crystals. Luo et al. later developed the MOF Synthesis Prediction 

tool, using natural language processing DL models to extract synthesis conditions of MOFs from 

the literature and create a dataset and prediction tool for synthesizing new MOFs.505 The 

experiments in these works were not conducted in an automated fashion. The earliest examples 

of closed-loop SDLs for solid state materials were by Corma et al. in 2005, previously discussed 
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in greater detail in the section on catalyst discovery. The authors were interested in optimizing 

the catalysis of olefin using a Ti-based zeolite catalyst.459 Various concentrations of hydroxide, 

titanium and surfactants were combined in the hydrothermal synthesis of the zeolite using a 

robotics system. The batches of zeolites were then tested for catalytic activity using ultrafast GC.  

 

In the development of MOFs, Moosavi et al. developed an SDL that optimizes the crystallinity of 

the HKUST-1, first synthesized by Chiu et al.506 at the Hong Kong University of Science and 

Technology.507 The synthesis was performed using a high-throughput robotic platform, capable 

of handling and stirring reactants, transferring the samples into a microwave reactor cavity for 

synthesis and to a powder X-ray diffractometer for crystallinity measurement. The exploration of 

the parameter space was done using a GA dubbed the SyCoFinder, over the course of three 

generations, with 30 synthesis conditions tested in each. Similar to previous work,503 results from 

successful and failed experiments were collected in order to train a RF model to identify the 

synthesis parameters of importance. By weighting the 9 dimensional parameter space by the 

identified importance, the parameter space becomes smaller and more confined, allowing for 

more efficient exploration guided by chemical intuition. Further optimizations were not performed. 

 

Xie et al. performed a similar analysis with the zeolite imidazolate framework (ZIF) MOF, ZIF-

67.508 They developed a new ZIF synthesis protocol based on  a custom low-cost gantry-style 

robot SDL platform that injects precursors onto laser-induced graphene microreactors fabricated 

on a thin film (Figure 28).509 The microreactors were then Joule-heated to create ZIF-67 in a high-

throughput manner. The synthesized samples were transferred for XRD characterization. Rather 

than using a GA in the experiment planning, the authors used BO with a RF surrogate model. For 

the synthesis, the molar ratio of metal ions to organic molecules, the volume of precursors, the 

applied DC voltage, and the heating duration was varied. After an initial 12 random samples, three 

additional generations with 12 samples each were suggested by the BO algorithm using the 

expected improvement acquisition function. Figure 28 shows the improvement in the crystallinity 

as a function of BO iterations. 
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Figure 28: High-throughput experimentation platform used by Lin and co-workers, and the results 

of the closed-loop optimization. (A) Schematic and (B) picture of gantry-style SDL with multiple 

heads (C) to perform laser fabrication of microreactors, injection of precursors, and Joule heating 

synthesis of ZIFs. (D) Using a BO algorithm seeded with initial random samples of experimental 

parameters, the crystallinity is optimized with each iteration. (E) When compared to random 

sampling, BO achieves a higher crystallinity, measured by XRD. Figure adapted with permission 

from reference Xie et al.508 Copyright 2021, American Chemical Society. 

 

Extending into thin films of MOFs, Pilz et al. developed an SDL optimizing surface anchored MOFs 

that are formed layer-by-layer.510 Like previous work,507 the authors used the SyCoFinder GA for 

synthesis planning, with the goal of optimizing multiple objectives: the crystallinity, the [111]-

orientation of the crystal, and the phase purity, all of which are measured from the XRD spectra. 

The objectives are combined with a summation and then normalized to a fitness between 0 and 

1. The parameter space included the metal and linker concentrations, the amount of water, and 

cleaning time via sonication and spray cleaning. The samples were transferred across the various 

modules via a 6-axis robotic arm. The SDL started with a diverse random set, and two more 

generations were carried out, with increasing fitness found with subsequent generations.  

 

Harris et al. demonstrate an autonomous synthesis platform for pulsed laser deposition (PLD) of 

thin films by combining real-time diagnostics, automated synthesis and characterization, and ML 

algorithms. The platform utilizes GP regression and BO to autonomously explore a 4D 

parameter space of background pressure, substrate temperature, and laser fluences on two 

targets, tungsten and selenium, aiming to optimize the crystallinity of WSe2 thin films based on 

in situ Raman spectroscopy feedback—sharper peaks indicate higher crystallinity. Having only 
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sampled 0.25% of the parameter space, the autonomous workflow discovered two distinct 

growth windows and mapped the process-property relationships governing film quality. Notably, 

the automation achieved at least a 10-fold increase in throughput compared to traditional 

manual PLD workflows. The combination in situ Raman spectroscopy monitoring, and ML driven 

decision making can be used for PLD fabrication of other solid state thin film systems. 

 

 

Duros et al. studied the crystallization of a new polyoxometalate structure with an SDL driven by 

active learning, and also provided a comparison with random and human-guided experimental 

planning.511 A series of syringe pumps fed aqueous precursor solutions into a reactor, and the 

products were visually inspected for crystallization. The platform was capable of performing 

batches of 10 crystallization experiments per day, and an initial dataset of 89 points was acquired 

to start as a training set. A SVM classifier was trained on this dataset to classify successful 

crystallization experiments. The subsequent experiments were then conducted using an active 

learning loop, with the goal of maximizing the number of polyoxometalate structures and the 

explored synthesis parameter space. When compared to human and random exploration of the 

space, the SDL explored more of crystallization space, while still finding a similar number of 

crystallization points as human decision (Figure 29). 

 

 
Figure 29: Explored space of possible polyoxometalate crystals explored with each iteration. 

Duros et al. performed human-guided and random searches of the crystallization space as 

comparison for the algorithmic approach. The space is defined by the experimental parameters. 

Figure reproduced with permission from Duros et al.511 Copyright 2017, John Wiley and Sons. 

 

Beyond MOFs and COFs, van der Waals superlattices—i.e., stacks of graphene-like atomic 

monolayers bound through dispersion interactions—have emerged as an attractive class of 2D 

crystals with multiple applications in e.g., semi- and superconductors, or topological insulation. 

The layer-by-layer assembly of these materials could allow precise control over materials 

properties, but requires delicate physical handling. As an important step towards SDLs for van 

der Waals superlattices, Masubuchi et al. developed a multi-step robotic workflow: in the first step, 

pre-synthesized 2D crystals deposited on Si chips are automatically detected and characterized 
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using optical microscopy and computer vision.512 Subsequently, the detected crystals are 

robotically transferred to a stamping apparatus, aligned and assembled to the desired 

superlattice. While this work does employ iterative data-driven decision making, the advanced 

automation and computer vision approaches can justify the classification as a Level 3 SDL, laying 

the foundation for autonomous materials discovery for van der Waals superlattices. 

 

Kusne et al. developed CAMEO for the self-driven discovery of phase-change memory (PCM) 

materials.513 These are inorganic materials capable of switching between amorphous and 

crystalline states, altering the optical and electrical properties of the material. CAMEO uses a 

physics-guided ML model for BO of Ge-Sb-Te ternary PCM. Synthesis was not part of the design 

process; rather, a combinatorial library of Ge-Sb-Te material was loaded onto the system, along 

with data from DFT simulations. Because the target property was dependent on the phase of the 

material, the first iterations maximize the phase map of the material. After some defined threshold 

for phase map exploration, the BO algorithm, based the predictions GP models with an UCB 

acquisition function modified with an additional term based on the distance from the phase 

boundary, selected the next material for automatic synchrotron XRD characterization and human-

in-the-loop evaluation of the optical gap. While not fully automated, the authors were able to 

discover a new photonic PCM with an optical gap difference between crystalline and amorphous 

phases of 0.76 ± 0.03 eV, over three times larger than the conventional GST225 material. 

 

In the quest to understand the phases of specific solid state inorganic materials, Ament et al. 

demonstrated a self-driven high-throughput platform for determining the phase boundaries of 

Bi2O3 system.514 Bi was sputtered in an atmosphere of Ar and O2 onto Si wafers to create thin-

films of Bi2O3, which were annealed in stripes using a laser. By varying the annealing temperature 

and time, different phases of Bi2O3 can be observed. The samples were characterized by optical 

microscopy and reflectance spectroscopy to determine the phase boundaries, and the next 

conditions are suggested by GP models with custom kernels based on the physics of the 

experiment; the algorithm was dubbed Scientific Autonomous Reasoning Agent (SARA). The 

authors were able to map the phase boundaries of the system two orders of magnitude faster 

than random or exhaustive search methods. 

 

A major obstacle to the development of a fully automated SDL for solid state materials is the need 

for powder handling and XRD characterization. Lunt et al. developed the Powder-Bot, an 

autonomous robot capable system capable of automated Powder XRD.10 Powder-Bot 

successfully synthesized molecular crystals using a Chemspeed liquid-handling platform. A 

single-arm mobile robotic manipulator transfers the crystalline material to a grinding station where 

a dual-arm stationary robot produces the powder, and then takes the powder XRD samples to a 

diffractometer for analysis, totaling thirteen distinct steps. The manipulator operates the 

diffractometer as a human chemist would, and the XRD spectra is recorded. While the work is not 

a true closed-loop SDL due to the lack of intelligent experimental design, the authors 

demonstrated a landmark single iteration of automated synthesis and powder XRD 

characterization using conventional processing and characterization equipment. In another 

notable advancement, Chen et al. present ASTRAL, a robotic platform that seamlessly integrates 
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powder-precursor synthesis including powder dispensing, ball milling and oven-firing into XRD 

characterization of reaction products.515 

 

Most recently, Szymanski et al. presented A-Lab,516 an SDL for solid state synthesis of metal 

oxides and phosphate powders, with fully automated sample preparation, heating, and XRD 

characterization capabilities. Solid state synthesis pathways were selected using the ML-based 

precursor selecting algorithm ARROWS3, which incorporates decomposition energies from both 

ab initio calculations and previous experimental outcomes to find the best reaction pathways.517 

Air-stable synthesis targets were identified based on ab initio calculations from the Materials 

Project, and a dataset from Google DeepMind.518 Recipes obtained from text-mining sources in 

the literature were used to train ML models to generate recipes for compounds not found in the 

training dataset. We note that this is an unguided systematic search of the proposed synthesis 

routes; however, if these recipes fail to produce high enough yields (> 50%), A-Lab defaults to 

the ARROWS3 algorithm, which utilizes information from prior experimental results. The 

autonomous platform then carries out the recipe, performing dosing, syntheses, and analysis on 

three different stations, with a robotic arm transporting the sample between stations. The collected 

XRD spectra were analyzed using a probabilistic ML model trained on the ICSD, as discussed 

previously in Analytical Process Optimization. The resulting weight fractions of the synthesis 

products were fed back into the orchestrator of A-Lab to inform further experimentation. Over the 

course of 17 days of continuous experimentation and 355 experiments, A-Lab successfully 

synthesized 41 out of 58 target compounds, of which 9 of the targets were optimized by the data-

driven ARROWS3 algorithm for improved yields. The authors further claim the discovery of 

multiple new compounds and structures, although this has been called into question due to the 

non-standard analysis of XRD results, and the under-characterization of the compounds.519,520 

Still, the A-Lab has demonstrated advancements in the development of inorganic solid state 

SDLs. 

 

These examples represent significant steps towards accelerating the discovery of feasible solid-

state materials in a design space that contains a large fraction of unstable and metastable 

materials, and closing the automation design loop for arguably the most difficult-to-automate 

piece. We expect these endeavors will set precedents for application-driven, inorganic solid-state 

SDLs to come. 

 

4.8 Outlook and perspectives 

Within this chapter, we have provided a comprehensive overview of SDLs for chemical reaction 

optimization – which has arguably been the most widespread application of SDLs as per definition 

of this review. While first, foundational examples of autonomous reaction optimization have been 

laid in the 1980s, the field has seen an enormous boost in the 21st century, owing to advances in 

digitization, computational resources and software distribution. The largest body of work has 

focused on the autonomous optimization of single-step reactions in solution. Notable examples 

include: heterogeneous catalysis, photochemical reactions and photocatalysis, nanoparticle 

catalysis, the use of supercritical fluids as reaction solvents, and many others. These works have 

also led to notable automation and advances in related disciplines of modern synthesis, including 
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catalytic technologies like electrocatalysis521,522 and organocatalysis,523 or economically important 

applications like biomass or waste valorization.524 We expect to see pioneering examples of SDLs 

in these fields in the years to come, leading to a further diversification of SDLs for chemical 

reaction optimization. Importantly, optimization campaigns have not been limited to maximize the 

yield of a chemical reaction – but have been extended to economic considerations (e.g., time, 

cost, and produced waste), kinetic information, or the information content of the obtained reaction 

data.525 

 

It is important to note that all of these works have relied on two main pillars. First, the availability 

of open-source solutions for both automated reaction hardware and optimization software has 

enabled the implementation of autonomous systems across a variety of labs, and has proven to 

be a (figurative) catalyst for the spread of SDLs. We highly advocate for such open-source 

initiatives—accessible solutions (such as EDBO+ platform from the Doyle group294) have shown 

to serve as inspiration for further groups to adopt important SDL technologies.526 Secondly, 

domain expertise and laboratory experience has been instrumental to set up the required 

hardware and, more importantly, define and constrain the experimental search problem.  

 

The use of AI for those open-ended decision making tasks represents an important open 

challenge to the community, in addition to adaptive decision-making in synthetic laboratory 

scenarios. These software requirements go hand in hand with the development of flexible, 

reconfigurable hardware systems that enable such adaptive operations. Addressing these 

challenges, as discussed in detail throughout this chapter of the review, can build the foundation 

for the next generation of SDLs for chemical synthesis, and eventually bring us one step closer 

to the dream of autonomously synthesizing any molecule (or material) on-demand. As such, 

autonomous synthesis can be an integral component of any autonomous materials discovery 

initiative, including the efforts detailed in the following sections.  

 

5 Drug Discovery and Biochemistry 

Drug discovery plays a pivotal role in modern society and in the chemical industry, not only as a 

major consumer of chemical compounds, but also as a driving force behind chemical innovations: 

indeed, the pharmaceutical industry invests billions in research and development (R&D) every 

year,527 and some of the first examples of automated and high-throughput experiments were first 

developed by pharmaceutical companies. The reason behind this huge investment is the high 

cost associated with drug development: it usually takes US$2.6 billion and 10 years to put a single 

drug on the market.528 This long and costly pipeline can be roughly split into five main stages: 

early-stage discovery, preclinical studies, clinical trials, FDA review and approval and finally, post-

market monitoring. Early-stage discovery includes disease-related proteins target identification, 

compound screening against selected target, assay development and compound property 

optimization. Preclinical studies focus on drug profiling, delivery and dose range finding.  

 

However, while the R&D budget increases over the years, the composite average approval rate 

of drugs keeps falling down.527 Analyses of clinical trial data from 2010 to 2017 show four possible 
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reasons attributed to 90% of the clinical failures of drug development: (i) lack of clinical efficacy 

(40%–50%), (ii) unmanageable toxicity (30%), (iii) poor drug-like properties (10%–15%), and (iv) 

lack of commercial needs and poor strategic planning (10%).529 Given those statistics, it is 

apparent that success in early-stage discovery and preclinical studies stages is key to overcoming 

the high attrition rate. In those stages, researchers are confronted with multi-objective optimization 

problems that span the chemical and biological space. Not only are those vast, but the 

understanding of them is also incomplete. For efficient exploration, the pharmaceutical industry 

has thought to employ automation relatively early compared to other industries:530 Automation in 

drug discovery dates back to the 1980s with the advent of high-throughput screening platforms, 

which leverage robotics to manage the handling of thousands of bioassays.531 Spurred by large 

investments by pharmaceutical companies, robotic drug discovery platforms have evolved 

towards a higher level of automation and complexity. A notable example is Eli Lilly’s state-of-the-

art automated synthesis laboratory, among others.532  

 

Along with hardware automation, the field has benefited significantly from advances in 

computational molecular design and synthesis planning, which have proven to be powerful tools 

for accelerating drug discovery.533,534 Notably, while the idea of applying ML methods to drug 

discovery dates back to the 1990s, the recent achievements of DL methods sparked a high 

interest in the field for AI-driven early-stage drug discovery.535,536 Indeed, exploiting the capacity 

of DL to leverage vast amounts of data to create efficient biochemical representations could 

transform how early-stage research is conducted. For example, Stokes et al. used a DL GNN to 

identify new antibiotic compounds, and were able to successfully demonstrate the repurposing of 

halicin, originally used in the treatment of diabetes, as a lead compound for inhibiting E. coli 

bacterial growth.537 Additionally, the release of AlphaFold538 has revolutionized the approach to 

computational protein structure prediction, holding great implications on structure-based high-

throughput virtual screening, a routinely used method in early-stage drug discovery.539,540 

Generative DL approaches have recently been used to design new small molecules and 

proteins,223,541,542 with multiple drug discovery companies now progressing AI-driven designed 

molecules into clinical trials.535 Notably, in 2019, Zhavoronkov et al. showed one of the first 

examples of generative DL accelerated drug discovery, with the 6 possible lead compounds for 

DDR1 kinase inhibitors verified by manual biological assays.223 Ren et al. later demonstrated that 

the same workflow was effective in finding lead compounds for dark proteins—those with no 

experimentally known structure—using AlphaFold to find the protein structure and binding 

pocket.543  

 

While automation is now routinely used in the pharmaceutical industry, and AI has made its debut 

into the pipeline, these components have mostly remained disconnected from each other. 

Therefore, extensive human input, interface between different steps, and external control is still 

needed. By combining both into a closed-loop manner, SDLs could help reduce the current 

bottlenecks and also eliminate human biases in hypothesis generation.544 However, there are two 

important challenges that drug development does not share with any of the other topics discussed 

in this review: (i) drug development spans vast length- and time-scales unlike any other SDL 

system and (ii) biological experiments provide very noisy responses, especially as the complexity 

of the organism increases.  
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Since the stages of drug discovery typically occur sequentially with target identification, hit 

discovery, hit-to-lead, and lead optimization being distinct stages, it is not surprising that SDLs for 

drug discovery typically focus on optimizing one stage of the pipeline at a time. Therefore, we will 

assess the progress in the adoption of SDLs in the pharmaceutical industry by looking at their 

implementation at different stages of the small-molecule discovery pipeline, mainly focusing on 

early stage research and preclinical studies. We also dedicate a section to discuss the broader 

application of SDLs to protein engineering and synthetic biology. We limit our discussion to SDLs 

applied to biochemistry, such as the development of small molecule drugs, molecules and 

polymers for biologics, nanomedicines, and production of chemical matter through biological 

systems.  

 

5.1 Drug discovery pipeline 

5.1.1 Target identification and validation 

In modern early-stage drug discovery, identifying a target, a gene or protein that is involved in a 

disease, is a critical initial step.545 A great demonstration of the benefit of automation in target 

identification is the robot Adam that was developed by King et al. to perform high-throughput 

automated microbial batch growth experiments which are individually designed.36 Adam was used 

to identify which genes encoded locally orphan enzymes in Saccharomyces cerevisiae (i.e. 

enzymes with unknown encoding genes).546 The stages of Adam’s workflow included generating 

hypotheses; generating, designing, and performing experiments, collecting optical density (OD) 

data, forming growth curves from the OD data; recording and analyzing data; relating the data 

back to the hypotheses. The hypotheses suggested potential encoding genes for locally orphan 

enzymes. They were generated using bioinformatics software and databases. For the 

experiments, several modules including a robotic arm, plate slides, plate centrifuges, and plate 

washers were embedded in the high-level automation workflow, shown in Figure 30. Notably, the 

hardware did not require human intervention other than replacing materials, and could 

hypothetically run for a few days without human supervision. However, it was still at risk of 

encountering problems where a human would be needed to solve them. In addition, its 

hypotheses were indirect and required additional experiments and literature searches by the 

authors to verify Adam’s hypotheses. 
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Figure 30: (a) Photo of the external of Adam, with Eve on the far right. (b) Photo of Adam’s robotic 

platform inside the system. Figures adapted with permission from Sparkes et al.546 Copyright 

2010, Springer Nature. 

Along with the hardware-enabled acceleration of target discovery, AI has emerged as a powerful 

engine in finding targets.  Recent developments in AI for target identification and validation were 

reviewed by Pun et al.545 While the authors suggest that combining AI with automated target 

validation and screening can potentially increase the efficiency of these stages of early drug 

discovery, the integration of AI approaches into SDLs has remained elusive. The lack of robotic 

automation in target identification studies could be due to the fact that biological experiments have 

inherent challenges including the extrapolation of results from small-scale experiments to 

emergent behaviors in biological systems, and predicting the phenotype of systems with altered 

DNA.547 

5.1.2 Hit discovery 

Once a target is identified, the traditional drug discovery pipeline enters the compound screening 

phase, where compounds are screened to find “hits,” compounds that display interaction with the 

target or desired activity during screening.548,549 This includes assay development and high-

throughput screening to conduct pharmacological, chemical, and genetic tests. In recent years, 

developments have been made in the automation of various aspects of hit discovery, such as 

virtual and experimental screening, and assay optimization, which represent important steps  

towards closed-loop drug discovery.37,540,550–552 

In 2015, Williams et al. reported the development of the robot scientist, Eve (Figure 30). Eve was 

developed to perform high-throughput screening of more than 10000 compounds per day for drug 

discovery.37 Eve operates in three modes: a library-screening mode which involves grid search 

testing of a randomly chosen set of compounds from its library, a hit confirmation mode in which 

Eve re-assays hits, and an “intelligent screening” mode where Eve autonomously hypothesizes 

and tests QSARS. Figure 31 shows how these three modes fit into the greater early stage drug 

discovery pipeline. Eve generates QSARs using a GP with a linear kernel.175 In addition, active 

learning using a greedy strategy is implemented to select batches of 64 compounds to test Eve’s 
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hypotheses. The authors made a semantic data model of the screening assay results. The 

flexibility of Eve’s design allows for the easy definition and modification of assays, including, e.g., 

general, standardized assays ( such as computational assays), targeted assays (such as 

biochemical assays), and biologically realistic assays and screens for toxicity (such as a cell-

based assay). All three modes are integrated with software that communicates with the robotics 

within Eve’s framework. For the robotics, Eve uses off-the-shelf automation equipment for 

laboratories. Examples include robotic arms and linear actuators for plate transfer, liquid handling 

systems for sample transfer, and shaking incubators for screening reactions. For analysis, Eve 

can measure fluorescence, absorbance, cell morphology (using microplate readers), and bright-

field and fluorescence images, with an automated microscope. Once the assay is created and the 

QSAR problem is defined, Eve can run with minimal human intervention. Remarkably, Eve can 

further be used to discover new targets for existing drugs; Eve uncovered a second target for an 

anti-cancer drug which makes it a potential candidate for treating malaria. Eve was also used to 

compare its intelligent screening with grid search screening, with the authors concluding that 

intelligent screening is less expensive than grid search screening for pharmaceutical screening 

which uses large libraries and expensive compounds. While Eve shows great strides towards an 

SDL since it can optimize the activity of drug molecules for a particular target in a closed-loop 

fashion, and is proven to be useful for repositioning drugs, one drawback of the platform is that it 

is not connected to an automated synthesis platform, and therefore it is limited to only testing 

compounds in its library. Integrating the automated synthesis of new compounds into the pipeline 

would greatly expand the capabilities of Eve. 

 

Figure 31: Diagram of the early stage drug discovery pipeline. Robot scientist Eve37 is designed 

to automate the library screening, hit confirmation, and QSAR steps of the pipeline. 

More recently, Grisoni et al. developed an automated pipeline for hit discovery of liver X receptor 

(LXR) agonists.550 They combine a DL generative model and automated synthesis in one platform. 

This modular system, shown in  Figure 32,  consists of a design module that uses a RNN based 

generative model with long-short term memory cells to design new molecules as SMILES strings, 

a verification module that virtually confirms the synthesizability of the designed molecules, and an 

automated bench-top microfluidics platform that runs the synthesis. The microfluidics platform 

retrieves reagents, optimizes reaction conditions, and performs one-step reactions to synthesize 

compounds. The reactions are monitored using HPLC-MS, and the crude reaction mixtures are 
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collected automatically. The only human intervention needed to operate the entire platform is 

selecting the compounds for pretraining and fine-tuning the model. The authors demonstrate one 

“iteration” of their pipeline, and do not feed results back from the reactions to the design module. 

The platform synthesized 61% of the computationally designed molecules in this study. In addition 

to the automated experiments, the authors performed batch synthesis and further screening of 

select compounds to confirm activity. Through this study, 12 novel, active LXR agonists were 

found. Although this platform is not closed-loop, it is a successful example of automated drug 

design and synthesis, and shows potential to be incorporated in a closed-loop platform. 

 

Figure 32: Automated pipeline for liver X receptor (LXR) agonist discovery. (A) The DL generative 

model was used to design candidate molecules. (B) A virtual reaction filter screened for 

synthesizability of the candidates. (C) Finally, select candidates were synthesized using a 

microfluidic platform. Figure reproduced with permission from Grisoni et al.550 Copyright 2021, 

American Association for the Advancement of Science. 

An enzyme assay is an experimental method which qualitatively or quantitatively assesses the 

activity of an enzyme.553 With assays being an important part of high-throughput screening, 

optimizing assays is an area of research in itself, and therefore, automating the assay optimization 

process is pertinent to creating an SDL for hit discovery. One demonstration of automated assay 

optimization comes from Elder et al..551 They used a cloud-based BO based algorithm, along with 

automated experiments to optimize a cell-free papain biochemical enzymatic assay for papain 

inhibitors. The optimization involves minimizing final enzyme concentration, final substrate 

concentration, and incubation time, while maximizing the value of K’, which is a statistical 

parameter that uses control data to assess the quality of assays.554 The automated platform 

included liquid dispensers, microplate reader for fluorescence measurements, and automated 

microplate washing. Their platform tested, on average, 21 assay conditions in order to find the 

best conditions, therefore being more efficient and less expensive than other methods such as 

grid search which requires testing all 294 conditions. This demonstrates the advantage of a 

closed-loop experimental platform, where the experimental results are fed into the optimizer to 

suggest future experiments. In addition, the automated platform allows the optimization process 

to be controlled remotely. Other assays could be optimized on this platform and the technology 

can be applied to other areas of drug discovery, such as reaction screening and hit selection. 
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Finally, Kanda et al. reported BO combined with automated experiments studied in another 

context: optimizing a cell culture to produce induced pluripotent stem cell-derived retinal pigment 

epithelial (iPSC-RPE) cells.552 In this study, the target protocol (differentiation of iPS cells to RPE 

cells), seven parameters (one parameter for reagent concentration, four parameters for the 

duration of certain steps, and two pipetting parameters), and validation function are defined by 

users. The robot booth included a microscope, dry bath, plate and tube racks, an aspirator, a dust 

bin, a tip sensor, pipette tips, micropipettes, a CO2 incubator, and a dual arm robot. While the 

seeding, preconditioning, passage, RPE differentiation, and RPE maintenance steps of the 

experiments were performed by the robot, there was still a considerable amount of human labour 

involved in the process: initiating and preparing cell suspensions, preparing various reagents, 

importing plates into and out of the robot booth, taking images of the samples and analyzing them, 

further processing and testing the cells and media collected from the experiments. In addition, the 

conditions used for this study, including the robotic equipment, parameters, and scores, are not 

necessarily directly transferable to different protocols, and must be re-evaluated when designing 

a new study. This platform was able to improve iPSC-RPE production by 88% in 111 days through 

testing 143 different cell culture conditions. The authors also found that the robot generated cells 

which satisfy the criteria for research applications in regenerative medicine. While the work 

focused on the study of regenerative medicine, the authors’ method is not unlike the other 

examples shown above for hit discovery, and may be applicable to hit discovery platforms as well. 

This platform has the advantage of being closed-loop, with three rounds of BO performed with a 

GP surrogate, however, there is room for improvement. Making the platform more flexible to 

accommodate different types of experiments, and increasing the amount of automation could 

reduce the amount of human labour required to run and design the experiments, bringing this 

platform closer to an ideal SDL. 

5.1.3 Hit-to-lead and lead optimization 

The goal of the hit-to-lead stage is to evaluate and perform optimization on the “hit” compounds 

from the previous substage to identify which ones are most susceptible to turn into “lead” 

compounds. Once a lead is found, it usually undergoes multiple rounds of optimization to improve 

potency and reduce side effects. The integration of SDLs at this substage would answer one of 

the core demands of the pharmaceutical industry. In fact, while it is relatively straightforward to 

identify numerous hit compounds virtually or via HTS, prioritizing those for further stages requires 

medicinal chemistry intuition and testing those hypotheses more thoroughly. Since this process 

is iterative, it is well amenable to the DMTA paradigm, and therefore to SDL integration. 
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Figure 33: (left) Schematic of the integrated design, synthesis, and screening platform illustrating 

the fully automated processes implemented for closed-loop drug discovery. Following initiation of 

the process the system completes multiple iterations of design, synthesis, and screening without 

manual intervention. (right) Schematic showing the continuous fluidic path taken by reagents and 

products on the platform. Figure reprinted with permission from Desai et al.555 Copyright 2013, 

American Chemical Society. 

 

In 2013, Desai et al. designed a fully integrated flow-based autonomous platform assisted by an 

algorithm design (CyclOps) to perform hit-to-lead optimization, showcasing its use in the case of 

AbI Kinase inhibitors (Figure 33).555 Starting from ponatinib as a hit compound, the authors 

defined a chemical space of 270 molecules that could be synthesized in the automated workflow 

by structural analysis of potanib-bound AbI Kinase. The design algorithm would then select 

compounds from this space to be synthesized on the platform using Sonogashira reactions in 

flow, purified by in-line preparative HPLC, and analyzed for kinase activity in real-time. The 

authors used a RF model for activity prediction that used drug-like molecular descriptors involving 

the Lipinski rules and molecular fingerprints, initially trained on 36 literature compounds. Three 

design strategies were set up : (i)  “chase potency,” an exploitative strategy selecting top-scoring 

compounds based on predicted activity, (ii) “most active under sampled one,” an explorative 

strategy accounting for the number of times certain reactants have previously been employed and 

(iii) a hybrid strategy combining (i) and (ii). Overall, the flow chemistry, purification, and bioassay 

proceeded with a success rate of 71%. In all, 11 key compounds were identified as potent 

inhibitors of Abl1/Abl2, with IC50 values in the low nanomolar range. Those were retested with 

conventional bioassay methods, and the data generally showed a high level of correlation with 

data generated via the microfluidic platform. In a subsequent paper, Czechtizky et al. 

demonstrated the reproducibility and consistency of their platform by applying it to replicate 

xanthine-based dipeptidyl peptidase 4 (DPP4) inhibitors.556 This time, the compounds were 

synthesized via a two-step synthetic protocol using a Vapourtec R4 flow chemistry system. 

Overall, 29 compounds were prepared in high purity and tested in only three days with a chemistry 

success rate of 93%. Close correlation between the microfluidics platform data and data 

generated within traditional approaches was observed once again. 

 

Recently, the CyclOps platform was used to develop hepsin inhibitors selective against urokinase-

type plasminogen activator (uPA).557 Over the course of 9 days, 142 novel compounds were 

generated and assayed with hepsin and uPA. The algorithm explored a virtual chemical space of 

5472 molecules, spanning three types of commercially available reagents—a 
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sulfonylating/acylating agent, an amino acid and an amino amidine. Each closed-loop cycle took 

approximately 90 min on the platform. The authors alternated between exploitative and 

explorative strategies, but also conducted several grid-search rounds focused on the variation of 

a specific reagent. The progression from the initial hit to the lead compound was accompanied by 

an improvement in inhibitory activity against hepsin from ∼1 μM to 22 nM. The selectivity over 

uPA was improved from 30-fold to >6000-fold. The lead compound found was also further 

ADMET-profiled (i.e., absorption, distribution, metabolism, excretion, and toxicity) and tested in 

oncogenic functional assays. When assayed against a panel of 10 serine proteases, it displayed 

promising selectivity. 

 

The CyclOps platform is a great example of concrete application of SDLs to drug discovery 

development. Leveraging microfluidics for compound synthesis in a combinatorial fashion and 

coupling it to the RF algorithm allowed saved experimentation time and chemical resources, while 

leading to the discovery of compounds with enhanced properties. A weakness of such 

demonstration was that the RF algorithm was only optimizing the compound activity, so it could 

not be part of decision-making in the event of any synthesis- or process-related issues, e. g. poor 

reactivity or solubility. One can find more discussion on SDLs integrating Reaction optimization. 

 

Recent work from Novartis Medical Research addresses synthesis optimization within hit-to-lead 

optimization in their microscale SDL. Brocklehurst et al. developed the MicroCycle558 platform, an 

integrated workflow that connects the infrastructure of Novartis with software tools and a robotics 

system to create a closed-loop cycle. Candidates are designed through an RF model trained on 

in-house data for QSAR of physicochemical and biochemical properties. The RF model is then 

incorporated in a BO campaign, in some cases along with protein docking results, for selecting 

molecules in the synthesis step. From acquired building blocks, the robotics platform, equipped 

with automated solid dispensing, liquid handling, and a robotic arm, autonomously performs 

optimization of reaction conditions and high-throughput microscale synthesis. For the test stage, 

the MicroCycle platform includes an integrated plating process to prepare microscale assay-ready 

plates and can perform many types of assays automatically, including physicochemical assays, 

ADME (i.e., absorption, distribution, metabolism, and excretion) in vitro assays, and target-

specific biochemical assays. Starting from a hit compound with moderate activity, the authors 

used MicroCycle to generate 13 libraries of compounds from 8 reaction types, showcasing the 

use of their predictive models, automated synthesis, and purification. Over 440 molecules were 

made and an average success rate of about 50% was achieved, meaning that about half of the 

syntheses were sufficient for running an assay. With additional analysis and contributions from 

medicinal chemists, molecules with improved activities and potency were identified, while 

maintaining good solubilities, and appropriate molecular weights.  

5.1.4 Formulation optimization and bioavailability 

Drug formulation is an essential stage in the discovery and development of new medicines, 

allowing to improve bioavailability and targeted delivery. Traditionally, designing drug formulation 

relies on iterative trial-and-error, requiring a large number of resource-intensive and time-

consuming in vitro and in vivo experiments. However, the field has recently experienced a growing 

interest in integrating ML and automation approaches into the design process, as described in 
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the review of Bao et al.559 As optimizing drug formulations implies varying multiple parameters 

related to the drug, excipients, and manufacturing conditions, SDLs could help navigate this highly 

dimensional space. 

 

One example of formulation optimization using an SDL is the work conducted by Cao et al.,560 

although this example is not directly tailored to a pharmaceutical application. In this work, a 

commercial formulation consisting of a mixture of three different surfactants, a polymer and a 

thickener was optimized in a closed-loop fashion according the following multi-objective (Figure 

34): (i) stability and low turbidity, (ii) high viscosity and (iii) low ingredients costs. The TS-EMO 

algorithm was chosen to suggest formulation parameters316 and coupled to an SVM classifier 

(trained on initial experimental runs) that classified its temporary suggestions based on their 

stability. The algorithm was run until the classifier identified eight stable formulations amongst the 

suggested ones, which were then synthesized automatically using a first robot, and transferred to 

a second one that performed pH, turbidity, and stability tests. Unfortunately, the samples had to 

be taken offline to measure viscosity. In 15 working days and without providing any explicit 

physical intuition to the system, the authors were able to obtain satisfactory formulations. 

 

 
Figure 34: (left) Scheme of the adopted closed-loop optimization workflow. Material flow 

(continuous lines) and information flow (dashed lines) are reported. Ingredients are mixed 

following the suggested recipes in robot R1, processed, and analyzed with a combination of in-

line automated operations and offline manual analyses. The results are then collected and 

processed by the algorithm to suggest a new set of experiments to run for the next iteration. (right) 

Image of the experimental setup based on the two formulation robots, R1 and R2. The picture 

shows the actual experimental setup as used for the experiments. Automated syringe pumps (B) 

are connected to feeding bottles (A) to dispense ingredients to different vials located on the 

rotating wheel (C) of robot R1. Samples are then moved to the offline incubator for processing 

and placed in robot R2, where image collection (D), turbidity (F), and pH (G) analyses can be run. 

The platforms are controlled by the PC (E), where data is stored and fed to the algorithm for the 

generation of the next iteration. Figure adapted with permission from Cao et al.560 Copyright 2021, 

Elsevier. 
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Another example in the literature of SDL for formulation is the work of Grizou et al.561 in which a 

new high-throughput droplet dispensing robot was coupled to a Curiosity Algorithm (CA) to study 

the behavior of dynamic oil-in-water droplets, which serve as promising protocells models—a 

synthetic cell-like entity that contains non-biologically relevant components. The authors defined 

their parameter space by choosing mixtures of four oils and set a budget of 1000 experiments to 

observe how varying the oil mixture impacted the speed of the droplets and their division. This 

observation space was chosen for its simple life-forms-like behavior, which can move and 

replicate. To do so, small oil droplets are placed at the surface of an aqueous medium, the droplet 

movements are then video recorded and analyzed using traditional image processing techniques 

to deduce the speed and division of the droplets. To select the next oil mixture to be tested, the 

CA first feeds previous observations to a locally weighted linear regressor that approximates the 

mapping between input parameters and observations. A random target observation is then 

selected and fed to the numerical inverse of the regressor to infer the most probable experimental 

parameters that will lead to the target observation. The fully closed-loop platform can conduct 

more than 30 experiments per hour by leveraging parallelization, a six-time throughput increase 

from previously reported ones. By leveraging the CA, the speed observation space was more 

efficiently explored, with only 128 experiments needed to cover the portion of the observation 

space that random parameter search covered in 1000 experiments. The number of droplets 

deemed active (with speed >3 mm/s) was also improved 14-fold, without it being an explicit 

objective.  

 

Moreover, two whitepapers on SDL concepts have recently been reported in the formulation 

development literature, demonstrating the high interest of this field for automation. Hickman et al. 

have proposed an SDL named NanoMAP, which focuses on the development of nanomedicines 

for pharmaceutical formulations.562 Nanomedicines commonly consist of a combination of 

polymer and/or lipid-based materials or excipients that encapsulate small molecules or biologic-

based active agents.563 The authors propose to automate the preparation of nanomedicines for 

screening using nanoprecipitation via liquid-handling robots, while coupling it with active learning 

strategies. Importantly, this experimental protocol has previously been successfully implemented 

and can be scaled up by leveraging a microfluidics platform.564,565 On the characterization side, 

the drug loading capacity (DLC) and encapsulation efficiency (EE) would be automated with 

appropriate extraction methods and analysis via HPLC. The authors also plan on automating high-

throughput in vitro stability and release assays in biorelevant media using 96-well dialysis plates, 

as well as particle size measurement using dynamic light scattering (DLS) plate readers.  

 

Tamasi et al. proposed the development of BioMAP for biologic formulation design (Figure 35).566 

Indeed, while therapeutic proteins and vaccines—commonly called biologics—have proven their 

therapeutic efficacy, they remain extremely fragile under standard pharmaceutical storage and 

handling conditions, c.a. -78oC. Therefore, extensive formulation efforts are routinely required to 

avoid their denaturation, using additives such as small-molecule stabilizers, polymer excipients, 

or surfactants. This is also observed for monoclonal antibodies (mAbs). The authors’ plan on 

building on their previous experience of coupling automation and ML (see below section on 

Engineering the stability of proteins for a detailed discussion) to create a fully autonomous 

platform for optimization of tailored polymer additives. They also aim at increasing their materials 
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library to generally recognized as safe (GRAS) excipients as well as expanding the platform to 

liquid NP formulation. This ambitious project necessitates careful design of the automated 

instrumentation, as it must remain flexible for each biologic type. The authors plan on providing 

extra supportive modules such as a multimode reagent dispenser, a plate heater/shaker, a plate 

sealer and a vacuum filtration system on top of a multi-purpose liquid-handling robotic system for 

cell culture and reagent mixing. For liquid NP production, microfluidics and continuous-flow 

fluidics would be leveraged. Testing the stability of formulations over a range of storage and 

handling conditions could be carried out using an automated microplate incubator with humidity 

and CO2 regulation, which could also be used to support cell-based assays. For characterization 

UV-visible (UV-vis) and DLS plate readers, size-exclusion chromatography (SEC), and a high 

content imager (HCI) would be employed. 

 

 

 
Figure 35: Overview of the BioMAP platform for biologic formulation. Biologic formulation is 

performed entirely through autonomous workflows. Multisource data from physical and biological 

experiments are exploited by deep neural networks to map complex structure-function landscapes 

and inform downstream design campaigns. Figure reproduced with permission from Tamasi et 

al.566 Copyright 2022, Elsevier. 
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A proof-of-principle synthesis and formulation platform by Adamo et al. showcases technological 

advances in continuous-flow synthesis and formulation of pharmaceuticals that could be 

incorporated into SDLs for formulation optimization.567 The platform’s capabilities included 

multistep synthesis, purification, crystallization, real-time process monitoring, and formulation. In 

addition, it was reconfigurable to produce pharmaceuticals with diverse chemical structures and 

synthesis routes on-demand. With the entire system being approximately the size of a refrigerator, 

and total cycle time for synthesis and formulation being up to 48 hours, the authors demonstrated 

a competitive alternative to the usual batch synthesis of pharmaceuticals which can take up to 12 

months and involves multiple synthesis steps and formulations occurring in different locations. 

The authors showed the successful synthesis and formulation of four common drugs in liquid 

formulations,  and were able to achieve a capacity of up to 4500 doses per day of 

diphenhydramine hydrochloride. Automated components of the platform include pumps, heating 

reactors, multichannel valves, and gravity-based separators, as well as precipitation, filtration, 

and crystallization tanks. Only one user is required to operate the entire system. While the 

purpose of their platform was to demonstrate the production of liquid formulations of common 

drugs, the design and technology integrated into the SDL could be advantageous not only for 

formulation optimization, but also for time and cost effective synthesis of molecules in hit 

discovery or hit-to-lead workflows. However, one drawback of this system that would make it 

difficult to use in a high-throughput setting is the turnaround time for reconfiguring and cleaning 

the system, which could take as long as two hours, or potentially longer depending on the 

complexity of the synthesis. In addition, it is not equipped for solid formulations.  

 

Ortiz-Perez et al.568 proposed an integrated and semi-automated iterative workflow that combines 

microfluidic-assisted nanoparticle formulation, automated fluorescence imaging and analysis with 

BO to design poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) NPs with high uptake 

in human breast cancer cells. To maximize the uptake, one process variable—the flow rate ratio 

between solvent  and antisolvent—and 4 polymer components that directly influence 

physicochemical properties (size, PEGylation and charge) were varied. The polymer mixture can 

be automatically prepared using a syringe pump, and injected into a microfluidic chip at a constant 

flow rate while the antisolvent rate is adjusted. This automatically produces NPs with controllable 

size and composition, which can be labeled in situ by incorporating a fluorescent dye during 

formulation. To measure uptake in cells, NPs are added to cells in 96 well plates and fluorescence 

microscopy is used to acquire and process widefield fluorescence images in an automated way. 

This measured response per NP is used to train a BNN to predict nanoparticle uptake from 

nanoparticle formulation. The uptake, polydispersity index and size of a virtual library of 100,000 

NPs spanning the entire design space homogeneously are then predicted using the BNN and 

tree-based models respectively. The next formulations are then selected from this pool, based on 

the models’ predictions. With two 5-day experimental cycles, the authors were able to triple the 

measured NP uptake.  

 

While concrete examples of SDLs for drug formulation optimization are still sparse, the excitement 

of the field for ML techniques and automation foresee a bright future for SDLs. Nevertheless, 

several questions are left to be answered; notably, how the diversity of therapeutic compounds 
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should be handled. Indeed, contrary to most of the SDLs mentioned in other sections, one would 

expect the platform to be adaptable to a wide range of drugs, as proposed in the work of Tamasi 

et al. This is likely to complicate the coordination of experiments both on the software and 

hardware side. Finally, while this can also be relevant to other stages of the pipeline—and applies 

to other fields—Lammers et al. highlighted the lack of standardization in studies conducted to 

characterize formulations such as nanoparticles.569 Better guidelines and reporting is thus needed 

to provide the best conditions for ML application to thrive in the field. 

5.2 Synthetic biology 

While so far mostly the discussion has been focused on reviewing SDLs for small molecule 

therapeutics development, it is important to highlight that the deployment of SDLs has also 

sparked interest in the fields of protein engineering and synthetic biology,547,570 even inspiring 

space biologists.571 This naturally extends the potential applications of SDLs to a broader range 

of therapeutics, but also to the design of new biomaterials or biofuels for instance. The challenge 

resides in the inherent complexity and non-linearity of biological phenotypes, the high-

dimensionality of genomic search spaces, and the error-prone and difficult-to-automate nature of 

biological experiments. 

5.2.1 Biosynthetic pathways optimization 

The microbial synthesis of chemicals offers a viable alternative to widely employed chemical 

manufacturing methods. Biosynthetic production is appealing due to its ability to leverage a 

diverse range of organic feedstocks, operate under benign physiological conditions, and 

circumvent the generation of environmentally harmful byproducts. However, natural cells are 

rarely fine-tuned to efficiently generate a specific molecule. To attain economically feasible 

production, significant alterations to the metabolism of host cells are frequently necessary to 

enhance metabolite titer, production rate, and overall yield.572 Unfortunately, the complexity of 

biological systems and their multiple components and many unknown interactions among them 

lead to having to perform many DMTA cycles. Employing automation combined with 

computational approaches can help expedite this process.  

 

In their paper, Carbonell et al. improved the production of flavonoid (2S)-pinocembrin in E.Coli,  a 

natural product, by optimizing a 4-gene pathway (2592 possible configurations) by 500-folds, 

going through two DMTA cycles.573 First, rule-based pathway and enzyme selection tools were 

employed to define a synthetic route for (2S)-pinocembrin. A combinatorial approach was then 

utilized to design 2592 synthetic plasmids, each corresponding to a pathway that varied in terms 

of gene expression and combination. Assembly recipes and robotics worklists were generated to 

automate the plasmid assembly—commercial DNA synthesis, part preparation via PCR followed 

by ligase cycling reaction. After this, growth of microbial production cultures was conducted in a 

high-throughput manner, products were automatically extracted, and screened via fast-LC and 

MS. Finally, the data was analyzed using standard linear regression to identify important 

experimental factors to aid in the design of the next iteration. The pipeline was designed in a 

modular fashion which would allow other laboratories to replace individual pieces of equipment 

or protocols to adopt their own methods. The authors tried to demonstrate the adaptability of their 
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pipeline to other compounds production than (2S)-pinocembrin, choosing to optimize the 

expression of the (S)-reticuline—an alkaloid—pathway in E.Coli. While some of the obtained 

constructs matched literature titers, experimental difficulties were encountered, suggesting that 

the proposed arrangement was either unstable or negatively selected against in the cloning host. 

Further conversion of (S)-reticuline to (S)-scoulerine yielded modest results, although this alkaloid 

had not been produced in E. Coli previously. Each step of their pipeline leveraged automation, 

but the entire workflow was not fully integrated to enable autonomous operation. Indeed, PCR 

clean-up and host–cell transformation were carried out off deck, and plates needed to be manually 

transferred between certain platforms. Another point that weakens the SDL character of this work 

is that the “analyzing” component was conducted using a standard least squares linear 

regression, which could identify trends across the experimental parameters, but did not actively 

make design suggestions for the next cycle. 

 

HamediRad et al. focused the production of lycopene in E.Coli – a food additive and colorant 

recently proposed as anticarcinogenic – and demonstrated that BO could help optimize gene 

expression of a 3-gene pathway, outperforming random screening by 77% while only evaluating 

less than 1% of possible variants (over a total of 13,824 possibilities) through three DMTA 

cycles.574 The experiments were conducted using the iBioFAB biofoundry,  a fully automated and 

versatile robotic platform consisting of a 6-degree-freedom articulated robotic arm that travels 

along a 5-meter-long track to transfer microplates among more than 20 instruments installed on 

the platform and a 3-degree-of-freedom arm moves labware inside a liquid handling station.575 

Each instrument is in charge of a unit operation, such as pipetting and incubation. They are linked 

by the two robotic arms into various process modules, such as DNA assembly and transformation, 

and then further organized into workflows such as pathway construction and genome engineering. 

An overall scheduler orchestrates the unit operations and allows hierarchical programming of the 

workflows. In this work, the iBioFAB platform was used to automate the lycopene pathway DNA 

assembly with different expression levels of genes using the Golden Gate method,576 as well as 

the transformation, cell cultivation and lycopene extraction. The BO algorithm proposed DNA 

assembly designs, which were then converted into robotic commands for iBioFAB to conduct the 

complex pipetting work using a Tecan liquid handler. The best mutant found produced 1.77-fold 

higher lycopene titer than the best mutant found using random sampling and the number of 

evaluations was at least eight times less than the regression-based optimization scheme. 

 

This work greatly demonstrates how a flexible platform like iBioFAB and BO can benefit from each 

other to efficiently explore the gene expression landscape. It is important to mention that the 

lycopene pathway was chosen as a proof of concept for its straightforward methods of extraction 

and quantification, which facilitated high-throughput execution using iBioFAB. Indeed, the 

biofoundry faced limitations linked to compound extraction methods and analytical/quantification 

methods requiring equipment more complex than a plate reader (e.g., GC-MS or LC-MS 

instruments). Those challenges could be overcome in the future by the development of larger-

scale and more sophisticated biofoundries. Another possible improvement highlighted by the 

authors was that no initial assumptions about the landscape were made prior to using BO. Using 

the trained model for one system as the starting point for a similar system could potentially result 

in reducing the number of evaluations to find the optimum. 
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5.2.2 Engineering protein stability 

Proteins are sparking increasing interest in the context of biomedicine and pharmaceutical 

sciences. However, the moderate stability of proteins, and specially enzymes, is the major 

drawback hindering the generalized application of these bioactive molecules at the industrial 

scale. Indeed, the current process conditions may include extreme temperatures, pH values, or 

presence of organic solvents that are outside the operating stability window of the biomolecule, 

but that are often necessary to solubilize poorly-water-soluble substrates in high concentration 

values. Therefore, ensuring protein stability is of tremendous importance to unleash their potential 

and is a very active field of research.577 Enabling protein stability optimization via SDLs could help 

to efficiently explore the combinatorial search space that relates protein sequences to their 

function, and ensure reproducibility of such results.  

 

Tamasi et al. investigated the use of active learning for protein-polymer hybrids (PPHs) using 

copolymers. PPHs are a promising way to address challenges such as solubility and low physical 

stability of proteins by conjugating them with synthetic polymers.578 They leveraged a GP 

regression model  with BO to identify candidate copolymers for three chemically distinct enzymes, 

namely HRP, GOx, and Lip, to maximize the retained enzyme activity (REA). While the synthesis 

of the proposed copolymers was automated, the PPHs formation and REA characterization were 

undertaken manually. Their discovery process invoked five DMTA cycles and resulted in 

enhanced thermostability for the three distinct enzymes (46.2%, 31.5%, and 87.6% improvement 

in comparison to the initial seed batch for HRP, Gox, and Lip, respectively). While this work is not 

an SDL in itself, the same group has then later proposed the conceptual outline of BioMAP (vide 

supra), demonstrating the incremental nature of SDL improvements. 

 

Recently, Rapp et al. introduced the Self-driving Autonomous Machines for Protein Landscape 

Exploration (SAMPLE)579 platform for fully autonomous protein engineering and were able to 

engineer glycoside hydrolase family 1 (GH1) enzymes with an enhanced thermal tolerance 

(Figure 36). The protein engineering task was framed as a BO problem that was tackled using a 

multi-output GP, combining GP regression on thermostability and GP classification on protein 

activity. First, the authors designed a GH1 combinatorial sequence space composed of sequence 

elements from natural GH1 family members, elements designed using Rosetta,580 and elements 

designed using evolutionary information. This yielded a space containing 1352 unique GH1 

sequences. To pick sequence candidates for the experiments, the authors designed a custom 

sampling strategy that constrained selection to the subset of sequences predicted as active by 

GPC. Within this subset, candidates for improved thermostability were then selected. To access 

the protein sequence space experimentally, SAMPLE relies on combining pre-synthesized DNA 

fragments using the Golden Gate method576 to produce a gene, which can be amplified using 

PCR then expressed into the desired protein using T7-based cell-free protein expression 

reagents. Finally, the expressed protein is characterized using colorimetric/fluorescent assays to 

evaluate its biochemical activity and properties. The procedure took approximately one hour for 

gene assembly, one hour for PCR, three hours for protein expression, three hours to measure 

thermostability, and overall, nine hours to go from a requested protein design to a physical protein 
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sample to a corresponding data point. The experimental pipeline was fully automated and 

implemented on the Strateos Cloud Lab.581 To ensure reproducibility, four diverse GH1 enzymes 

from Streptomyces species were optimized for thermostability, each trial was composed of 20 

DMTA cycles. Each resulting enzyme was at least 12 °C more stable than the starting protein 

sequences while exploring less than 2% of the defined protein sequence-function landscape. 

 

 
Figure 36: Schematic of the SAMPLE workflow. An intelligent agent (left) learns sequence-

function relationships and designs proteins to test hypotheses. The agent sends designed 

proteins to a laboratory environment (right) that performs fully automated gene assembly, protein 

expression, and biochemical characterization, and sends the resulting data back to the agent, 

which refines its understanding of the system and repeats the process. Figure reproduced with 

permission from Rapp et al.579 Copyright 2024, Springer Nature. 

 

This work demonstrates the use of SDLs for improved protein thermostability. Importantly, it 

confirms the reproducibility of the results across several GH1 enzymes, and reports, to our 

knowledge, the first example of BO coupled to a fully-automated Cloud Lab platform. A cloud lab 

is a fully-automated decentralized laboratory in which scientists can run multiple experiments 

simultaneously and remotely, all through a single digital interface. This type of facility allows 

researchers to have full control over their experiment without having to be physically present in 

the lab. Moreover, research can be conducted without purchasing costly lab instruments or 

leasing physical laboratory space.581 Another strength of this work is the exception handling and 

data quality control mechanism implemented to further increase the reliability of the SAMPLE 

platform, allowing to flag experiments as inconclusive and add the associated sequence back to 

the potential experiment queue. 

5.3 Outlook and perspectives 

The use of animal models has played a crucial role in the advancement of modern biomedical 

research, allowing the exploration of basic pathophysiological mechanisms, but also the 
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development of new medicines. Indeed, because of their role in evaluating new therapeutic 

approaches, animal models bear the weight of the “go” or “no-go” decision to carry new drug 

candidates forward into clinical trials. However, the discordances between animal and human 

studies are frequent, thus drug candidates may be eliminated for lack of efficacy in animals, or 

discovery of hazards or toxicity in animals that might not be relevant to humans.582 The impressive 

expansion of the organ on a chip field bears the promise to address this issue by leveraging the 

latest advances in microfabrication engineering, microfluidics, genome editing and cell culture 

capabilities.583 Recently, the FDA Modernization Act 2.0 was approved, allowing alternatives to 

animal testing for drug and biological product applications.584 This change in legislature could 

potentially improve the adoption of SDLs in the preclinical phase of the drug discovery pipeline. 

 

Given the great challenges of automating biotechnology, it is fundamental that laboratories 

collaborate and collectively develop guidelines and protocols by establishing global alliances585 

and consortia.586 For instance, the adoption of the FAIR guidelines143 for data-sharing is crucial 

for efficient use of DL and ML, especially in a field where many processes are yet to be explained 

and reproducibility can be an issue. The use of “cloud labs” could also allow researchers to access 

standardized equipment from anywhere at any time.581 Furthermore, the stellar increase in 

interest for data-driven approaches applied to drug discovery calls for a reflection upon open 

science adoption in this industry. Indeed, a lot of success stories in DL stem from data availability 

and open-source libraries.165 The AI for science excitement could therefore bring us to a long-

awaited moment.587,588 While we begin to see success stories where academia and industry join 

forces in an open science setting,589 it is important to carefully consider and control the risks of 

misuse associated with sharing biological data and models.590 

 

Throughout this section, we have reviewed the adoption of SDLs across the different stages of 

the drug discovery pipeline and in the field of protein engineering and synthetic biology. The works 

we highlighted showcase the great potential of SDLs to transform the current drug discovery 

process, while shining light upon the challenges ahead. On the algorithmic side, the recent DL 

achievements have highly increased the community’s excitement and its expectations. 

Nevertheless, several challenges are already foreseeable.591–593 For example, the ligand-protein 

binding data from AI predicted protein structures is not as accurate as that which uses 

experimentally determined protein structures, and it is often not experimentally validated. In 

addition, more transparency from companies is needed in order to move the field forward as it 

helps to build trust in their results and allows larger sets of data to become available for ML. 

Federated learning is a way to overcome this challenge because it can keep company data 

confidential while using data from multiple companies in one ML model. On the automation side, 

we expect future advancements in microfluidics technology to greatly improve some of the 

systems covered above. Moreover, BioFoundries represent sophisticated hardware that is likely 

to have a great impact in the adoption of SDLs in this context, and could inspire other fields too. 

Furthermore, while proof-of-concept SDLs exist at various stages, the lack of seamless integration 

of feedback across these stages poses a potential limitation. Addressing this challenge and 

fostering collaboration between different phases could enhance the overall efficiency of SDLs. 

Overall, recent legislative changes, the growing significance of DL and the current advancement 

in hardware components suggest a favorable landscape for the adoption of SDLs in 
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pharmaceutical science, paving the way for transformative advancements in drug discovery and 

biotechnology. 

6 Structural Materials 

This section covers materials geared towards structural applications with a focus on mechanical 

performance of materials. Naturally, we focus on materials and techniques that involve automated 

and data-driven methods including robotics, optimization algorithms, software orchestration, 

experiments, and simulations. We do so for alloy design, concrete formulations, non-alloy additive 

manufacturing, and adhesives. Many of these materials are inorganic solid state materials. All 

synthesis, processing, characterization, and testing methods of mechanical properties of solid 

samples require mechanical motion of some kind—whether through the transfer of solid samples 

or the movement of experimental apparatus around or in contact with solid samples. To date and 

to the authors’ best knowledge, there are no published demonstrations of fully autonomous SDLs 

that use data-driven methods to iteratively explore inorganic solid state materials design spaces 

for large-scale structural applications with mechanical performance measurements. However, 

there has been a large amount of progress towards automated, and in some cases autonomous, 

synthesis and characterization methods for inorganic solid-state materials such as with Powder-

Bot, A-Lab, and ASTRAL, as described in section on Solid state material synthesis optimization. 

Within each section and where appropriate, we point to the data-driven approaches that 

accelerate the discovery of these materials and which provide the foundation for structural-

focused SDLs to come. 

6.1 Alloy design 

From extreme-temperature Inconel alloys in jet turbines, lightweight aluminum alloys for engine 

blocks, biocompatible titanium alloys for hip replacement joints, to the classic corrosion-resistant 

304 stainless steel found in the kitchen sink, the enabling effects of alloys are immense and often 

invisible. Events like the fatigue-induced catastrophic failure of “de Havilland Comet” commercial 

jet airliners in the 1950s, the steel corrosion-induced oil spill of the Alaskan Oil Pipeline in 2006, 

and the tens of thousands of metallic poisoning cases from cobalt-based hip implants up to 2010, 

is a reminder of how much the world relies on this class of materials and how the performance 

can enable (or the lack of performance can hinder) advancements in the transportation, energy, 

and medical fields.  

 

While many alloys are known and in usage, the alloy discovery space is a largely unexplored and 

high-dimensional search space. In the case of multi-principal element alloys (MPEAs)—i.e., alloys 

with many constituent components—Miracle et al. estimates that there are nearly 200 million 

potential MPEAs systems with three-to-six constituent elements. Note that these are individual 

systems, meaning the tunable parameters of stoichiometry and processing conditions are 

ignored.594 Over the course of twelve years from their discovery and documentation (2004–2017), 

the authors estimated that only 122 MPEA systems had been identified. Forecasting the current 

rate to the year 2117, and using only traditional methods, the risk of missing the best possible 

MPEAs system for a given application is over 99.999%, pointing to the need for physics-based, 

data-driven, automated, and high-throughput approaches. The alloy discovery space is not only 
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high-dimensional, it is also multi-objective. See, for example, a spider plot with twelve 

performance properties for structural applications (Figure 37) such as yield strength, fracture 

toughness, thermal expansion, and fatigue. While not every structural application incorporates all 

of these objectives, depending on the application, many of the objectives must be met 

simultaneously for commercial viability. 

 

 
Figure 37: A spider plot illustrating twelve performance properties for structural applications. Two 

example alloys are evaluated along the twelve axes. Figure reproduced with permission from 

Miracle et al.594 Copyright 2017, Elsevier. 

 

While fully autonomous setups that iteratively suggest new experiments with automated 

synthesis, processing, characterization, testing, and sample transfer are rare in materials 

discovery for structural applications, there has been a large amount of progress towards 

automating complex and difficult tasks with inorganic solid-state materials. For example, Vecchio 

et al. demonstrates the use of the FormAlloy tool to automatically mix powder precursors and 

additively manufacture alloys.595 While characterization and property testing requires manual 

sample transfer and intervention, the authors developed a unique platform for high-throughput 

characterization using a turntable-style sample holder with multiple sample positions (Figure 38). 

The unique benefit of this design is that they integrated it with a variety of characterization tools, 

which both drastically reduces the amount of sample prep time and simultaneously makes it much 

easier to correlate multi-modal data between instruments with sample batches. For example, 

scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) data are 

spatially correlated with nanoindentation hardness measurements. While no iterative optimization 

took place, Vecchio et al. used both thermodynamics-based CALPHAD simulations and ML 

methods for property prediction, and set the stage for an autonomous and robust SDL for alloy 

discovery. 
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Figure 38: HT-READ incorporates physics- and thermodynamics-based models with automated 

synthesis and high-throughput characterization methods for virtual alloy screening. Figure 

reproduced with permission from Vecchio et al.595 Copyright 2021, Elsevier. 

 

Aside from macroscale structural applications, Kusne et al. demonstrated, in a data-driven and 

automated synchrotron characterization setup, a large reduction in the number of required 

experiments to identify optimal epitaxial nanocomposite phase-change memory materials, 

important for non-volatile data storage applications.513 These materials leverage heat-induced 

and reversible transitions between amorphous and crystalline phases to mimic the “0” and “1” 

binary states of conventional transistors but with higher permanence. We note that the materials 

search was restricted to a single ternary alloy system (Ge-Sb-Te) and the processing parameters 

were fixed. Additionally, the sequential characterization experiments were carried out on a pool 

of several hundred pre-synthesized samples on a single silicon wafer via combinatorial sputtering; 

meaning that only one iteration of synthesis was performed. Their benchmarking results 

demonstrated that the incorporation of physics-based phase mapping information led to more 

efficient discovery relative to both random search and BO without phase mapping awareness.  

 

In addition to mechanical and phase-change properties, automated methods have been used to 

search for corrosion-resistant alloys. DeCost et al. built an autonomous scanning droplet cell to 

accelerate the discovery of a novel Al-Ni-Ti alloy composition for corrosion resistance.596 This 

SDL has automated serial electrodeposition with adjustable solution compositions and online 

processing characterization (i.e. optical camera and laser reflectance for assessing continuity, 

coloration, uniformity, and qualitative roughness of electrodeposits; a potentiostat for measured 

potential, and current; and a pH probe and thermometer for monitoring pH, and temperature). To 

close the loop in combining all the various process conditions and measured objectives, the 

authors adopt the active learning strategy using GP to predict and optimize for corrosion 
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resistance (i.e., passivation current, passivation potential, and the slope of the passivation 

plateau). After several iterations, they successfully found Al-Ni-Ti alloy compositions that were 

near the Pareto frontier. 

 

6.2 Concrete formulations 

If all of the artificial materials in the world were to be categorized and placed on a scale, concrete 

would be the heaviest. Concrete is the most prevalent human-made material and the second most 

consumed commodity after water (approximately 30 billion tonnes per year597). Concrete is not a 

trending scientific topic, like one might expect for topics like superconductors, long-range EV 

batteries, or quantum computers; however, it is one of the most practical materials topics related 

to environmental sustainability. The energy-intensive nature of manufacturing concrete leads to 

a weight-share of approximately 8% of human-derived CO2 emissions.597 Unfortunately, there are 

only a few public examples of iterative and accelerated science methods applied to concrete 

formulations and processing (at least ones that move past property prediction based on classical 

ML models). While the reason for this may be complex, in addition to the “hype” factor mentioned 

previously, there are other practical factors that constrain against deviations from existing 

concrete technologies, such as the safety concerns of new formulations, or the lack of long-term 

test data. On a related note, perhaps much of the ML and robotics focus in the field has been 

concentrated on detection rather than discovery—extending the life of existing concrete rather 

than seeking to replace it, as may be indicated by the large fraction of detection-focused ML 

manuscripts in the literature.598–602 Despite these considerations, one promising alternative to 

traditional concrete formulations involves swapping the energy-intensive “Portland cement” with 

eco-friendly cements based on alkali-activated binders or “geopolymers.” In an effort to validate 

and identify optimal data-driven routes for optimization of such concrete, Völker et al. used a set 

of 131 experimental data from the literature to conduct computational benchmarks, exploring the 

effect of algorithm choice and parallelization on the efficiency with which high compression 

strength materials can be identified.603 Notably, this is one of the only studies that shows modern 

adaptive experimentation being used in the context of concrete optimization. 

 

Concrete formulation and processing optimization also has a unique challenge relative to many 

other materials discovery tasks: it is highly affected by locally available materials. Concrete is 

dense and is used in large quantities for buildings and other structural applications at a relatively 

cheap cost-per-weight, so transporting it large distances is infeasible. What this means is that an 

optimal concrete in one part of the world does not translate directly to another part of the world. 

While the considerations for applying accelerated science tools to the field of concrete discovery 

are complex, the potential positive impacts are large. We anticipate a fully autonomous concrete 

formulation and processing optimization tool in the near future, which will require awareness, 

incorporation of AI and robotics into civil engineering repertoires, and a strong understanding of 

the limitations and opportunities within the field. 
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6.3 Non-alloy additive manufacturing 

The use of AI and robotics in additive manufacturing settings holds great promise: in terms of 

synthesis and optical characterization, there is a relatively low barrier to automation; the 

equipment typically has an API and native programming abilities; the equipment is adaptable and 

available, and the processing parameters are straightforward. 

 

For example, Erps et al. used multi-objective BO to simultaneously maximize toughness, 

compression modulus, and maximum compression strength as a function of six primary 

formulations to form a composite formulation for photocurable resins. All processing parameters 

were held fixed.604 We note that this is a semi-automated platform which requires human 

intervention for transfer of materials between each step in the sample fabrication pipeline while 

all of the individual steps of dispensing, mixing, 3D printing, post-processing, and testing are 

completed individually without human intervention. Such formulation systems can be adapted to 

other domains such as surfactants, cosmetics, foods, and paints. 

 

Brown and co-workers have also demonstrated SDL studies of mechanical properties of 3D 

printed structural materials. While the works predominantly focus on the effects of macroscopic 

structural designs rather than the intrinsic material property or formulation, the studies 

demonstrate the potential of autonomous BO for searching various design spaces in additive 

manufacturing. Gongora et al. introduced Bayesian Experimental Autonomous Researcher 

(BEAR), combining simulations and experimental observations to optimize the twist angle and 

struts of a 3D printed structure for optimal toughness.605 The authors use a GP regression model 

to explore the search space, while a novel automated platform provides high-throughput printing 

and testing of manufactured parts. Simulations through finite element analysis were shown to 

strengthen the Bayesian prior of BEAR, increasing the speed of optimization in the 

experiments.606 In their most recent work, Snapp et al.607 introduce new mechanical designs (i.e., 

a generalized cylindrical shell with 8 variable parameters) and filament combinations to improve 

the material’s mechanical properties. Although their approach employs the SDL framework to 

accelerate toward an optimal mechanical design, there is an absence of chemical synthesis or 

materials design. 

 

While getting the formulation right and automating the exploration of a wide variety of 

combinations of starting materials is difficult, optimizing processing parameters within a certain 

material family is much more attainable. One example of this processing parameter optimization 

is a low-cost example that uses BO with a modified 3D printer to optimize the print characteristics 

of a silicone material.113 

 

6.4 Adhesives 

Similar to many applications in this review, adhesives are a classic formulation optimization 

problem. The relative fractional share of constituents and the combinations of precursors can 

have a large effect on the bond strength exhibited by the adhesive. In this vein, Rooney et al. 

developed a semi-automated SDL platform for adhesive synthesis and characterization using a 
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SCARA-type N9 (North Robotics) workstation, and substrates (“dollies”) to be coated with the 

adhesive and used with a custom shear-stress “pull-off” tester (Figure 39).306 Adhesive coating, 

preparation, and testing were all performed automatically via the robotic platform, while mixing of 

the adhesive formulations was carried out manually. This system used BO with a GP surrogate 

to maximize the bond strength as a function of resin to hardener ratio in a two-part epoxy system 

over four iterations of 5-sample batches (20 experiments). Notably from an algorithm standpoint, 

the BO algorithm from the Ax package uses a sophisticated batch-aware acquisition function. 

 

 
Figure 39: A robotic platform with custom tooling for processing and testing adhesive specimens 

where batches of next experiments are guided via BO. (a) The automated platform with N9 arm 

capable of picking up and using various attachments. (b) The testing head used to characterize 

the force required to break the adhesive material. (c) The workflow of the SDL, note that 

adhesives were created and loaded manually. Figure reproduced with permission from Rooney 

et al.306 Copyright 2022, Royal Society of Chemistry. 

 

6.5 Outlook and perspectives 

Researchers in structural materials are quickly adopting ML techniques to accelerate the 

discovery of novel materials, but many have yet to adopt robotics technology to automate the 

synthesis and characterization of such materials. Specifically in structural materials, hardware 

automation remains a challenge because of the inherent difficulties in solid-dispensing, extreme 

temperatures, and complex testing instrumentation. By reimagining our approach to synthesis 

and characterization, shifting from conventional human-oriented instrumentation to a hardware-
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centric perspective, we can harness the power of robotics to automate intricate tasks in diverse 

ways. 

 

7 Optoelectronics 

Optoelectronic materials play a pivotal role in modern technological advancements by enabling 

the manipulation and control of light-matter interactions. These materials are integral to a wide 

array of applications spanning from telecommunications and displays to solar cells and medical 

devices. The significance of optoelectronic materials lies in their ability to absorb, emit, and 

modulate light, thereby facilitating the conversion of electrical signals into optical signals and vice 

versa. This functionality underpins the development of high-speed data communication systems, 

energy-efficient lighting, and sensitive imaging devices, among other innovations. 

 

Designing new optoelectronic materials and making them technologically useful requires a 

comprehensive understanding of the complex relationship between their composition, structure, 

processing, and physical properties such as electronic structure and optical characteristics. 

Experimentally characterizing these attributes often requires sophisticated techniques. The 

synthesis and fabrication of these materials with the desired properties can be difficult and 

resource-intensive; optoelectronic materials are often part of devices in crystallized form or thin 

films, with blends and mixes of other optoelectronic materials, which can have dramatic effects 

on the performance of the device. In the context of SDLs, this introduces additional parameters 

that require further optimization, and will be dependent on the material-specific properties such 

as stability, scalability, and cost. 

 

Due to the complexity of the design-make-test-analyze cycle for optoelectronics, efforts have 

been made to combine ML and DoE without an automated laboratory, aiming only to more 

efficiently search the design space of possible compounds and devices. Cao et al. used SVMs to 

optimize only device processing parameters for an organic photovoltaic device active layer 

composed of a PCDTBT donor and PC71BM acceptor.608 Subsequently, Kirkey et al. extended 

this method to study multiple acceptor compounds.609 Conversely, Wu et al. leveraged high-

throughput synthesis and characterization to speed up discovery of organic semiconductor laser 

materials without ML-guided experiment selection by exploring molecules similar to the 

prototypical BSBCz.610–612   

 

Although these efforts did not involve SDLs, they served as initial steps toward the development 

of SDLs for optoelectronic materials and devices. In the following sections, we discuss SDLs for 

optoelectronics based on the sophistication of the proxy measurements: from solution-state and 

single crystals to full device fabrication and testing. 

 

7.1 In solution and crystals 

Proxy measurements of materials in solution and as single crystals offer two primary advantages. 

Both proxies are simple enough that they can be used to gain fundamental insights into the 
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materials at the atomic level, especially in conjunction with quantum chemical calculations. 

Additionally, they are relatively amenable to high-throughput experiments.613 In the case of 

solution-based testing there are many options for highly parallel and high-throughput experiments 

to study the relationship between composition and important optoelectronic properties using 

simple analytical techniques such as optical spectroscopy. 

7.1.1 Perovskites 

An example of a commonly studied crystal optoelectronic material is the perovskites. In an SDL 

developed by Higgins et al., the authors utilized a well plate to automatically and parallelly 

synthesize 96 multi-component perovskites and analyze the photoluminescence of the 

compounds in a high-throughput manner.614 Four perovskites systems were studied with varying 

compositions with the goal of maximizing the photoluminescence of the dissolved crystals. The 

authors also added a temporal axis to the data, looking at the spectra as a function of time, in 

order to capture the stability of the compounds. The results of the photoluminescence were 

decomposed using non-negative matrix factorization (NMF) into spectral information dependent 

only on the material composition, which was then fed into a GP regression model. The GP model 

interpolated between the low amounts of data to give a predictive map of the best compositions 

for the relevant perovskite systems. While the authors did not perform a second iteration based 

on the predictions of the GP model, the model prediction and uncertainty could have been used 

in a BO scheme to suggest the next round of experiments. 

 

There have also been SDL studies of only the crystallization process of perovskites. 

Crystallization is not only dependent on the composition of the perovskite, but also the process 

conditions, which will affect the structure and performance of the optoelectronic device. Li et al. 

studied the perovskite crystallization using a robotics-accelerated micropipetting system.615 The 

solution was gradually cooled in an inverse temperature crystallization (ITC) reaction,616 and the 

resulting crystals were visually categorized into 4 levels of crystal quality. The ITC reaction 

parameters were the same for all reactions, however the concentrations of the inorganic, organic, 

and formic acid precursors were varied. All reactions contained the lead (II) iodide, and one of 45 

structurally diverse organoammonium cations. In total, 8172 reactions were performed, and the 

most novel structures were further studied in manual experiments, however, no ML was utilized 

during the crystallization experiment. Instead, the authors performed a retrospective study, and 

determined that a SVM model with a Pearson VII universal function kernel was most accurate in 

crystal quality prediction, using the reaction conditions and the organic and inorganic precursor 

chemical descriptors, however suffers when trying to generalize to different precursors or perform 

with small amounts of data. This study demonstrates the potential for a second round of high-

throughput experiments based on the predictions of the model.  
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Figure 40: Schematic of SDL from Sargent and co-workers, studying the crystallization of 

perovskites. (A) A diagram of experimental setup used for antisolvent vapor-assisted 

crystallization. (B) A tray with 96 containers, each containing 3 drops of precursor solution, and a 

well of antisolvent, which were then sealed for the crystallization. (C) Microscopy images over the 

course of 3 hours of the crystallization. (D) The SDL workflow. (E) A schematic ML method used. 

The convolution layers perform operations on spatially connected pixels of the images, finally 

being flattened and put through a fully connected layer to output a classification. Figure adapted 

with permission from Kirman et al.617 Copyright 2020, Elsevier. 

 

In another work studying the crystallization of perovskites, Kirman et al. incorporated a CNN and 

a kNN regressor model in their SDL for automated metal halide perovskites.617 Repurposing a 

protein crystallization robot, the authors were able to study 96 experiments with different 

concentrations of precursors in parallel (Figure 40). The prepared solutions are then sealed in a 

chamber with an antisolvent to induce the crystallization.618 Initially, studies focused on 

phenethylammonium lead bromide, (C8H12N)2PbBr4 (PEAPbBr) crystallization, with 7000 images 

classified from an initial run as either no/bad crystals, or good crystals. This dataset was used to 

train a CNN, achieving 95% accuracy in crystal detection. Kirman et al. then applied the workflow 

to a new perovskite system, with 3-picolylammonium (3-PLA) as the ligand, and different lead 

halides. Additionally, a kNN model was trained to map the experimental conditions, as well as 

DFT-based descriptors of the precursors, to the success of the crystallization experiment. Another 

round of experiments was performed based on the predicted reaction parameters most likely to 

yield crystallization, and the authors were able to increase their rate of crystallization success 

from ~1% to ~10%. While the SDL still required human intervention to perform the crystallization, 
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Kirman et al. demonstrated a fully closed-loop platform for perovskite crystallization, using AI 

methods to learn from an experiment to suggest the subsequent experiments, and improving upon 

their original results. 

 

7.1.2 Nanoparticles 

Nanoparticles (NPs) are another type of commonly studied optoelectronic material. By controlling 

their size, shape, structure, and composition, the absorption/emission intensity and wavelength, 

and their self-assembly behavior, can be controlled. A variety of methods have been developed 

to control NP synthesis, many of which are suitable for automated synthesis platforms. One of 

the first examples of SDL for NP optoelectronics is from Krishnadasan et al. in 2007.34 The authors 

used a microfluidics platform to control the injection of CdO and Se solutions into a reactor. The 

goal of the SDL was to optimize the emission of CdSe NP to some target wavelength, and 

maximize the intensity, combined together in a dissatisfaction utility function. The goal would be 

to minimize the dissatisfaction as a function of the controllable parameters using the SNOBFIT 

algorithm,619 which proceeds as follows: (1) the search space is discretized around sampled data 

points, (2) quadratic models are fit around each point, (3) the next point to sample is the model 

minima, (4) the model is refit using new experimental data. Krishnadasan et al. demonstrated a 

closed-loop SDL capable of minimizing the dissatisfaction function in a 3D search space, varying 

the flow rates of CdO, Se, and the reaction temperature. The optimization trace is seen in Figure 

41, with the best experimental conditions identified at evaluation 71. In a related study from the 

same group, Li et al. studied the ligand-mediated synthesis of nanocrystals in cesium lead 

bromide NPs.620 Linear ligands of base:acid precursors are used to define the size and shape of 

the colloidal NPs. Rather than utilizing an automated experimental design, the authors 

systematically varied the reaction temperature and the ratio of base:acid ligands, and the effect 

on the photoluminescence spectra.  
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Figure 41: Schematic of the microfluidics platform, and the results of the SDL optimization from 

deMello and co-workers. (top) A schematic of the microfluidic SDL, with the channels etched onto 

a glass substrate. Precursors flowed through the chip using syringes, and the resulting NPs were 

characterized by emission spectra. (bottom) The dissatisfaction coefficient was calculated from 

the characterization of the NPs, and was minimized using SNOBFIT. The minimum in the 

dissatisfaction coefficient is shown as a function of experimental parameters (flow rate of 

precursors). Figure adapted with permission from Krishnadasan et al.34 Copyright 2001, Royal 

Society of Chemistry. 

 

Salley et al. developed a liquid-handling robotics platform for controlled seed-mediated synthesis 

of Au nanoparticles.621 Three different experiments were performed, manipulating not only the 

size, but also the shape of the synthesized nanoparticles. The fitness function maximized is 

dependent on the absorbance at particular wavelengths in the UV-Vis spectra. In order to close 

the loop, a GA was used to select for the next experimental conditions. In the first experiment, the 

authors maximized the absorbance of spherical AuNPs at 553nm, corresponding to a NP 

diameter of ~80nm, by manipulating the volume of dispensed precursors. Then they moved onto 

Au nanorods; starting from a randomly selected set of parameters, the platform synthesized 10 

generations of nanorods, with 15 experiments each, ultimately maximizing the fitness function, 

and converging close to the original parameters proposed in the literature.622 In the final 

experiment, the nanorods from the second experiment were used as the crystallization seed, 

generating NPs of octahedral shape, a shape with unknown optimal synthesis outcomes.  The 

authors later extended their study to include automated exploration and optimization of multiple 

levels of seed-mediated AuNP synthesis.623 Jiang et al. extended the previously described 

automated platform with in-line optical spectroscopy in UV-Vis-IR, allowing for high-throughput 

characterization. The various hierarchical levels of seed-mediated synthesis were also automated 

and controlled via directed graphs. The results are fed into a custom GA based exploration 

algorithm based on the Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) algorithm, as 

well as the sparsity of the synthesis conditions.624  
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Tao et al. further extended the use of microfluidics in the SDL development of metal nanoparticles 

by incorporating a machine learned surrogate model.625 Multiple rounds of closed-loop 

experiments were performed based on suggestions from the surrogate models trained on the 

results of previous experiments. The authors studied the formation of gold nanoparticles (AuNPs) 

under various concentrations of aqueous precursor compounds, and different reaction times. 

Solution concentrations were manually loaded into the platform based on the suggestions of the 

algorithm. Uniquely, the SDL optimized for multiple objectives calculated from the UV-Vis 

absorption spectra, such as the position, full-width half-maximum, and intensity of the peak, 

through the use of a novel BO algorithm which allows for hierarchical multi-objective 

optimization.279,443 The authors successfully demonstrate optimization of NP spectral properties 

for both large and small AuNP, using kernel density regression, with the kernels estimated via a 

BNNs.  

 

Most recently, Low et al. presented an SDL that optimized the synthesis of silver NPs (AgNPs) 

using a multi-objective optimization algorithm dubbed Evolution-Guided Bayesian Optimization 

(EGBO).626 They develop a fully automated SDL for seed-mediated AgNP synthesis, integrating 

microfluidics, inline hyperspectral imaging, and closed-loop optimization. The optimization goals 

were to target a desired spectral signature for specific optoelectronic applications, maximize the 

reaction rate for high throughput, and minimize costly seed particle usage. The various objectives 

were modeled by a GP surrogate. The EGBO algorithm then combines a batched BO with 

qNEHVI acquisition function with an evolutionary algorithm, leveraging selection pressure to 

balance exploration and exploitation toward the Pareto front. Applying EGBO to the nanoparticle 

synthesis and various synthetic test problems, the authors demonstrate improved performance 

over state-of-the-art methods in terms of hypervolume convergence, uniform coverage of the 

Pareto front, and constraint handling. They also investigate pre-repair and post-repair strategies 

for handling input and output constraints, underscoring the importance of careful constraint 

treatment in self-driving laboratories. 
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Figure 42: Schematic of the artificial chemist developed by Abolhasani and co-workers. 

Variations of this platform were used in future work from the group. (A) Continuous flow systems 

powered by a series of syringe pumps. A custom in situ spectrometer system was used to monitor 

the absorption and emission spectra. (B) A schematic of the workflow of the artificial chemist. 

Starting from random experiments, the flow synthesis and characterization were followed by a 

boosted ensemble of neural networks. Figure reproduced with permission from Epps et al.627 

Copyright 2020, John Wiley and Sons. 

 

Colloidal synthesis of NPs has also been applied to inorganic lead halide perovskite NPs.  Epps 

et al. developed a high-throughput microfluidic reactor platform with an in situ characterization 

module.627 Starting with CsPbBr3 quantum dots, the bandgap of the NPs was tuned via halide 

exchange reactions, via introductions of zinc halide precursors.628 The various precursors were 

varied to optimize for a joint fitness value comprised of the PLQY, emission linewidth, and the 

emission energy, which is related to the bandgap. The colloidal lead halide perovskite NPs were 

flowed through a custom in-line module capable of absorption and photoluminescence UV-Vis 

spectrometry (Figure 42). The results were fed into a boosted ensemble of neural networks and 

the next synthesis conditions were selected via BO. The authors compared the optimization with 

other commonly used methods, e.g., SNOBFIT, and CMA-ES, and found superior performance 

with the neural networks. Additional performance gain was observed after pre-training the 

networks with supplemental experimental data. In related work from the research group, Abdel-

Latif et al. modified the aforementioned platform to include multi-phase reactions (i.e., gas-liquid), 

allowing for in-series synthesis of CsPbBr3 quantum dots, and expanding the synthesis parameter 

space for lead halide perovskite NPs.629 To improvement the ensemble of neural networks, an 

initial round of 200 experiments were performed to pretrain the networks to predict the FWHM 

and energy of the photoluminescence spectra. Epps et al. further studied optimization of AI guided 

experimental design agent used in their SDL through a simulated experimentation platform.630 

Using 1000 experimental data points on metal halide perovskite NPs, a surrogate model 

comprised of a series of GP models served as the high-throughput experimentation platform, and 

the model, fitness functions, and acquisition functions were tested and compared.  
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Figure 43: MAOSIC platform with automated synthesis and characterization connected via a 

cloud platform. Synthesis was performed with a microfluidic reactor, followed by an in situ 

spectrometer. The samples were then transferred by a robotic arm to the CD spectrometer. All 

operation, data management, and optimization algorithms were done remotely and collaboratively 

in the cloud. Figure reproduced with permission from Li et al.119 Copyright 2020, Springer Nature. 

 

Li et al. developed the MAOSIC (materials acceleration operating system in cloud) in order to look 

at chiral perovskite nanocrystals.119 This class of optoelectronics have shown strong optical 

activity, and have possible applications in spintronics, sensing, or optical communications.631 

However, the controlling the chirality of such semiconductors is non-trivial. Li et al. utilized a 

microfluidics SDL with a cloud server for data storage and communication. A robotic arm is used 

for automated transfer of the synthesized NPs into a spectrometer, returning data on the 

absorbance and circular dichroism (CD) spectra (Figure 43). The SNOBFIT algorithm was used 

for experimental design, varying the temperature and the precursor concentrations. Synthesized 

NPs with strong CD intensities were extracted for further analysis via XRD and transmission 

electron microscopy (TEM).  

 

Vikram et al. applied the automated microfluidics approach to optimization of indium phosphide 

nanocrystals.632 In order to understand the kinetics of the growth and nucleation of the InP NPs, 

the SDL had a growth stage that spatially separates the various stages of NP synthesis for 

sampling and characterization. The experimental design of the SDL uses an ensemble of 25 

neural networks for uncertainty estimation, predicting the polydispersity, and bandgap of the NPs 

from the synthesis conditions. And while the kinetics were not involved in the SDL optimization, 

the additional data on the stages of InP growth were analyzed afterwards. 

 

Additional work on lead halide perovskite NPs was conducted by Bateni et al.,633 doping the 

nanocrystals with cations in a flow reactor similar to those discussed prior (Figure 42).627,629 
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Similar to the halide exchange mechanism, cation doping reactions were performed in the 

microfluidics platform through the introduction of manganese acetate, dissolved in 1-octadecene 

and activated with oleic acid. Spectroscopy data from the synthesized NPs were then fed into an 

ensemble of 100 neural networks, and the next experiments were suggested based on a greedy 

BO strategy. The closed-loop optimization campaigns optimized for the peak energy, and the 

Mn:exciton emission peak area from the photoluminescence spectra, producing on-demand 

bandgaps and doping levels of the lead halide perovskite NPs. In a recent study from the same 

authors, Bateni et al. demonstrated Smart Dope, an SDL for multi-cation doping of the lead halide 

perovskite NP system.634 CsPbCl3 quantum dots were doped with both Mn and Yb cations; the 

successful doping was confirmed through off-line characterization. Varying the reaction 

temperature and the precursor flow rates, the optical features in the absorbance spectra, 

measured using in situ spectrometry, were optimized as proxies for the reaction yield, and Mn 

and Yb emission. Experimental design was done using BO with a similar ensemble of neural 

networks, first pretrained on an unbiased dataset of 150 NP synthesis experiments. The optimized 

Mn-Yb doped NP resulted in an impressive PLQY of 158%. 

 

Zhao et al. studied colloidal perovskite NPs in a high-throughput platform consisting of a robotic 

arm, and a series of modules for pipetting, and UV-Vis spectroscopic analysis.635 While the 

authors still use liquid precursors, the robot is capable of selecting solutions based on the 

suggestions of a ML algorithm without human intervention, and has the potential to perform more 

complex chemical tasks. The authors considered two different systems, AuNPs, and lead-free 

double-perovskite NPs (Cs2AgIn1−xBixCl6). To start, a literature search was performed to 

determine the best starting concentrations for AuNP synthesis, and the best surfactants and 

solvents to use for perovskite NP synthesis. Based on these results, a series of NPs were 

synthesized while systematically varying the experimental parameters, generating a database of 

absorption and photoluminescence data for AuNPs and  double-perovskite NPs, respectively, 

along with data on the aspect ratio of the NPs from TEM and SEM images. The resulting datasets 

were then used to train a sure independence screening and sparsifying operator (SISSO) model, 

which identifies correlations between the target and compressed input descriptors.636 Based on 

the prediction of the models, the authors ran an additional iteration experiment, varying the 

concentrations and volumes of precursors to verify the predictions of the model. For AuNPs, the 

aspect ratios were measured, and for the double-perovskite NPs, the sizes of the crystals were 

measured; the created NPs matched the predictions provided by the SISSO model. However, no 

additional model training with the new results were performed, and no additional iterations were 

done. 

 

With further development of ML algorithms, more sophisticated methods of optimization were 

studied in the context of optimizing reaction conditions. Deep RL utilizes a neural network agent 

to decide the next experiments based on some policy. This policy is refined with each experiment, 

as the agent receives feedback from the environment, in this case the experimental result, in the 

form of rewards or punishments. Zhou et al. applied this optimization algorithm to finding the 

optimal conditions for organic reactions in a microdroplet reactor, as discussed in a previous 

section.334 The agent is a modified long short-term memory network (LSTM) capable of recursively 

learning from time-series data, such as data acquired over each iteration of experimentation. To 

https://doi.org/10.26434/chemrxiv-2024-rj946-v2 ORCID: https://orcid.org/0000-0002-8470-6515 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-rj946-v2
https://orcid.org/0000-0002-8470-6515
https://creativecommons.org/licenses/by-nc/4.0/


 

 
 

overcome overfitting in the low-data regime, the authors pretrained the network on simulated data. 

Not only was the pretrained neural network based optimizer capable of optimizing the yield of the 

reactions, the model was able to successfully optimize the SDL synthesis of silver NPs for 

maximal absorbance at a particular wavelength.  

 

In a more recent study, Volk et al. presented AlphaFlow, an RL-driven SDL capable of optimizing 

CdSe/CdS core-shell NPs with a modular microfluidics platform, optimizing the optoelectronic 

material over 40 experimental parameters.637 Experimental planning was done using an LSTM 

agent over 20 steps, with a belief model comprised of an ensemble neural network regressor and 

a decision tree classifier. The regressor maps the action-state pair to the corresponding reward 

(based on spectral data), and the classifier determines if the action-state pair is viable; both 

models are retrained over each iteration. The authors demonstrate AlphaFlow’s capability to 

optimize the sequence of injected precursors, and the volume and reaction time at each iteration.   

7.1.3 Molecules in solution 

In addition to nanoparticles and crystalline materials, optoelectronic molecules are often the 

precursor to forming thin films and devices. Drawing from a long history of organic chemistry, 

small organic molecules can be formed from a myriad of organic reactions with careful control of 

initial organic fragments, much like the precursor solutions in synthesis of nanoparticles. While 

molecules in solution do not behave exactly the same as when in thin film form or in devices, they 

are more easily characterized and serve as a proxy to more complex morphologies of 

optoelectronics. 

 

 
Figure 44: Schematic describing the closed-loop optimization campaign for discovery of organic 

solid-state lasers. (A) Multiple laboratories from across the globe ran asynchronous experiments, 

with experimental planning and results coordinated through an online server. (B) The parallel 
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asynchronous optimization visualized as a timeline, demonstrating how 4 different labs can 

coordinate experiments. (C) The organic molecules were created and the lasing performances 

were approximated using the emission gain factor. After closed-loop automated discovery, the 

best molecules were used to test thin-film device performance. (D) The chemical space was 

defined through the use of cap, bridge, and core fragments, linked together via Suzuki-Miyaura 

coupling reactions. Figure reproduced with permission from Strieth-Kalthoff et al.638 Copyright 

2024, American Association for the Advancement of Science. 

 

In 2023, Koscher et al.639 presented an SDL for designing dye molecules integrated with 

computer-aided synthesis planning, first exploring unknown regions through synthesizing diverse 

examples to ground the property models, then exploiting the trained models to realize top-

performing candidates. The platform leverages automated molecular generation using a graph-

completion model trained on existing data to propose new candidate molecules. Viable synthetic 

routes for these candidates are identified through automated reaction pathway planning with  

ASKCOS  (Autonomous Synthesis Knowledge Cloud Organized System).447,640 Ensembles of 

message-passing GNNs are employed for automated property prediction, evaluating candidates 

for specific optoelectronic properties like absorption, lipophilicity, and photostability. Robotic arms, 

batch reactors, and an automated liquid handler are integrated for automated synthesis to execute 

the recommended multi-step reaction pathways and isolate products. Crucially, the property 

prediction models are continually retrained with new experimental data in a closed automation 

loop, improving their accuracy iteratively. This platform demonstrated both the exploration of 

unknown parts of chemical space, and the exploitation of important optoelectronic properties in 

dye-like molecules. 

 

Strieth-Kalthoff et al. demonstrated the closed-loop discovery of organic laser molecules across 

three different SDL platforms, asynchronously.638 The chemical space is defined through the 

combination of organic fragment building blocks into organic pentamer molecules (Figure 44), 

similar to previous work done by Wu et al.641 in which the fragments are joined together through 

iterative Suzuki-Miyaura couplings. The synthesis was performed through a generalizable two-

step one-pot protocol, handled by automated experimental platforms. Absorption and emission 

spectra were recorded for the in-solution molecules, from which the lasing performance is 

estimated using the spectral gain factor.642 Results were then uploaded to a database for 

coordination with the other laboratories. For decision making, the authors used a GP model, with 

the molecules represented as embeddings extracted from a GNN. To overcome the issue of low 

amounts of experimental data, time-dependent density functional theory (TD-DFT) calculations 

were performed for the enumerated chemical space, and the descriptors generated from the 

calculations were used to train the GNN. In this transfer learning approach, the embeddings 

extracted from the GNN provided a stronger set of features for the GP regression task, which 

informed the subsequent experiments. Ultimately, this work discovered 21 novel gain materials 

with state-of-the-art lasing performance, of which the top three compounds were successfully 

tested in devices. 

 

The work of Angello et al. demonstrated an SDL focused on discovering organic optoelectronics 

with good photostability, particularly for organic photovoltaic (OPV) applications.643 Like in the 
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previously discussed works on automated organic molecule synthesis,610,638 the chemical space 

was predefined through the combination of molecular fragments through iterative Suzuki-Miyaura 

coupling reactions.428 In this case, the fragments were acceptor and donor complexes connected 

by a bridge fragment; this is a common design for OPV applications, with light-induced charge 

separation encouraged by the difference in local electronic energy levels. The platform was 

capable of synthesis, purification, and structural characterization of the final compounds. The in-

solution photostability was then approximated as a product of the spectral decay time, and the 

spectral overlap of the molecular absorbance and the solar irradiance spectra. In total, the closed-

loop synthesis and characterization was repeated 5 times, with the experiments guided by Gryffin, 

a BNN-based BO algorithm capable of handling categorical parameters (such as the selected 

fragments).443 After the optimization, the authors further extended the work by using the 

experimental results from the SDL to perform physics-informed discovery. Whole molecule DFT 

calculations were performed on the entire space of possible molecules, and the extracted 

physicochemical descriptors were used to train SVMs. In this way, the experimental results of the 

SDL campaign were extended to the entire chemical space, and the predicted best and worst 7 

molecules were synthesized to confirm the model predictions. 

 

7.2 Thin films 

Thin films offer another useful proxy for optoelectronic devices without the need for fabricating an 

entire device. Optoelectronic devices (e.g., light-emitting diodes, LEDs, photodetectors, and 

photovoltaics, PVs) are based on thin films (nm to µm in thickness) in order to simultaneously 

balance charge transport, and light absorption or emission. For example, in PV devices a thicker 

film maximizes the number of photons absorbed by the active layer. On the other hand, it is easier 

to extract charges from thinner films. Thin films are a useful proxy because they offer the ability 

to investigate larger length scales and the impact of processing and microstructure on important 

material properties such as photoluminescence, stability, or charge carrier mobility. Finally, thin 

films can be fabricated with relative ease through processes including spin-coating and thermal 

evaporation, which can be easily automated and integrated into an SDL. A detailed discussion of 

data-driven automated synthesis and characterization of thin film optoelectronics and electronic 

polymers is also provided in other perspective articles.644,645 

 

A study on the SDL synthesis of colloidal and thin film chalcogenide quantum dots handily 

demonstrates the strong effect the thin film configuration has on measured performance. 

Chalcogenides are a class of compounds primarily composed of chalcogen elements, such as 

sulfur, or selenium, combined with various other elements, and are often used in semiconductor 

technology and materials science. Stroyuk et al. used a novel method of using aqueous precursor 

solutions of chalcogenide NPs to form multinary quantum dots with composition Cu1-xAgxInSySe1-

y (CAISSe).646 Previous work from the authors demonstrate that this method produces NPs of 

similar spectral properties as those directly formed from precursor metal complexes.647 The use 

of aqueous forms of the precursors allows for automated synthesis using microfluidics platforms. 

By varying the precursor solutions, the produced NPs vary in Ag/Cu metallic composition (x), and 

S/Se chalcogen composition (y). By depositing and evaporating the colloidal mixture, solid thin 

films were formed on glass plates analyzed alongside the colloidal form. Several 
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photoluminescent properties were measured in the experiments, such as photoluminescence 

lifetime, energy, and rate constant. The experiments were repeated for the quantum dots with a 

shell composed of ZnS. Due to the relatively small parameter space of the synthesis, the authors 

simply interpolated between the data points, creating a 2D map of the best CAISSe compositions. 

In particular, we can see the quenching effects due to the different forms of the NPs, with the 

photoluminescence lifetime significantly suppressed for the thin film. A second iteration was not 

performed, however the authors described possible future work involving a ML approach for more 

complex experimental parameter spaces. 

 

MacLeod et al. demonstrate an SDL, named Ada, capable of optimizing thin film fabrication 

parameters.648 With a robotic arm, Ada is able to move samples between various stations that are 

responsible for the stages of thin film fabrication. The entire process starts with measuring out 

appropriate amounts of precursor solution, spin-coating the glass substrate with the material, and 

then annealing for a specific amount of time. Characterization involves measuring the reflection 

and transmission spectra in UV-Vis-NIR, and measuring the conductance. The material studied 

were thin films of spiro-OMeTAD, an organic hole transport material used in perovskite solar cells, 

doped with cobalt (III). By varying the dopant concentration, and the annealing time, Ada 

maximized the electron hole mobility in the material, approximated as a ratio of the conductance 

and the absorbance. The results were fed into the BNN-based Phoenics BO algorithm.649 Ada 

performs subsequent experiments based on suggestions from Phoenics, with the best parameters 

for global maximum hole mobility identified within 35 experiments. Exploiting the capabilities of 

Ada, the same group later demonstrated the autonomous optimization of synthesis parameters 

for the combustion synthesis of Pd thin films. Notably, MacLeod et al. extended Ada with an X-

ray fluorescence (XRF) microscope for localizing the Pd in the annealed film before performing 

the conductance measurements (Figure 45).650 Through the variation of annealing temperature 

and combustion fuel composition, the authors were able to optimize the Pareto front between 

annealing temperature and conductivity.  
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Figure 45: Configuration of Ada robot used by Berlinguette and co-workers to study the 

conductivity and annealing temperature of Pd films. A similar platform was used for the 

optimization of thin film fabrication. The modular nature of Ada allows for different instruments to 

be connected to the platform. (a) A robotic arm transferred the sample, after thin film deposition, 

from the 4-axis robot platform to the XRF microscope, and back to the 4-axis robot for 

characterization. (b) An expanded diagram of the 4-axis robot platform, as well as the various 

stages of operation of the automated synthesis and characterization. Figure reproduced with 

permission from MacLeod et al.650 Copyright 2022, Springer Nature. 

 

Advances in thin film devices often include multinary films, blends of multiple optoelectronic 

materials that can affect the stability and performance of the devices. Langner et al. developed 

an SDL capable of fabricating up to 6048 organic polymer films a day, with the experimental 

planning done by the Phoenics algorithm.651,652 Two quaternary systems with different 

compositions were explored (Figure 46). The first was composed of P3HT, PBQ-QF, PCBM, and 

oIDTBr, while the second replaced PBQ-QF with the more common PTB7-Th (i.e., P3HT, PTB7-

Th, PCBM, and oIDTBr). The liquid handling robotics platform drop-casts the organic 

semiconductors onto glass substrates, with variation in the four components that make up the thin 

films. The films were then exposed to metal halide lamps; absorbance spectra taken before and 

after the exposure were used to determine the photostability of the quaternary thin film blends. 
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The authors performed a grid-search method in addition to the BO experiments. They found that 

the full SDL with ML based experiment planning was able to find the blends that were as stable 

as the grid-search in 27 samples, on average, showing the efficiency of combining high-

throughput experimentation with data-driven experimental design. 

 

 
Figure 46: Compounds used in quaternary OPV films systems. Two mixes were studied by 

Langner et al.651: (1) P3HT, PBQ-QF, PCBM, and oIDTBr, and (2) P3HT, PTB7-Th, PCBM, and 

oIDTBr. 

Sanchez et al.321 proposes a workflow that combines structured GP models with custom physics-

motivated mean functions and automated synthesis methods for the optimization of hybrid 

perovskite thin films with tunable bandgaps. The approach aims to accelerate optimization of 

properties like bandgap, photoluminescence, and absorption spectra by guiding experiments and 

reducing the required number of thin film preparations. By incorporating domain knowledge 

through custom mean functions, the structure GP converges more rapidly to the underlying 

ground truth compared to classical GP. The article demonstrates the application of this approach 

to study the bandgap evolution, photoluminescence peak shifts, and absorption spectra changes 

of MA1-xGAxPb(I1-xBrx)3, a mixed-halide perovskite system relevant for tandem solar cells and 

tunable light emission. Experimental characterization included measuring bandgaps from 

absorption onsets, tracking photoluminescence peak positions and intensities, and monitoring 

absorption spectral features over a range of compositions. The workflow's adaptability to 

automated synthesis platforms is highlighted, enabling the exploration of higher-dimensional 

compositional spaces. The authors suggest that this approach could facilitate the discovery and 

optimization of advanced materials for optoelectronic applications in self-driving laboratories. 

7.3 Devices  

SDLs that can optimize whole devices are incredibly complex because they require integrating 

and automating multiple workflows with many highly complex experimental systems. However, 

this also makes it possible to directly test the performance of a device and control aspects from 

composition all the way to device architecture, which are rarely optimized simultaneously. As a 

result of the high degree of complexity of SDLs that optimize optoelectronic devices, there are 

only a few groups in the world with the resources to conduct such research. Despite this limitation, 

significant progress has been attained in recent years. 
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Figure 47. Summary of AMANDA Line One from the SDL work of Brabec and co-workers. (A) 

the OPV materials of interest, with PM6 as the donor, and Y6 as the acceptor. (B) The device 

structure, with the active layer containing the D:A compounds. (C) Some of the dimensions varied 

in the device fabrication. (D) Picture of the automated layer deposition platform used to fabricate 

the devices. (E) Schematic of the automated characterization methods, with additional off-line 

studies of the degradation. (F) Plots of the current density and absorption spectra measurements 

of multiple solar cells, demonstrating the reproducibility. (E) The workflow of AMANDA Line One. 

Figure reproduced with permission from Du et al.653 Copyright 2021, Elsevier. 

 

Du et al. in 2021 developed AMANDA Line One, a robotic platform capable of automated multi-

layer device fabrication and characterization.653 Rather than exploring chemical space, the device 

parameters were varied, similar to the group’s previous work in quaternary systems, described 

above. The platform used a robotic arm to move the sample between stations on AMANDA Line 

One for deposition of layers, thermal treatment, and optoelectronic measurements. The active 

compounds were PM6 and Y6, acting as donor (D) and acceptor (A) organic semiconductors, 

respectively. Various layers were deposited via spin-coating, with the PM6:Y6 active layer 

sandwiched between electron and hole conducting layers to form the device, shown in Figure 47. 

In total, 10 different processing parameters were varied in the device fabrication, optimizing for 

four figures of merit: open current voltage (Voc), short circuit current (Jsc), fill factor (FF), and the 

PCE. Due to the parallelized high-throughput nature of the platform, ~100 process conditions 

were systematically explored; without an experimental planning algorithm, the best fabrication 

parameters were identified within these experiments, producing a device with a PCE of ~14% in 
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ambient conditions, aligning with the results from the literature.654 The authors utilized the data 

from the automated platform to train a GP regression model, correlating spectral features obtained 

from the absorption spectra to the figures of merit, which gave some physical insight for the 

differences in performance. However, the platform is not yet integrated with an automated 

experiment planner, nor was a second iteration performed based on the feedback from the GP 

model predictions. 

 

The following year, Liu et al. published their work on BO of perovskite solar cell devices fabrication 

parameters.655 Motivated by the rapid spray plasma processing (RSPP)656 technique for high-

throughput fabrication of open-air perovskite cells, the authors aimed to find the best process 

parameters, varying the substrate temperature (°C), speed of the spray and plasma nozzles 

(cm/s), flow rate of precursor liquid (mL/min), gas flow rate into plasma nozzle (L/min), height of 

plasma nozzle (cm), and plasma duty cycle (ratio of time plasma receives DC power). A Guassian 

process was trained on batches of experiments, with the next iterations informed by the upper-

confidence bound (UCB) acquisition function, in a BO setting. In all, 5 rounds with 20 devices 

each were performed, with significant manual work involved in the manufacturing and testing of 

the devices. The authors were able to more quickly identify parameters for higher PCE devices 

using their ML-guided experiment planning than previous experiments led by human decisions. 

 

While both works demonstrate significant advancements in the automation of the hardware and 

software for device optimization, there is still a lack of a fully closed-loop SDL for process 

optimization or material discovery for optoelectronic devices. However, the pieces to the puzzle 

show great potential, and an optoelectronic device SDL may only be a few years away. 

 

7.4 Outlook and perspectives 

SDLs for characterizing optoelectronic materials in solution and in crystals are the most developed 

because of the ease of carrying out the requisite experiments. In-solution experiments, in 

particular, are the simplest to set up and execute, relying only on pumps and well-established 

spectroscopic equipment. SDLs for thin film characterization or device fabrication, on the other 

hand, require substantially more complex systems such as robotic arms for transporting samples 

and vacuum chambers for depositing interlayers and contacts. At the same time, these highly 

complex SDLs possess the greatest potential for accelerating design and discovery in 

optoelectronics. 

 

There are a number of challenges that stand in the way of fully realized SDLs for optoelectronic 

devices. Optimizing optoelectronic materials and devices requires taking into account numerous 

processes that occur at length scales from Å to µm. While this is challenging, larger quantities of 

data and improved ML or DL models can potentially overcome it. Next, the sheer number of 

possible variables – for example, selecting a material with appropriate properties, depositing a 

thin film and fabricating a device – can easily reach a design space that becomes challenging for 

BO. At the same time, the cost of the experiments is simply untenable for optimization algorithms 

such as RL or evolutionary algorithms. While a simple solution might be to optimize devices based 

on a handful of accessible materials, simultaneously optimizing material synthesis and processing 
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would be transformative. Synthesizing a small amount of a new material in order to tweak how it 

responds to processing conditions has the potential to significantly accelerate the development 

of optoelectronics. However, this remains a long term vision due to the many challenges 

enumerated in the Reaction optimization section on top of those discussed here.  

 

8 Energy Storage Materials 

Efficient energy storage systems are imperative to exploit the full potential of renewable energy 

sources, such as solar and wind, to reduce reliance on fossil fuels. The substantial amount of 

solar energy accessible on Earth could theoretically satisfy all human energy demands by 

powering photovoltaics and solar thermal systems. However, the intermittent nature of sunlight 

significantly limits the growth of solar power. For example, in California, peak solar power 

production during the day drives down the price of electricity, sometimes to negative territories, 

reducing the incentives for more installations.657 Efficient and powerful energy storage 

technologies can ensure a stable power supply by capturing the excess energy during the day 

and releasing it at night, mitigating reliance on fossil fuels. While optimization of battery designs 

and devices are possible, here we focus on the SDL development of new materials for improved 

energy storage. 

Electrochemical energy storage can be roughly divided into two broad categories based on the 

length of intended storage and speed of power delivery. Short duration energy storage 

technologies include capacitors and supercapacitors which charge and discharge within seconds 

to deliver high power. There are industrial efforts to automate the manufacturing of 

supercapacitors,658 however, SDL-driven discovery of new chemistry and materials is limited. 

Long-duration electrochemical energy storage is possible in batteries and redox flow batteries, as 

well as by converting the energy to liquid fuels such as alcohols or ammonia.659 Batteries store 

energy in the form of reversible chemical reactions in static and enclosed cells. They are relatively 

compact and inexpensive, suitable for mobile applications such as consumer products and 

electric vehicles. To scale up, cells can be assembled into battery systems, which require a 

dedicated battery management system. redox flow batteries (RFBs) also use reversible chemical 

reactions. However, the redox-active materials (RAMs) are solutions that can be stored in tanks 

and circulated through electrochemical reactors to generate power. RFBs can scale energy and 

power independently with higher tank volume and larger flow reactors, respectively, making them 

more scalable and cost-effective than batteries for grid applications, such as offsetting energy 

production and demand peaks.660 H2 gas and liquid fuels can store electrochemical energy off the 

grid, typically generated through non-reversible chemistry in flow reactors such as fuel cells and 

electrolyzers. Research in this area mainly focuses on cost-effective electrocatalysts that 

interconvert chemical energy and electricity.  

The major challenge in developing the aforementioned energy storage technologies lies in the 

need to develop specific materials and systems for different use cases. Compromises often have 

to be made to strike a balance between requirements. For example, lithium iron phosphate (LFP) 

batteries, a type of LIB, are widely used in electrical vehicles due to low cost, high thermal stability 
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and long cycling life. But they are not suitable for cell phones because of lower energy density 

than most other LIBs. Even with the same choice of electrode materials, there is still a large and 

high-dimensional parameter space to explore to optimize the performance of batteries, including 

electrolyte formulation, cell configurations and assembly methods. SDLs can effectively address 

these complex problems, and offer large time and resource savings compared to traditional 

manual or high-throughput experimentations. 

An ideal SDL for energy storage should be able to automatically design, make, assemble, and 

test energy storage technologies at different scales. An end-to-end platform for battery or flow 

battery development without human intervention is a major challenge. The industrial production 

of batteries has undergone significant automation to achieve high-throughput and capital 

efficiency. These processes aim to carry out precise actions to maximize consistency and 

productivity in large-scale manufacturing processes, at the cost of flexibility for research and 

development. SDLs for battery research should focus on the ability to test new materials and 

optimize electrochemical processes in batteries of standardized form factors. In comparison, flow 

batteries operate on a large variety of redox chemistries, many of which have not been scaled up 

to industrial relevant levels. Therefore, SDL for flow batteries should focus on the screening and 

scaling of molecules and materials, and the optimization of these materials in realistic flow 

reactors.   

 

8.1 Materials synthesis and characterization 

A major focus of energy storage technologies is to develop materials that can improve device 

performance and longevity. The synthesis of materials for energy storage requires low cost and 

high scalability because they are aimed to be produced at massive scales. Therefore, low-cost 

feedstocks such as metals, metal oxides, and products and wastes of petrochemical processes 

are greatly preferred. There is also a drive to simplify preparation steps, and minimizing the need 

for solvents and purifications. In comparison, there is a stronger motivation to characterize 

materials as detailed as possible, whether as synthesized, in situ or even operando, to fully 

understand underlying processes. SDLs for energy storage will likely have a relatively small 

synthesis component, but relatively complex characterization capabilities. 

The common characterization methods include XRD, SEM, and solid-state NMR for solid state 

materials; thermal analysis for polymers; and most importantly, various electrochemical methods. 

The ability to conduct electrochemical analysis in a fully automated fashion is the prerequisite of 

any SDL that studies batteries, flow batteries, fuel cells or electrolyzers. However, this is often a 

challenge due to the fact that most commercial potentiostats, the instrument that performs 

electrochemical tests, are expensive and only operate with closed-source softwares, making them 

difficult to integrate into automated workflows. 

An example of such effort is the Electrolab, a modular electrochemistry platform by Oh et al.  able 

to automatically formulate redox electrolytes and characterize them using cyclic voltammetry (CV) 

across various conditions without human intervention (Figure 48).661 Their platform integrates a 

liquid-handling robot to mix solutions and dispense them onto a series of cells containing an 
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electrode array connected to a potentiostat (Figure 48C). After measurements are done, the robot 

can also de-gas and clean the cells.  Electrolab was able to run a series of 200 CV scans in 2 

hours (along with cleaning) on a known redox species under a variety of concentrations and scan 

rates. They then demonstrated a grid search to find the optimal conditions for a supporting 

electrolyte when scanning a candidate redox polymer for a nonaqueous RFB. Given the 

modularity of their setup, it seems possible to extend to smarter data-driven search algorithms to 

find interesting molecular candidates or remove the need for exhaustive grid search in the future.  

 

 
Figure 48. Electrolab is an automated electrochemistry platform that can dispense solutions onto 

electrochemical cells and run cyclic voltammograms, all without human intervention. (A) A 

schematic and picture of the Electrolab gantry-style SDL. (B) The control system of the Electrolab. 

(C) The vital electrochemical modules, with a microfabricated “eChip” electrode array for CV 

scans. (D) Fluidic nozzle system controlled by the gantry that can dispense and dispose fluids, 

rinse and flush with solvent, and dry and sparge with Ar gas. Figure reproduced with permission 

from Oh et al. 661 Copyright 2023, Elsevier. 

 

In recent works initially introduced by Hickman et al.,303 they demonstrated a low-cost SDL 

platform for electrochemistry discovery. The platform combines a synthesis platform, MEDUSA, 

and open source potentiostat for end-to-end automated complexation and electrochemical 

characterization. Adapted to the ChemOS 2.0 orchestration framework,111 a closed-loop 

optimization of the redox potential of metal complexes for flow battery application was 
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demonstrated using the Atlas optimization library.303 The low-cost and open-source features of 

such a platform make it accessible to a broad scope of researchers, therefore allowing for the 

democratization of SDL for community-based research. 

8.1.1 Lithium-ion batteries 

Lithium-ion batteries (LIB) are among the most influential technologies today, enabling the 

establishment of two hundred-billion markets: portable electronics and the electric vehicles.662 

Since their commercialization in 1991, the energy density of LIBs has been improved by over 

200%, but as the market grow and demand diversify, there is a need to optimize their 

performance, stability, safety, cost, and environmental footprint. Much of the conventional 

workflow is centered on trial-and-error approaches to find better materials. Given the enormous 

space of possible electrolytes, it is difficult and unreliable to screen active materials by manual 

experimentation. This motivates the need for SDL systems to improve LIBs. Data-driven ML 

methods for battery design have already been demonstrated on limited experimental dataset, 

such as for electrolyte formulation,663,664  and battery lifetimes.665 In general, a fully automated 

workflow is difficult and expensive due to sophisticated engineering requirements, whereas semi-

automated platforms that investigate some aspects of the material are more feasible for 

researchers.666 

Electrolyte formulation is one of the key research areas of LIB research. Most LIBs nowadays 

require a liquid electrolyte to conduct electricity with minimal undesirable chemical reactions. 

Dave et al. developed a pipeline to automatically measure the electrochemical properties of 10 

different solutions in different compositions (251 total) for use in LIBs using a Bayesian optimizer 

they developed called Dragonfly.667 They later extended their pipeline to non-aqueous LIB 

electrolytes, which is a larger search space than aqueous electrolytes on account of co-solvents 

(although not necessarily a harder search space, as finding electrolytes that work in water is 

difficult).668 Their system could automatically create and characterize different solution 

compositions, although some human assistance was required when transferring electrolytes into 

pouch cells for characterization. Their search space consisted of over 1000 points over three 

axes: solvent mass fraction, co-solvent ratios, and salt molality. In both cases, Dragonfly found 

electrolyte compositions that were novel or non-intuitive and better than benchmark electrolytes. 

They also noted that their experiment planner resulted in a six-fold speed increase in finding the 

optimum compared to random searching by their robotics platform and postulated the same 

process would take far longer through manual search. Svensson et al. developed an automated 

screening platform for different electrolyte formulations, consisting of two platforms: a system to 

formulate and characterize electrolyte solutions and a system for coin cell assembly/disassembly 

and electrochemistry characterization, which are linked together using a robotic arm.669 While they 

only screened one electrolyte formulation as a proof-of-concept, their robotic platform was able 

to obtain similar measurements for assembled batteries compared with batteries assembled by 

hand, showing that this part of the battery development pipeline can be automated as well.  

 

Vogler et al.132 demonstrate a brokering approach to orchestrate modular and asynchronous 

research workflows, enabling the integration of multiple laboratories for LIB electrolyte 

development. They implement a passive brokering server called FINALES to mediate 
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communication between various tenants, which can be physical modules like experimental 

equipment, or digital modules such as machine learning agents or simulations software. The SDL 

comprises an experimental setup for automated synthesis and analysis of LIB electrolytes through 

a pump and valve system with stock solutions, and connected densimeter and viscometer. As 

another tenant, a simulation orchestrator using Pipeline Pilot for molecular dynamics simulations 

is used to calculate ionic transport coefficients, radial distribution functions, and other properties 

critical for electrolyte performance. An AiiDA interface provides ML models to predict low-fidelity 

conductivity values,670 and also for BO surrogate modeling. As a proof of concept, the authors 

aimed to maximize viscosity while minimizing density, using a GP optimizer combined with 

Chimera for multi-objective optimization. The demonstration successfully orchestrated these 

tenants across five countries, optimizing electrolyte formulations based on lithium 

hexafluorophosphate salt in carbonate solvents like ethylene carbonate and ethyl methyl 

carbonate. This SDL approach enables efficient screening and optimization of new electrolyte 

compositions to improve critical performance metrics like ionic conductivity, essential for 

developing next-generation LIBs. 

Another key research direction of solid-state electrolytes (SSE) for LIBs, such as metal oxide and 

polymer ion conductors, is to avoid the fire hazard and degradation issues caused by organic 

solvents. SSEs are also more compact than liquid electrolyte giving rise to higher energy density 

in batteries.671 However, finding solid-state materials with high ionic conductivity, low electrical 

conductivity, and high electrochemical stability is a major challenge.672 Currently there is no single 

best solid state electrolyte material for LIBs, partially due to limited understanding of lithium ion 

transport in bulk solids and at interfaces of different materials.673 Computationally, a number of 

works have developed frameworks to featurize solid state conductors and train ML models to 

either predict properties or recommend new conductors.674 He et al. developed a high-throughput 

screen platform which integrates a large database with modules that calculate ion-transport-

related properties and a hierarchical search algorithm to propose promising candidates.675 

Laskowski et al. reported ML-guided synthesis of Si-doped Li3BS3 using solid-state reactions, 

reaching superionic conductivity above 10−3 S cm−1, surpassing most reported SSEs.676 However, 

their discovery approach is neither automatic nor closed-loop. 

To our knowledge, fully automated close-loop SDL that discovers/optimizes solid-state electrolyte 

materials is much needed but very rare. One of the closest examples of an SDL was developed 

by Shimizu et al.677 The Connected, Autonomous, Shared and High-throughput (CASH) laboratory 

integrated several components of an automated SDL, with some human-in-the-loop steps in 

initializing the synthesis step. The authors minimize the electrical resistance of Nb-doped TiO2 

thin films by varying the oxygen partial pressure during the deposition of the film. Human 

intervention was required to load substrates and prepare the system for sputter deposition, after 

which the thin-film deposition and resistance characterization were carried out automatically. A 

robotic arm transferred the sample between the dedicated chambers (Figure 49). For 

experimental planning, a BO approach was utilized, with a GP regressor as the surrogate. The 

CASH SDL identified the global minimal resistance within 18 experimental samples for two 

different sputtering targets. The authors also outlined future plans to expand the characterization 

platform for multiple physical properties. 
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Figure 49. Illustration of CASH (Connected, Autonomous, Shared, and High-throughput) (A) 

proposed by Shimizu et al. (B) The system synthesizes thin films using deposition conditions 

commanded by BO, after which the film's resistance is evaluated.677 Adapted with permission 

from Shimizu et al.677 Copyright 2020, American Institute of Physics Publishing. 

 

Active electrode materials store ions over many charging-discharging cycles and determine the 

battery's cell voltage. The chemical space of possible active electrode materials is large, ranging 

from graphite and Si-metal alloys to mixed-metal oxides and phosphate salts. By 2010, there were 

over 25,000 real and hypothetical negative electrode materials investigated, but experimental 

verification remains a bottleneck.678 SDL for the discovery of new electrode materials does not 

yet exist, to our best knowledge. However, the development of high-throughput methods, such as 

through physical vapor deposition or solution-based methods, have allowed for combinatorial 

exploration of electrode materials, for example, negative electrode Si-metal alloys,679,680 and 

positive electrode Li-Ni-Mn-Co-O or Li-M-PO4.681 In addition to the high-throughput synthesis of 

these materials, there are various high-throughput characterization methods for both structural 

and electrochemical characterization of electrode materials.682,683 By performing characterization 

in large batches, combinatorial searches of the material space can generate large datasets for 

future data-driven applications.  

McCalla outlined efforts and engineering bottlenecks using automated workflows to accelerate 

the design of battery materials, including solid-state electrolytes and electrode materials.666 

Currently, semi-automated systems might be more feasible for most academic researchers 

because they balance speed, cost, and adaptability. Nonetheless, a review by Szymanski et al. 

discussed in detail the challenges and opportunities in close-loop optimization of inorganic 

materials for batteries, highlighting the importance of future SDLs for not only liberating human 

researchers from low-level manual tasks but also possessing the ability to explore new materials 

without being limited by the development of theories.683 
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8.1.2 Alternatives to LIBs 

There has been extensive work on alternatives to LIBs, such as Li-O2
684 and Li-S685 batteries, 

looking to achieve many folds higher energy density; and sodium-ion batteries, aiming to reduce 

cost and the reliance on metal resources such as lithium, cobalt, and nickel.686 SDL can help 

develop crucial materials for these technologies which are still in early phases of research. 

Matsuda et al. demonstrated an SDL for the automated electrolyte synthesis for Li-O2 batteries.686 

These batteries suffer from poor cycle performance due to low reaction efficiencies for the 

oxygen-generating (positive) and lithium-forming (negative) electrodes. As a result of the high-

throughput screening guided by ML, they found multi-component electrolyte additives for Li-O2 

batteries that gave rise to a stable solid electrolyte interface. Their automated experiments 

covered a total of 14,460 samples, with 4,320 samples allocated to random search, another 4,320 

for hill climbing involving the top 10 samples, an additional 4,320 for hill climbing with the top 50 

samples, and finally, 1,500 samples for BO (Figure 50). Combination of the hill-climbing method 

with BO resulted in significantly improved Coulombic efficiency with all top 10 samples exceeding 

91%.  

  

 
Figure 50: (left) Diagram illustrating the steps of the data-driven high-throughput automated 

robotic experiments designed to assess the Coulombic efficiencies of multi-component electrolyte 

additives.(right) Graph illustrating the average Coulombic efficiency (CE) achieved by the leading 

5 samples over the course of the experiments. The x-axis represents the experiment iteration, 

distinguishing between random search (black), hill climbing with the top 10 samples (red), hill 

climbing with the top 50 samples (green), and BO (blue). Figure adapted with permission from 

Matsuda et al.686 Copyright 2022, Elsevier. 

8.1.3 Redox flow batteries 

Since the debut of RFBs in the 1970s, researchers developed a variety of redox chemistries and 

technologies for RBFs, yet none of them have reached the scale of LIBs.  Prior to 2015, RFBs 
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primarily rely on inorganic salt RAMs, such as vanadium flow batteries (VFBs) and zinc bromide 

batteries. However, these batteries rely on scarce metal resources or highly corrosive operating 

conditions, which leads to a high cost of energy storage and maintenance. To achieve wide 

deployment, significant cost-reductions are needed to reach a target installation cost of $100/kWh 

and a levelized storage cost of $0.05/kWh.687 This is achievable by optimization of the electrolyte 

solution, and discovery of more cost-effective chemistries. 

Similar to LIBs, formulation of the electrolyte solution can result in enhanced performance. Gao 

et al. presented the Solubility of Organic Molecules in Aqueous Solution (SOMAS) dataset for 

advancing ML algorithms in the exploration of aqueous organic RFBs.688 In the case of non-

aqueous flow batteries which use organic solvents instead of water, mixed-solvent and mixed-

electrolyte systems can be explored. Deep eutectic solvents (DESs) are an attractive choice of 

solvent with low toxicity, broad commercial availability, and low costs.689 The properties of DESs 

can be fine-tuned with their composition. A recent study by Rodriguez et al. demonstrated a high 

throughput and data-driven search for solvent formulation using open hardware (Figure 51).690 

They first outlined 3477 hydrogen bond donor (HBD) and 185 quaternary ammonium salt (QAS) 

molecules identified as good candidate components for DES and synthesized DESs using liquid 

handling robots to combine these components. They tested several physical properties, including 

melting point, electrochemical potential window and ionic conductivity. It is worth noting this work 

is based on Jubilee,60 an open-source hardware machine based on 3D printing hardware with 

automatic tool-changing and interchangeable bed plates. 
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Figure 51. Schematic illustration of the high-throughput synthesis protocol for DESs used by 

Pozzo and co-workers. (a) The chemical space is defined by the QASs and HBDs used. (b) 

Solutions were prepared for the liquid handling robot (c). (d) The DES samples in 48-well plates 

were transferred to a dehydrator (e). (f) The samples were heated, and then (g) placed in a 

vacuum. (h) Final parallel analysis of the formed DESs. Reproduced with permission from 

Rodriguez et al.690 Copyright 2016, Institution of Chemical Engineers (IChemE) and the Royal 

Society of Chemistry. 

Another major research direction is to find low-cost electrolytes made from earth-abundant and 

widely available resources, and operate in mild aqueous environments. Over the past decade, 

researchers have explored various small organic molecules,691 polymers,692 and metal 

coordination compounds693 to address the limitations of inorganic salts. The structural flexibility of 

organic molecules has facilitated the exploration of a broad spectrum of chemical and physical 

properties. They also resulted in a massive chemical space that is difficult to navigate with 

traditional computational and experimental methods.  

Currently, there is no SDL capable of completing the DMAT cycles of new redox materials. The 

design step can be achieved based on the computational screening of different molecular classes, 

such as generating new analogues by combining core structures and making peripheral 

substitutions,694,695 or using generative models and principles of inverse design.696 For example, 

Jinich et al. computationally assessed 315,000 metabolic-inspired redox reactions697 while S. V. 

et al. showcased the de novo design of radical species as both catholytes and anolytes.698,699 

The above workflow narrows down the number of candidates that can be practically synthesized. 

However, the “make” capabilities in SDLs are restricted to producing molecules within the same 

class that can be synthesized under similar conditions. Additionally, precise electrochemical 

assessment of RAMs demands samples of high purity. Conducting tests in real batteries 

necessitates a considerable quantity of samples, prompting the need for scaling up synthesis (see 

the Reaction Optimization section). Recently, a new class of radical-based organic RAMs showed 

promise for higher-throughput exploration due to a simple SN2 substitution reaction scheme.700 A 

low-hanging fruit is the relatively straightforward synthesis of metal-ligand coordination 

compounds. Porwol et al. reported an autonomous chemical robot that can explore this process 

and discover the rules of coordination chemistry.474 This is an important step towards 

generalizable synthesis of different redox-active metal-ligand complexes, which can be used to 

generate suitable RAMs on demand. 

The test of new electrolytes focuses on the evaluation of key performance metrics, such as redox 

potentials, chemical stability and solubility. Liang et al. reported an important work on the high-

throughput and automated solubility determination.701 Solubility is important because it 

determines the highest possible energy density of the electrolyte solution. There is a significant 

computational challenge in quantitative prediction of the solubility of organic electrolytes. The 

authors assembled a robotic system in an argon glovebox to experimentally measure solubility of 

electrolytes. They showcased the effects of additives on solubility in aqueous flow batteries and 

the development of solubility databases for non-aqueous systems.  
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Most recently, Noh et al.702 of the same research group presented an integrated high-throughput 

robotic platform and BO approach for accelerated discovery of optimal electrolyte formulations for 

non-aqueous RFBs, specifically the RAM 2,1,3-benzothiadiazole (BTZ). The goal of the study 

was to improve solubility of BTZ in organic solvents. The SDL carried out automated sample 

preparation through powder and liquid dispensing with a robotic arm. The solubility of BTZ in the 

solvent was measured via quantitative NMR spectroscopy. The BO component employs a 

surrogate GP model, operating on molecular features derived from physicochemical properties 

and DFT calculations of the solvent and solute. The authors identified multiple binary solvent 

systems with remarkable solubility thresholds exceeding 6.20 M from a comprehensive library of 

over 2000 potential solvents. Notably, their integrated strategy necessitated solubility 

assessments for fewer than 10% of these candidates, underscoring the efficiency of their 

approach.  

8.1.4 Hydrogen and other fuels 

Other than enclosed LIBs and flow batteries, electrical energy can also be stored in the chemical 

bonds of fuels. H2 has the highest gravimetric energy density, or specific energy, of any known 

chemical, although specialized materials and conditions are needed for its safe storage and 

transportation.703,704 Liquid hydrocarbons offer a high volumetric energy density,705 making them 

easy to store and transport indefinitely. Currently, only hydrogen and methanol can be directly 

converted back to electricity in fuel cells.706 Ammonia is considered a good carbon-free energy 

carrier for the future,659 although the electrosynthesis of NH3 from N2 is still challenging. 

Hydrocarbons are challenging for direct fuel cell consumption due to CO poisoning and carbon 

deposition on catalytic surfaces. They have to be reformed to generate H2 for hydrogen fuel cells.  

The development of electrocatalysts is central to the development of both fuel cells and 

electrolyzers. One important topic is the sourcing of hydrogen from water via electrolysis using 

earth-abundant catalysts. Fatehi et al. outlined the design of an SDL that is designed to find such 

catalysts to address the sluggish oxygen evolution reaction in water electrolysis.707 They 

developed a framework for electrocatalyst SDLs consisting of three automated components: liquid 

handling, electrochemistry, and software that handles data and optimize experiment parameters 

(Figure 52). They use GP-based BO to find ideal material composition in a closed loop fashion. 

Their ultimate goal is to discover earth-abundant mixed-metal oxide catalysts for OERs in an 

acidic medium. They demonstrated the optimization of CoFeMnPbOx electrodeposited catalyst 

materials through multiple campaigns. Within hours, they were able to identify successful 

formulae for catalyst synthesis and operational conditions that are corroborated with results in 

scientific literature. One interesting aspect of this work involved developing proxy measurements 

for target properties since the ideal characterization machinery was difficult to incorporate into the 

SDL. Fatehi et al. created a proxy measurement for stability by holding the material at an 

overpotential for an extended period of time, and found that it was helpful for optimizing within a 

space of materials. 
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Figure 52. Diagram illustrating the SDL setup designed for the electrochemical deposition and 

evaluation of the performance of OER catalysts made of amorphous mixed-metal oxide. (a) The 

EMAP (Electrocatalysis material acceleration platform) is comprised of (1) a robotic arm with an 

integrated pipette holder, (2) weigh scale and gripper, (3) liquid dispensing carousel, (4) slide 

hotel, (5) syringe pumps, (6) pipette tip holder, (7) vial rack, (8) slide gripper and (9) automated 

electrochemical cell. (b) Zoomed-in view of automated electrochemical cells. Adapted with 

permission from Fatehi et al.707 

 

Another important work described the accelerated discovery of solid-state material in fuel cells 

which was discussed in a previous section on Solid state materials synthesis.514 The goal of the 

work by Ament et al.514 was to autonomously design bismuth oxide thin films. The automated 

fabrication of Bi2O3 films of different phases have possible applications to thin film solid oxide fuel 

cells.708 
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8.2 Device design, assembly and optimization 

8.2.1 Cell batteries 

 

 

Figure 53. A visual representation of the automated battery assembly system (AutoBASS) is 

depicted, showcasing part trays designed for the assembly of CR2023 cells. The components are 

selected from these trays and positioned onto the assembly post using a gentle silicone suction 

cup attached to robot A. The cells are constructed with a downward-facing anode cap, and gripper 

B is responsible for flipping them. Gripper B also moves the filled and assembled cells to the 

crimper. The extraction from the crimper is facilitated by a magnetic pickup mechanism. Figure 

reproduced with permission from Zhang et al.709 Copyright 2022, Royal Society of Chemistry.  

Another important area of automation in battery development is cell assembly. This is typically 

done manually in a research setting. Coin cells are relatively easier to prepare than other cell 

types and have low material costs, which are beneficial for quick battery prototyping.710 Zhang et 

al. developed AutoBASS, which automatically assembles 64 coin cell batteries per batch (Figure 

53).709 They found that their system produces consistent and reproducible results across batches 

and parameters for a single electrolyte, which is promising both for improving quality control and 

increasing the speed of lead discovery. Yik et al. created ODACell, a 4-robot system which 

combines electrolyte formulation with automated coin cell assembly.711 While their batch 

throughput is smaller than that of AutoBASS (16 vs 64), their system can formulate different 

electrolyte compositions using a liquid handling robot, potentially allowing for easier integration 

with optimization algorithms in the future to search for ideal compositions. ODACell was used to 

test the impact of contaminants (specifically water) in non-aqueous batteries. The degradation of 

batteries was measured after being contaminated with different water concentrations, and it was 

https://doi.org/10.26434/chemrxiv-2024-rj946-v2 ORCID: https://orcid.org/0000-0002-8470-6515 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-rj946-v2
https://orcid.org/0000-0002-8470-6515
https://creativecommons.org/licenses/by-nc/4.0/


 

 
 

found that the variance of the experiments increased at higher water concentrations when 

replicated multiple times. This illustrates how automation can effectively identify instances of 

failure or conditions characterized by elevated performance uncertainty. 

8.2.2 Flow reactors 

The flow reactors in flow cells, flow batteries, and fuel cells share some common design elements, 

which in themselves have an enormous parameter space to explore. An electrochemical flow 

reactor is intricate, typically composed of a complex stack of multiple layers, including separators 

(commonly ion-exchange membranes), electrode materials, current collectors, gaskets, flow 

plates that regulate flow fields, inlets of liquids and gasses, etc. In most cases, they are assembled 

manually, as is the system demonstrated by Li et al. The electrochemical flow reactor assembly 

is difficult to automate, but tests can be performed (1) in parallel reactors and (2) sequentially 

using the sample reactor by cleaning out the reactor before the measurement. The research goal 

on the device level is often the optimization of performance by searching the parameter space of 

reactor design (flow field and materials) operating conditions (electrical and flow system 

management), and exhaustive monitoring of device degradation or failure over time.  

 

Figure 54. A flow reactor setup for bicarbonate reduction converts captured CO2 into CO, which 

can be converted into other fuels. (A) A schematic demonstrating the electrochemical flow cell 

experiment, with corresponding reactions. (B) An expanded view of the flow cell within the 

stainless steel housing. (C) The flow plates used for the cathode and anode. Figure reproduced 

with permission from Li et al.712 Copyright 2019, Elsevier. 

As shown in Figure 54, the complex configuration of the electrochemical flow reactors often leads 

to reproducibility issues since slight misalignments and different applied pressures likely lead to 
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varied device performance. Currently, only fuel cells based on proton exchange membranes are 

known to be assembled automatically in industry, using highly expensive commercial setups.713,714 

For instance, Thyssenkrupp Automation Engineering GmbH demonstrated a commercial plant 

that produces one electrolyzer per second, or at least 50,000 fuel cell stacks yearly. Such 

manufacturing maturity and scalability has not been realized in the production of flow reactors for 

flow batteries and electrolyzers. 

Other than the exploration of the chemical space of RAMs, a secondary discovery process is 

conducted to explore the electrochemical parameter space of the RAMs, with a primary focus on 

optimizing battery performance. This exploration encompasses various factors, such as 

formulating electrolyte solutions, pairing posolyte and negolytes, determining properties of the 

membrane and electrode materials, designing the flow field, specifying flow rates, and other 

related considerations. The electrochemical parameter space is extensive and can become 

complex as more realistic factors are taken into account. While this exploration has been 

extensively conducted in a few inorganic systems, particularly in strongly acidic vanadium 

batteries, the realm of emerging organic RAMs operates under distinct conditions. This 

necessitates the use of new materials and battery designs for both aqueous and non-aqueous 

systems with different testing conventions.715 Recently, the Aziz group reported an important step 

toward high-throughput flow battery testing by miniaturizing the flow batteries using a modular 

design.716 

8.3 Outlook and perspectives 

Energy storage technologies play a crucial role in achieving sustainability objectives. Generally, 

there is a strong industry effort on automation which guarantees robustness in production and 

product reliability. There is also strong academic research on ML for sustainable energy that 

expands beyond electrified energy storage to more general electrochemical sciences.717,718 It is 

necessary to combine efforts in both communities, i.e., automation and ML expertise, to 

supercharge the discovery of advanced energy storage materials. For instance, LIB 

manufacturing has been highly automated in the industry. However, there is still a large design 

space for battery material discovery and optimization and battery design improvements. 

There exist a number of opportunities to advance SDLs in the field of electrochemical energy 

storage. Integrating operando spectroscopic and electrochemical analysis of materials and 

devices, especially in flow reactors, will provide additional training data and a better understanding 

of failure mechanisms. As with optoelectronic materials and devices, simultaneously optimizing 

(co-designing) the different component materials in a device is an important potential contribution 

of SDLs. In most cases, RAMs for flow batteries are developed separately from the membrane or 

electrode materials. This could result in a mismatch of new RAMs and existing reactors, and thus 

subpar battery performance. Finally, SDLs capable of carrying out large scale or long term 

experiments on top candidates generated by another SDL could provide most realistic data about 

materials and devices for large, long-term energy storage systems. 

We also predict the explosive growth of SDLs due to the rapid development of ML, automation, 

and significant investments from both private and government-led initiatives. The latter includes 
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campaign to automate the discovery of new batteries and flow battery materials, including the 

European Battery2030 initiative,719 the Department of Energy’s efforts at Argonne National 

Laboratory720 and Lawrence Berkeley National Laboratory,721 and Canada’s CA$200 million 

investment in the Acceleration Consortium.586  The U.S. government also recently announced a 

US$7 billion investment from the Department of Energy to build seven hubs of H2 infrastructure 

in the USA, which can significantly accelerate the implementation of SDLs for fuel-based energy 

storage. 

9 Conclusion and Outlook 

The evolution of SDLs within chemical and material science promises to usher in a transformative 

era of scientific exploration. In this review, we have provided a comprehensive overview of SDL 

systems, both past and present, for a variety of applications. Early autonomous systems have 

been enhanced by rapid development of better automated chemistry platforms, improved AI-

based experimental planning algorithms, and the availability of large, high-quality datasets fueled 

by advancements in information technology and computational power. Many Level 3 and 4 SDLs 

have already demonstrated impact in accelerating reaction process optimization, functional 

property refinement, and novel chemical and materials discovery.  Further development of both 

custom and general automation systems has also significantly reduced the barrier to entry. 

Progress towards next-generation SDLs signals a paradigm shift in which we believe they will 

transition from systems designed and operated by specialists to everyday tools, similar to those 

brought about by the development of other now ubiquitous tools such as NMR, HPLC, MS, XRD, 

TEM, and SEM. 

 

However, there are also important potential challenges in the future of SDLs. Most immediately, 

many contemporary SDL systems are very complex and expensive. Realizing the full potential of 

SDLs requires a concerted effort from the scientific community to embrace open-source software 

and hardware, democratizing access to these technologies and fostering collaboration. Numerous 

challenges must be addressed, including the development of robust and user-friendly interfaces, 

the establishment of standardized protocols and data formats, and adherence to the FAIR 

principles for data sharing. Effective implementation of FAIR data practices is crucial in enabling 

researchers worldwide to leverage the wealth of information generated by SDLs, and promoting 

transparency and reproducibility in chemistry and materials science. Initiatives, such as the 

creation of low-cost SDL prototypes and educational programs play a vital role in empowering 

future scientists to navigate and contribute to this evolving multidisciplinary field. The growing 

importance of ML, automation, and SDLs is also forcing us to rethink education and workforce 

development in the physical sciences, where curricula often remain unchanged from the late 20th 

century. We also envision independent non-profit organizations capable of developing the talent 

within the community, building the ecosystem for collaboration, and supporting a platform to 

include private industry in collaborations that respect proprietary concerns.  

 

As we continue development of SDLs, a key consideration lies in the role of human researchers 

in the scientific discovery process. As SDL technologies become more mature and widespread, 

the role of the researcher may shift toward translating the results from automated experimentation 
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into scientific understanding,722 which may be coupled with advances in explainable AI.723–726 We 

foresee that human ingenuity will remain important in the discovery of new chemical and physical 

phenomena, novel classes of materials, and advanced laboratory techniques and technologies. 

Furthermore, while the Level 5 SDL is the pinnacle of autonomous experimentation, the human-

in-the-loop Level 4 SDL will continue to be valuable, and perhaps even preferred, due to the 

adaptable and innovative nature of human problem-solving.727 For such diverse and 

multidisciplinary fields as chemistry and materials science, the flexibility and modularity provided 

by semi-autonomous systems will be vital to SDL development. Moreover, as the barrier to 

chemistry and materials discovery becomes lower, and the process becomes faster, the potential 

misuse of SDLs for malicious purposes underscores the societal responsibility of researchers, the 

need for ethical guidelines and the promotion of responsible implementation in industry. Striking 

a balance between economic considerations, ethical standards, and societal welfare is imperative 

to ensure the constructive and beneficial deployment of SDLs.  

 

While the challenges are formidable, the potential benefits of a fully realized SDL ecosystem are 

substantial, and such an ecosystem will be the future of chemical discovery. By fostering a 

collaborative environment, promoting transparency, and aligning efforts towards a shared 

objective, the chemistry and materials science communities can accelerate the pace of scientific 

discovery, explore new frontiers of knowledge, and drive innovation in ways that were previously 

unattainable. 
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