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Abstract8

Formulations, or mixtures of chemical ingredients, are ubiquitously found across material9

science applications, such as themoplastics, consumer packaged goods, and energy storage10

devices. However, finding formulations with optimal properties is difficult because of the11

non-obvious connection between the individual ingredient structures and compositions to12

downstream mixture properties. Computational approaches that could traverse the expan-13

sive design space offer a promising solution to finding formulations with improved properties14

while minimizing the number of experiments. In this work, we generated a large formula-15

tion dataset using high-throughput classical molecular dynamics simulations that resulted in16

more than 30,000 solvent mixtures ranging between pure component to five component sys-17

tems. We developed three formulation-property relationship approaches to create machine18

learning models which use the ingredient structure and composition as input to predict19

a formulation property: formulation descriptor aggregation (FDA), formulation descriptor20

Set2Set (FDS2S), and formulation graph (FG). We found that FDS2S, a new approach that21

uses a Set2Set layer to aggregate molecular descriptors of individual ingredients, outper-22

forms all other approaches in accurately predicting density, heat of vaporization (∆Hvap),23

and enthalpy of mixing (∆Hm) that were computed from molecular simulations. Feature24

importance analysis of FDA models reveal that specific substructures are important to pre-25

dicting these formulation properties, which is useful in the design of formulations to achieve26

target properties. When leveraging an active learning framework to iteratively suggest the27

next ingredient and composition to experiment on, we found that formulation-property re-28

lationships can identify formulations with the highest property values at least two to three29

times faster than randomly guessing. The results demonstrate that formulation-property30

relationships provide valuable insight to suggest the next experiment even when starting31

from a limited dataset of ∼100 examples. Our research demonstrates the utility of high-32

throughput simulations and machine learning algorithms applied to designing formulations33

with promising properties, which could broadly accelerate the design of new materials for34

a wide range of applications, such as improving the performance of liquid electrolytes for35

batteries, fuel mixtures for oil and gas, solvent additives for perfumes or paints, and more.36
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1. Introduction40

Formulations consisting of a mixture of chemical ingredients are crucial to a wide-range41

of material science applications. These mixtures have multiple chemical ingredients with42

well-defined compositional information, but their formulation properties are challenging to43

predict a priori because they emerge from non-obvious intermolecular interactions arising44

between multiple ingredients that heavily depend on both molecular structure and compo-45

sition. Hence, tuning the chemistry and composition for a desired formulation property is46

often performed with trial-and-error experiments, which is challenging given the large design47

space of possible chemical structures and compositions.48

As an alternative to experiments, simulating all possible interactions between molecules49

with classical molecular dynamics (MD) simulations is a promising approach to compute50

properties of multicomponent systems. For example, MD simulations have been used to51

study the impact of copolymer blends on polymer properties [1], cosolvents on reactivity52

[2, 3], and surfactants on cosmetic properties [4]. MD simulations have achieved success in53

not only accurately capturing experimental trends [5–7], but they have also provided physical54

insight into the underlying mechanisms that lead to the bulk properties of multicomponent55

systems, such as phase separation or solvation behavior [2]. Despite significant advances56

in MD, the utility of MD to simulate formulation systems is limited by the number of57

atoms in the system, whereby large multicomponent systems with more than ∼10 different58

components may be computationally expensive to simulate but highly prevalent in materials59

applications like paints, perfumes or fuel [8].60

Recent developments in data-driven machine learning modeling that could map chemi-61

cal structure to bulk properties have shown great promise to speed up chemical discovery,62

namely quantitative structure-property relationships (QSPR) [9]. QSPR modeling has pri-63

marily been focused on single molecule structure-property predictions, where expert-defined64

cheminformatics descriptors or graph representations are used to train machine learning65

models [10]. QSPR approaches for single molecules have shown great success in the last66

decade, especially in the small-molecule drug discovery field [9–11]. However, developing ac-67

curate QSPR models for formulation systems have not been well-explored. Recent literature68

have shown some success on applying machine learning to multicomponent systems, namely69

the use of various machine learning methods to predict thermodynamic properties [12], vari-70

ational autoencoders to predict compositions of ingredients [13], and graph neural networks71

to predict a variety of formulation properties, such as viscosities of binary mixtures [14], bat-72

tery performance [15, 16], or optical properties of dyes [17, 18]. However, the development73

of QSPR models for formulation systems (i.e. formulation-property relationships) have been74

largely hindered by the lack of publicly available, comprehensive datasets to evaluate these75

systems, which makes rigorous benchmarking of formulation-property relationships difficult.76

Given a sufficiently large formulation dataset, we can begin to tune accurate machine learn-77

ing models that can handle chemical information aggregated from multiple ingredients and78

varying compositions.79

In this work, we explore QSPR methods for formulation systems to identify the best80

formulation-property relationships that can accurately predict formulation properties. Given81
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the lack of publicly available experimental data, we generate a representative formulation82

dataset consisting of ∼30,000 miscible solvent mixtures computed by MD simulations, where83

ensemble-averaged properties from MD correlate well with experiments. We focus on the84

capabilities of formulation-property models in predicting three relevant formulation proper-85

ties, namely packing density, heat of vaporization (∆Hvap), and enthalpy of mixing (∆Hm).86

We then apply feature importance analysis tools to identify the top features relevant to87

formulation-property relationships for each of the formulation property, which provides use-88

ful insight into designing formulations for a desired property. Using the extensive formu-89

lation dataset generated by MD, we finally leverage an active learning framework to in-90

vestigate whether formulation-property models can identify the next best formulation to91

experiment on, starting from a small dataset size of 100 examples. This work highlights the92

use of high-throughput MD simulations and machine learning models for developing accu-93

rate formulation-property relationships, which broadly expands our capabilities to rapidly94

identify formulations with promising properties for materials applications.95

2. Methods96

2.1. Formulation dataset: Miscible solvents97

Fig. 1A shows the workflow of selecting formulation examples given the miscibility table98

of 81 solvents that were tabulated against 25 solvents. We first extracted miscibility tables99

from the CRC handbook to identify pairs of industrially relevant solvents that were miscible100

with one another from Ref. [19]. Fig. 1A shows an example of binary mixtures selected by101

using miscibility tables of acetone, benzene, and 1,2-ethanediol. In this example, acetone102

and benzene are considered a formulation since they are miscible, whereas benzene and 1,2-103

ethanediol were not considered a formulation since they are immiscible. One limitation of104

using miscibility tables is that they measure miscibility with equal volumes of two liquids,105

which does not inform us on whether the mixture is miscible when varying compositions.106

We further tested whether varying compositions of binary solvent mixtures result in any107

immiscibilities, and we observed that the majority of the mixtures are miscible based on MD108

simulations (see Supporting Information Fig. S1 and Fig. S2). For an N -component system,109

we assumed that if every solvent pair were miscible with one another, then the entire N -110

component system is assumed to be miscible and considered as a viable formulation. Fig. 1B111

shows the number of possible unique formulations as we increase the number of components112

up to six. We arbitrarily selected to study up to five components, which consists of a113

total of 19,238 unique formulations. By using experimentally derived miscibility tables,114

we designed a large formulations dataset that consists of miscible solvent mixtures, where115

homogenous solutions are important in a variety of material science applications such as116

battery electrolytes, chemical reactivity, and consumer packaged goods.117
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Figure 1: Formulation dataset generated from experimental miscibility tables. A Example of three solvents
from miscibility tables extracted from Ref. [19]. Pairs of solvents that were labeled “miscible” were used to
generate a formulation dataset. A total of 81 solvents were tabulated against 25 solvents for miscibility. B
Number of unique formulations and cumulative number of unique formulations possible against the number
of components using the miscibility table described in (A). The cumulative number of formulations means
the cumulative sum of formulations from 1 to N components.

Using the 19,238 unique formulations for up to 5 components, we further varied the com-118

position for binary and ternary systems as summarized in Table 1. We varied the composition119

for binary mixtures such that each component is varied from 20%, 40%, 50%, 60%, 80%.120

For ternary mixtures, we selected 60% of one component and 20% of other components, as121

well as equimolar mixtures. Given the large possibilities of variations for quaternary and122

quintenary mixtures, only equimolar systems were studied here. In sum, a total of 30,142123

formulation examples were studied in this work that span from pure-component systems124

(N=1) to quinternary systems (N=5).125
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N components Compositions #unique formulations #examples

1 {100} 81 81

2

{20,80}
{40,60}
{50,50}
{60,40}
{80,20}

716 3580

3

{20,20,60}
{20,60,20}
{60,20,20}
{33,33,33}

2680 10720

4 {25,25,25,25} 6122 6122

5 {20,20,20,20,20} 9639 9639

Total 19238 30142

Table 1: Summary of formulations studied in this work as a function of number of components. Various
compositions were varied as shown in brackets. For example, for binary mixtures, {20,80} means 20% of
component 1 and 80% of component 2. The number of unique formulations and the total number of examples
after variations of compositions are tabulated.

2.2. Classical molecular dynamics simulations126

We performed MD simulations for all 30,142 formulation examples to generate the formu-127

lation labels necessary to build formulation-property relationships. For all simulations, we128

used the Schrödinger’s Materials Science Suite (MSS) [20], which leverages the Desmond MD129

engine to rapidly speed up MD computations through GPU acceleration [21]. All molecules130

were parameterized with the OPLS4 force field [5]. For each system, we first constructed131

an amorphous simulation cell with approximately 10,000 atoms. The initial density of the132

system in the amorphous cell structure was 0.5 g/cm3.133

The system was equilibrated with the following procedure: (1) Brownian minimization134

for 150 ps; (2) a 0.5 ns NVT ensemble (Number of atoms, Volume, and Temperature are135

conserved) with 2 fs time step at temperature of 500 K and pressure of 1 atm; (3) 1 ns NPT136

ensemble (Number of atoms, Pressure, and Temperature are conserved) with 2 fs time step137

at temperature of 400 K and pressure of 1,000 bar; (4) 2 ns NPT ensemble with 2 fs time138

step at temperature of 300 K and pressure of 1 atm; (5) 5 ns NPT ensemble with 2 fs time139

step at the 300 K and pressure of 1 atm; (6) 10 ns NPT ensemble with 2 fs time step at140

temperature of 293 K and pressure of 1 atm. After this equilibration protocol, we take the141

average cell size of the last 20% of the previous step and subsequently perform 1 ns NVT142

ensemble with 2 fs time step at a temperature of 293 K. The final production run consists143

of a 20 ns NVT ensemble with 2 fs time step and temperature of 300 K, where the frames144

are stored at every 100 ps interval.145
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We extracted three MD descriptors from the last 10 ns of the production MD simulation:146

(1) packing density, (2) heat of vaporization (∆Hvap), and (3) enthalpy of mixing (∆Hm).147

Density was calculated by dividing the total molecular weight by the simulation cell volume148

and is reported in g/cm3.149

∆Hvap is the amount of heat needed to convert some fraction of liquid into vapor. ∆Hvap

was calculated from the energy of the periodic unit cell (Ecell) minus the sum of the N
individual molecules, Ei, averaged over the last 10 ns of the production MD trajectory, as
shown in Equation 1.

∆Hvap =

〈
Ecell −

∑
i

Ei

〉
+RT (1)

R is a gas constant with a value of 1.9872036×10−3 kcal K−1 mol−1, and T is the temperature.150

∆Hvap is reported in units of kcal/mol. While measuring ∆Hvap for mixtures is challenging151

to measure experimentally [22], ∆Hvap has been observed to correlate with temperature-152

dependent viscosities of pure liquids from MD simulations [23] and experiments [24]. There-153

fore, ∆Hvap is an informative property that may be correlated to other materials properties.154

∆Hm is a fundamental thermodynamic property of liquid mixtures that measures the155

energy released or absorbed upon the mixing of pure components into a single phase in156

equilibrium. ∆Hm was calculated using Equation 2 [25].157

∆Hm = 〈E〉m −
∑
i

xi 〈E〉i + PV E (2)

〈E〉m is the ensemble average cohesion energy of the mixture, xi is the mole fraction of158

component i, 〈E〉i is the ensemble average cohesion energy of pure component i, P is the159

pressure, and V E is the excess volume of the mixture. Previous work have use kinetic and/or160

potential energies to estimate ∆Hm [25, 26], but we observed that cohesion energy performed161

slightly better in agreeing with experiments (results are not explicitly shown here). V E is162

calculated using Equation 3.163

V E = 〈V 〉m −
∑
i

xi 〈V 〉i (3)

〈V 〉m is the ensemble average volume of the mixture, and 〈V 〉i is the ensemble average164

volume of pure component i. ∆Hm is reported in units of kJ/mol. We treat these three MD165

descriptors as relevant formulation labels that are applicable to material science applications.166

For example, density is an important property for battery applications since it dictates167

the battery weight and charge mobility; ∆Hvap is a property that effectively measures the168

cohesion energy of a liquid and has been previously observed to correlate with viscosity [23];169

and, ∆Hm is important for process design that dictates properties, such as solubility and170

phase stability.171

2.3. Formulation-property relationships172

All formulation-property relationships were built using the DeepAutoQSAR framework,173

Schrödinger’s automated molecular property prediction engine [27, 28]. In DeepAutoQSAR,174

feature and model hyperparameter selection are iteratively improved by Bayesian optimiza-175

tion based on the model performance on the previous training cycle. This work extends176
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the DeepAutoQSAR workflow to be able to encode formulations as inputs, where multiple177

molecules with compositions are inputted rather than only single molecule property pre-178

dictions. We focused on formulation-property relationships that have the following ideal179

characteristics: (1) composition must be accounted for in the model such that variations180

in compositions impact property predictions; (2) models must be permutationally invariant,181

such that changing the order of input molecules and compositions do not change the predic-182

tion output; and, (3) models are flexible to the number of components, such that a model183

trained with binary mixtures can be used to predict ternary mixtures, quarternary mixtures,184

and so on. These model characteristics are important for designing formulations because185

composition is crucial to a formulation, ingredients can be inputted in a random order, and186

the inclusion or removal of particular ingredients is commonly evaluated to measure the187

impact of individual ingredients to formulation properties.188

Fig. 2 summarizes three different approaches for developing formulation-property rela-189

tionships that satisfies the characteristics of an ideal model. Fig. 2A shows the formulation190

descriptor aggregation (FDA) approach where individual molecules are featurized, weighted191

by their corresponding compositions, then aggregated by performing a variety of statistical192

metrics like computing the mean, standard deviation, minimum, maximum, and median.193

These aggregated features are considered as formulation descriptors, which are then passed194

as inputs into ML models to predict formulation property. By aggregating with statistical195

approaches, the formulation descriptor captures the distribution of molecular properties of196

individual ingredients, which would be useful for property prediction. The FDA approach197

is analogous to matminer featurizers that perform statistical operations, such as averaging198

and standard deviation, to characterize inorganic materials by aggregating features from199

individual atomic types [29].200

Fig. 2B shows a similar descriptor-based approach as FDA, but instead of aggregat-201

ing with statistical approaches, the compositionally weighted descriptors are passed into a202

Set2Set algorithm [30] to create a formulation descriptor vector (FDS2S). The Set2Set op-203

erator uses a combination of long short-term memory networks to process sequential data204

and softmax function as an attention layer to aggreate multiple arrays coming from multiple205

molecules into a single array [30]. Set2Set outputs the same array even when the order of206

the input array is changed, thus satisfying the requirement of permutation invariance for an207

ideal formulation-property model. The final array from the Set2Set layer is then passed to208

a fully connected layer to predict the formulation property. The usefulness of Set2Set as a209

way to aggregate information has been seen in several previous works, such as aggregation210

of reactant or product information to predict bond disassociation energies [31] or hydrolysis211

energies [32].212

Fig. 2C shows a graph-based representation approach (FG), where atoms are nodes and213

bonds are edges. Each node vector consists of 75 atomic features and the composition of214

the ingredient. For each node, graph convolution operators aggregate information from the215

neighboring nodes and output a new atomic vector based on message passing across the216

molecular graph. The final learned atomic features are then outputted to a readout layer,217

which are then input to a fully connected neural network to predict the formulation prop-218

erty. Previous work have shown success in using graph-based representations for predicting219

viscosity of binary mixtures [14] and battery performance of electrolyte systems [15].220
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Figure 2: Schematic of formulation-property relationship approaches. A Formulation descriptor aggregation
approach (FDA) where two molecules are featurized to generate molecular descriptors that are compo-
sitionally weighted, then aggregated by computing the mean, standard deviation (std), minimum (min),
maximum (max), and median values. These aggregated features are considered as formulation descriptors
that are passed into machine learning algorithms to predict formulation properties. B Formulation descriptor
Set2Set approach (FDS2S) where two molecules are featurized to generate molecular descriptors that are
compositionally weighted, then these descriptors are aggregated using a Set2Set algorithm, and finally the
aggregated descriptors are passed into a fully connected neural network to predict formulation properties.
C Formulation graph approach (FG) where two molecules a represented as graphs (G) consisting of atoms
as nodes (V) and bonds as edges (E). For each molecule, 75 atomic features and composition are used in the
node vector. Graph convolutions and update operations are performed, followed by a readout layer and a
fully connected neural network to predict formulation properties.

For descriptor-based approaches (i.e. FDA and FDS2S), four distinct molecular featur-221

ization approaches were evaluated: (1) 200 RDKit descriptors; (2) Morgan fingerprints with222

a size of ∼500-2,060 and radius of ∼2-4; (3) 167-bit MACCS keys, which are 2D structure223

fingerprints commonly used to measure molecular similarity or virtual screening [33]; and,224

(4) 132 matminer descriptors. Featurization for RDKit, Morgan fingerprints, and MACCS225

keys were implemented using the rdkit package (Version 2023.9.5) [34], whereas matminer226
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descriptors were implemented using the matminer package (Version 0.9.0) [29]. All features227

were preprocessed with the following procedure: (1) constant features with variance of zero228

were removed; (2) correlated features with Pearson’s r greater than or equal to 0.90 were229

removed; and, (3) features were standardized by subtracting the mean and dividing by the230

standard deviation. For the FDA approach, the use of 200 RDKit descriptors as a featur-231

izer were omitted because of the poor generalizability to new formulations for specific data232

splits, which is likely because these descriptors are molecular size dependent (e.g. molecular233

weight). For the FG approach, 75 atomic features were used to featurize each of the heavy234

atoms. Atomic featurizations include one-hot encodings of atomic number, implicit valence,235

formal charge, atomic degree, number of radial electrons, hybridization, and aromaticity [28].236

The composition of the molecule was added as the 76th atomic feature to all nodes. Node237

features were preprocessed by removing correlated features with Pearson’s r greater than238

or equal to 0.90 and non-binary features were standardized by subtracting the mean and239

dividing by the standard deviation.240

For the FDA approach, four ML algorithms were tested: elastic net, support vector re-241

gression, extreme gradient boosting (XGBoost) [35], and fully connected neural network. For242

the FDS2S approach, only a model with the Set2Set layer [30] and fully connected neural243

network was used. For the FG approach, ten graph-based approaches were evaluated: Graph244

Convolution Neural Network (GCN) [36], Pytorch version of GCN (TorchGraphConv) [37],245

TopK [38], GraphSAGE [39], Graph Isomorphism Network (GIN) [40], Self-Attention Graph246

Pooling (SAGPool) [41], EdgePool [42], GlobalAttention [40], Set2Set [30], and SortPool [43].247

Different GNN models differ slightly by how they aggregate information based on successes248

from previous literature [40, 42]. Elastic net and support vector regression were imple-249

mented using the scikit-learn package (Version 1.2.1)[44]. XGBoost was implemented with250

the xgboost package (Version 1.7.4) [35]. Fully connected neural networks and graph-based251

models were trained with PyTorch (Version 2.0.1) [45]. The details of each ML algorithm252

and hyperparameters are summarized in Ref. [28]. All formulation-property training and253

prediction workflows are available as the “Formulation Machine Learning” panel within the254

Schrödinger’s Materials Science Suite, Release 2024-2 [46].255

2.4. Evaluation of formulation-property models256

Since the formulation dataset contains multiple entries with the same set of molecules with257

different compositions, we implemented an out-of-sample approach for data splitting, where258

unique formulations are iteratively introduced to the training set until it reaches 90% of the259

dataset and the remaining 10% of the data is placed in the testing set. Previous studies have260

emphasized that out-of-sample splitting is a better approach to measure model accuracy as261

compared to random splitting from an application standpoint because the model performance262

from random splitting may lead to over-optimistic model performance for datasets with263

repeated molecules where the same molecule could appear in both train and test sets [47].264

A learning curve was generated by setting aside 10% of the 30,142 formulation example265

dataset as the test set, where the test set is explicitly selected to be unique formulations266

that are not observed in the set used for training. Portions of the remaining 90% of the267

30,142 formulation example dataset was used to train formulation-property relationships,268

where the trained model was then used to evaluate the left-out test set. To alleviate possible269

biases of the random, out-of-sample train/test split, this procedure is repeated a total of270
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three times with different random seeds, where the average test set performance is reported271

and the uncertainty is estimated by computing the standard deviation of the three seeds.272

For model training, all featurizers and model hyperparameters are selected using Deep-273

AutoQSAR’s Bayesian optimization approach [28]. In this approach, the training set is274

partitioned into five sets used for five-fold cross validation (5-CV). For each of the five folds,275

one set is left-out as the validation set and the remaining sets are used to train the model;276

this procedure is repeated five times until all of the data instances are within the left-out277

set exactly once. DeepAutoQSAR uses the performance of 5-CV to evaluate the model’s278

ability to generalize to new examples, which is used by the Bayesian optimization algorithm279

to select the next best featurizer and model hyperparameters to test next. A total of 20 iter-280

ations of model training cycles were performed, and the three best-performing models with281

the highest 5-CV score are selected as the final ensemble model. For training sizes larger282

then 10,000 examples, the training set was randomly downsampled to 10,000 examples for283

hyperparameter tuning to improve computational efficiency, and the three best-performing284

models were re-trained with the entire training set as the final ensemble model. The best285

hyperparameters when training the formulation-property models with 90% of the dataset286

are tabulated in Table S2 of the Supporting Information.287

2.5. Feature importance of formulation-property models288

Feature importance of formulation-property models were only applied to the FDA ap-289

proach because pre-defined descriptors are easier to interpret than graph-based representa-290

tions. Given a trained formulation-property model, feature importance was calculated using291

the SHapley Additive exPLanations (SHAP) approach (shap package, Version 0.42.1), which292

is a game theory approach to quantify the contributions of single players in a collaborative293

game [48, 49]. Shapley values measure the impact of a formulation descriptor to an output294

property by including or excluding the descriptor across a set of instances. For all SHAP295

calculations, we use the test set instances to measure descriptor importance. The average296

magnitude of Shapley values is reported (i.e. Mean |SHAP|), and the sign of the importance297

is determined by computing the Pearson’s r correlation coefficient between the Shapley and298

descriptor values. Positive Pearson’s r between Shapley and descriptor values indicate that299

the feature positively contributes to the output property, whereas negative Pearson’s r indi-300

cates the converse. Additional details about the SHAP method could be found in previous301

literature [9, 50, 51]. For an ensemble of models, the aggregation of SHAP values are used302

to compute the Mean |SHAP|.303

2.6. Active learning with formulation-property models304

Active learning is an iterative supervised learning to guide materials design, where start-305

ing with a small dataset, a machine learning model is trained and evaluated on a large pool306

of examples to suggest the next candidates to measure propertes; the cycle is repeated until307

the desired property values are obtained. The benefit of an active learning approach is that308

it leverages data-driven techniques to make informed decisions on the next best candidates309

rather than random guessing. The suggestion of next candidates at each iteration are de-310

termined by the acquisition function (α), which often tries to balance between exploitation311

(sampling a space where a target property is achieved) and exploration (sampling a space312

where prediction uncertainty is high). We evaluated four acquisition functions that have313
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been studied in previous literature [52–54], where µ(x) is the average prediction of sample314

x, σ(x) is the prediction uncertainty of sample x (estimated by computing the standard315

deviation of the predictions from the individual models of the ensemble):316

1. Expected improvement (EI) acquisition function (αEI) select samples based on bal-
ancing both exploration and exploitation described in Equation 4 and 5.

αEI = zΦ(z) + σ(x)φ(z) (4)

z = µ(x)− f(x∗)− ξ (5)

where Φ is the normalized cumulative distribution function, φ is the normalized proba-317

bility distribution function, f(x∗) is the best performing prediction relative to the target318

objective, and ξ is the arbitrary constant that dictates the extent of exploration (ξ is set319

as zero for this work).320

2. Greedy acquisition function (αgreedy) selects samples based on maximizing the target321

objective described in Equation 6.322

αgreedy = maxµ(x) (6)

3. Most uncertain acquisition function (αuncertain) selects samples based on the highest323

prediction uncertainty described in Equation 7.324

αuncertain = maxσ(x) (7)

4. Random acquisition function selects samples randomly by assigning a random number325

from a uniform distribution to each sample.326

The performance of formulation-property relationships and these acquisition functions327

were evaluated by setting aside 10% of the 30,142 formulation example dataset as the test328

set, which were explicitly selected to be unique formulations that are not sampled by the329

active learning workflow. For each iteration of active learning, the performance of the test330

set is measured to evaluate the models’ ability to generalize to unseen formulations. Of the331

remaining 90% data, an initial batch of 100 examples were randomly selected as the training332

set. For each iteration, formulation-property models were trained, used to evaluate the left-333

out test set, and used to determine the next candidates to include in the training set based334

on the acquisition function. The active learning cycle was repeated with increments of 100335

examples until the training size reached 2,000 examples. The active learning performance336

was evaluated by computing the 10% left-out test set coefficient of determination (R2) as a337

measure of model generalizability and by computing the ability of the models to recapture338

the top 5% of structures in the training set as a function of training size. For each acquisition339

function, three individual runs were performed based on three random seeds to accurately340

measure the active learning performance. The reported performance is the average of the341

random seeds, and the uncertainty is measured by computing the standard deviation of342
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the performance of each seed. We arbitrarily selected to maximize all formulation proper-343

ties when evaluating the performance of formulation-property models in an active learning344

framework. For each training iteration, we enabled the DeepAutoQSAR framework to choose345

any of the three formulation-property relationships from Fig. 2. For featurizers, we enabled346

MACCS keys, Morgan fingerprint, and graph representations. For models, we enabled neural347

network models, Set2Set models, or GlobalAttention graph-based models [40]. These featur-348

izers and models were selected based on the best hyperparameters when trained with 90% of349

the dataset (see Table S2 in the Supporting Information). A total of 20 iterations of model350

training cycles were performed, and the three best-performing models with the highest 5-CV351

score are selected as the final ensemble model.352

3. Results and Discussion353

3.1. Generating large formulation dataset with classical molecular dynamics simulations354

We first validated whether simulation-derived properties can accurately capture experi-355

mental trends for industrially relevant solvents. Fig. 3A shows an example of acetone and356

benzene that are equally weighted and simulated with MD to compute formulation prop-357

erties. The simulation snapshot from Fig. 3A shows a well-mixed system of acetone and358

benzene, which is consistent with the experimental miscibility table in Fig. 1A. Fig. 3B359

shows the correlation coefficient (R2) between simulation-derived and experimental proper-360

ties for density, ∆Hvap, and ∆Hm. For all formulation properties, we observe good agreement361

between simulation-derived and experimental properties with a R2 ≥ 0.84. Fig. 3C-E shows362

the parity plot between simulation-derived and experimental properties. For density (Fig.363

3C), we compared the packing density of eleven pure solvents and observe a strong agree-364

ment against experiments with a R2 of 0.98 and root-mean-squared error (RMSE) of ∼15.4365

g/cm3. Similarly, we observe a strong correlation between MD simulations and experiments366

for ∆Hvap when comparing 34 pure solvents (Fig. 3D), which acheived an R2 of 0.97 and367

RMSE of 3.4 kcal/mol. Density and heat of vaporization are expected to be well-captured368

from MD simulations since the OPLS4 forcefield is parameterized to accurately predict these369

properties [5]; hence, the results in Fig. 3C and 3D are consistent with the literature in that370

these two properties are accurately predicted with MD simulations [5–7]. On the other hand,371

∆Hm is not used to parameterize the OPLS4 forcefield, but ∆Hm has shown good agreement372

between experiments and MD simulations for a variety of solvents, such as nonpolar-nonpolar373

mixtures (e.g. benzene and cyclohexane) and nonpolar-polar mixtures (e.g. benzene and374

ethanol) [25]. Fig. 3E shows that simulation-derived ∆Hm captures experimental trends375

for 53 binary mixture examples using the simulation protocol in this work. Given that the376

simulation-derived properties correlate with experiments for density, ∆Hvap, and ∆Hm, we377

validated that MD simulations can accurately capture formulation properties for solvent378

systems studied in this work.379
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Figure 3: Generating formulation labels using classical molecular dynamics (MD) simulations and validating
them against experiments. A Workflow to compute formulation properties by adding a 50 wt% acetone and
50 wt% benzene mixture into a MD simulation. Formulation properties are computed using the last 10 ns
of a production MD run. B Coefficient of determination (R2) between MD simulation and experimental
values for density, heat of vaporization (∆Hvap), and enthalpy of mixing (∆Hm). N denotes the number of
datapoints used for each validation. C Simulation-derived versus experimental density for eleven pure solvent
examples. D Simulation-derived versus experimental ∆Hvap for 34 pure component examples. Experimental
densities and ∆Hvap were taken from the CRC handbook [19]. E Simulated versus experimental enthalpy
of mixing for 54 binary mixture examples. Experimental enthalpy of mixing values were extracted from
Ref. [25]. All scatter plots contain coefficient of determination (R2) and root-mean-squared error (RMSE)
between simulation and actual values in the lower right corner. A diagonal gray dashed line is shown as a
visual guide. The examples used to compare the formulation labels between MD simulations and experiments
are tabulated in Table S1 of the Supporting Information.

Since MD simulations can accurately capture experiment trends, we then used MD sim-380

ulations to generate a large formulation dataset that is useful to benchmark formulation-381

property relationships. Using the miscibility table to identify miscible solvent systems rang-382

ing from pure component systems (N = 1) to quinternary systems (N = 5) as described in383

Fig. 1, we performed 30,142 MD simulations and extracted the density, ∆Hvap, and ∆Hm384

from the production simulations (see the Methods section for simulation details). Fig. 4385

shows the box and whisker plot of density, ∆Hvap, and ∆Hm computed from MD simula-386

tions as a function of number of components. Fig. 4A and Fig. 4B shows that as the number387

of components increase, the distribution of density and ∆Hvap are more narrow as compared388

to pure component systems (N = 1). These results show that pure component systems389

have a large range of properties as compared to when mixing the individual components,390

and mixtures of solvents can be used to fine-tune properties to highly specific values that391

is not possible when only using pure component systems. Similar to density and ∆Hvap,392

Fig. 4C shows that increasing number of components results in narrower ranges for ∆Hm.393
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However, ∆Hm differs from the other two properties in that pure component systems will394

have ∆Hm = 0 because ∆Hm of a mixture is relative to its corresponding pure component395

systems. Hence, binary systems (N = 2) have the largest range of ∆Hm values. Since ∆Hm396

is a relative mixture property, it may be a challenging property to predict with formulation-397

property relationships as the model will need to learn differences between the mixture and398

its individual components. We use the 30,142 formulations with the three property labels399

from MD simulations to evaluate whether the formulation-property approaches in Fig. 2 can400

be used to create accurate models.401

Figure 4: Distribution of the formulation labels from classical molecular dynamics simulations. Box and
whisker plot between formulation labels versus number of components are shown for (A) density, (B) heat
of vaporization (∆Hvap), and (C) enthalpy of mixing (∆Hm). Gray grid lines are shown as visual guides.

3.2. Performance of formulation-property models402

We next evaluate the performance of the different formulation-structure approaches (Fig.403

2) on predicting the three formulation properties extracted from MD simulations (Fig. 4).404

The performance of each formulation-property approach is measured by using a learning405

curve, where a machine learning algorithm is iteratively trained with incrementally increasing406

training sizes to determine its prediction accuracy on a left-out test set as a function of407

training set size. An ideal formulation-property model should be able to accurately predict408

formulation properties at both small (∼100 examples) and large (>1000 examples) dataset409

sizes, especially since many formulation datasets are often data limited. For example, a410

recent study had fewer than 200 electrolyte formulations that were experimentally available411

to evaluate machine learning approaches on predicting battery charging efficiencies [15],412

which makes benchmarking data-driven approaches for formulations challenging. By using413

MD simulations to generate formulation labels, we can rigorously analyze the performance414

of formulation-property relationships at both small and large dataset sizes, which would be415

useful to identify formulation-property approaches that are accurate for a broad range of416

training sizes.417

Fig. 5A-C shows the learning curve performance of FDA, FDS2S, and FG models when418

predicting density, ∆Hvap, and ∆Hm. Each learning curve shows the test set R2 as a function419

of training set size. When the target property is density (Fig. 5A), all formulation-property420

models achieve test set R2 ∼ 0.90 when >500 training examples are available, which demon-421

strates that the formulation-property models can accurately predict density with relatively422
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small dataset sizes. When the training size is less than 100, FDS2S models outperform FDA423

and FG approaches in predicting the test set density. Of the three target properties, density424

is the easiest property for formulation-property models to predict, which may be due to425

its general monotonic behavior as a function of composition for most binary mixtures [25].426

Fig. 5B shows that formulation-property models can also accurately capture ∆Hvap with427

a test set R2 ≥ 0.80 when >500 training examples are available. Interestingly, FG models428

struggle to predict ∆Hvap when the training size is less than 200, whereas descriptor-based429

models (FDA and FDS2S) achieve test set R2 ≥ 0.60 at this limited data region. The poor430

prediction accuracy of FG models is likely due to poor representations generated when using431

graph convolution neural networks when limited data is available. Pre-defined descriptors432

that can better represent the material at the small data scale have been shown to outperform433

graph-based models, where graph models that automatically learn molecular representations434

through convolutional operations require sufficient amount of training data to obtain infor-435

mative molecular features [9, 23]. Similar to density, FDS2S outperforms the other models in436

predicting ∆Hvap across all training sizes. Fig. 5C shows that formulation-property models437

generally struggle to predict ∆Hm until the training size is at least ∼5,000 examples, which438

achieve a test set R2 ≥ 0.80. FDS2S performs the best in predicting ∆Hm for majority439

of the training sizes. At the large training sizes, FDS2S and FG models outperform FDA440

models, which highlights the strength of deep neural networks and learned representations441

at the large data scale when predicting complex properties. ∆Hm is a relative property of442

a mixture to pure component systems, which adds to the complexity of creating accurate443

formulation-property relationship as differences of the mixtures to pure component systems444

are not explicitly defined in formulation-property relationships. One possible way to im-445

prove the predictions to ∆Hm is to encode descriptor differences between multiple species446

to improve the predictions of relative properties, such as taking differences between reactant447

and product feature space to improve the prediction of bond dissociation energies [31] or448

hydrolysis energies [32], which is a subject of future work.449

Given that FDS2S demonstrated high test set R2 for all formulation properties in both450

small and large training sizes, we further analyzed the performance of FDS2S on the test451

set. Fig. 5D-F shows the parity plot between predicted and actual values for density, ∆Hvap,452

and ∆Hm of the left-out test set when FDS2S models are trained with 90% of the data (i.e.453

training size of 27,127). Fig. 5D and Fig. 5E shows that formulation-property models can454

accurately predict density and ∆Hvap for new formulation examples with test set R2 close455

to unity. Furthermore, Fig. 5E shows that properties like ∆Hm, which are challenging to456

predict, can also be accurately predicted with a test set R2 of 0.96 when a large number457

of data points are available. The results in Fig. 5 demonstrate that the FDS2S approach458

achieves high accuracy in predicting all the three formulation properties, and the FDS2S459

approach ranks higher than the FDA and FG approach in consistently creating accurate460

formulation-property models for both small and large dataset sizes. From the best of our461

knowledge, the FDS2S approach to create accurate formulation-property models have not462

yet been reported in the literature, and the results from Fig. 5 suggests that FDS2S is a463

promising approach to leverage the strengths of traditional descriptor-based approaches (e.g.464

FDA) at the small data scale and strengths of graph-based approaches (e.g. FG) at the large465

data scale to creating accurate formulation-property models regardless of dataset size.466

15

https://doi.org/10.26434/chemrxiv-2024-4lff6 ORCID: https://orcid.org/0000-0002-7051-9778 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-4lff6
https://orcid.org/0000-0002-7051-9778
https://creativecommons.org/licenses/by-nc/4.0/


Figure 5: Performance of formulation-property relationships. Learning curve showing the left-out test set
coefficient of determination (R2) as a function of training size when formulation-property models are trained
to predict (A) density, (B) heat of vaporization (∆Hvap), and (C) enthalpy of mixing (∆Hm). The average
test set R2 of three independent runs are shown, and the uncertainty is estimated by computing the standard
deviation of the individual runs. Dashed black line is drawn at test set R2 of 1 as a visual guide. The parity
plots between predicted and actual values of the test set when FDS2S models are trained with 90% of the
data (27,127 examples) are shown for (D) density, (E) ∆Hvap, and (F) ∆Hm. For parity plots, the test set
R2 and root-mean-squared error performance is shown in the bottom right and a dashed black diagonal line
is drawn as a visual guide.

3.3. Feature importance of formulation-property models467

Since machine learning models achieved a high test set accuracy (R2 ≥ 0.90) when trained468

with 90% of the data, we next sought to identify the top relevant features that were useful469

to predict density, ∆Hvap, and ∆Hm. Of the formulation-property approaches shown in Fig470

2, the FDA approach is the most straightforward to perform feature importance analysis471

because predefined descriptors are more easy to interpret than graph-based representations.472

The FDA approach perform similarly to FDS2S and FG approaches at 90% of the training473

data (see training size of 27,127 in Fig. 5A-C), hence we would expect the top molecular474

descriptors relevant to formulation properties from the FDA approach might be similar to475

the FDS2S and FG approaches. We selected to use the SHAP approach to analyze the top476

features for FDA models because the SHAP approach is model agnositic that enables the477

evaluation of feature importance across different machine learning algorithms and have been478

observed to capture relevant top features in previous works [23, 50, 51, 56, 57] (see Methods479

section for details on how SHAP is computed).480
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Fig. 6 shows the top three descriptors using the SHAP approach for FDA models when481

trained to predict density, ∆Hvap, and ∆Hm; example structures of individual solvent in-482

gredients are highlighted to the right of each descriptor. Fig. 6A shows that MACCS483

keys features were the most relevant features to accurate predictions of density. The mean484

MACCS keys of 160 and 114 contribute negatively to density, where the removal of low485

molecular weight methyl and ethyl groups lead to an increase in density. Conversely, the486

mean MACCS key of 107 contributes positively to density, which means that inclusion of487

high atomic weight halogen elements lead to an increase in density.488

Fig. 6B shows that Morgan fingerprints were the most useful features to accurately489

predicting ∆Hvap. The mean of the top Morgan fingerprints are all positively correlated490

with ∆Hvap, namely the inclusion of benzene rings, hydroxyl groups, and methylene units.491

∆Hvap is related to the cohesion energy of a solution; hence, favorable interaction energies492

between molecules in a mixture would typically lead to high ∆Hvap values. Therefore, the493

inclusion of benzene rings may lead to π-π stacking, which is well-known to be a favorable494

interaction in the literature [58]. Furthermore, the inclusion of hydroxyl groups lead to favor-495

able hydrogen bonding, and the inclusion of long methylene chains could lead to favorable496

nonpolar interactions [59]. Interestingly, Morgan fingerprint of index 46 with fingerprint497

size 952 (mean-MorganFingerprint_46_952) shows a bit-collision between benzene and hy-498

droxyl groups, where the bit-fingerprint is set to unity for multiple atomic environments.499

While bit-collisions lead to information loss of distinct atomic environments, the importance500

of hydroxyl groups are re-iterated in mean-MorganFingerprint_536_1050, which suggests501

that bit-collisions did not significantly impact the interpretability of top features. In sum,502

∆Hvap can be increased by including ingredients with benzene groups, hydroxyl groups, or503

methylene units.504

Similar to ∆Hvap, Fig. 6C shows that Morgan fingerprints were top features relevant505

to predicting ∆Hm. Interestingly, all top features relevant to ∆Hm are nitrogen containing506

compounds, and they all contribute negatively to ∆Hm. Previous literature have reported507

mixtures with nitrogen containing compounds, such as diethylamine and ethanol, have neg-508

ative ∆Hm values with increasing diethylamine content [25], which is consistent with the509

top features in Fig. 6C. Therefore, ∆Hm can be potentially tuned by including or removal510

of ingredients with nitrogen-containing groups. The results in Fig. 6 demonstrate that top511

features related to a property can be extracted from formulation-property models, which can512

be used to fine-tune the selection of ingredients that satisfy a desired property criteria.513
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Figure 6: Feature importance from FDA models. Top three most important features measured as the
average magnitude of SHapley Additive exPLanations (SHAP) values (i.e. Mean |SHAP|) are shown for FDA
models trained with 90% of the 30,142 formulation examples to predict (A) density, (B) heat of vaporization
(∆Hvap), and (C) enthalpy of mixing (∆Hm). Positive Mean |SHAP| indicates that the descriptor positively
contributes to the formulation property, whereas negative Mean |SHAP| indicates the converse. The average
Mean |SHAP| of three models of an ensemble is reported and the uncertainty is estimated by the computing
standard deviation of the Mean |SHAP| values. For descriptors, prefixes with “mean” and “std” means
that the compositionally weighted descriptor of individual ingredients was aggregated with average and
standard deviation operations, respectively. For MACCS keys descriptors, the index of the MACCS key
is shown in the right-most value (e.g. mean-MACCS_107 means the 107th MACCS key). For Morgan
fingeprint descriptors, the index and total length of the bit-fingerprint is shown as the two right-most values
(e.g. mean-MorganFingerprint_46_952 means a Morgan fingerprint index of 46 with a fingerprint size of
952). SMARTS pattern for MACCS keys, Morgan fingerprints, and example structures with red highlighted
patterns are illustrated to the right of the SHAP plots.
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3.4. Active learning using formulation-property models514

While formulation-property models are highly accurate with a large amount of data and515

can be subsequently used to extract important features relevant to a property, formulations516

design is often performed at the small data scale (∼100 examples). Hence, we next eval-517

uated whether formulation-property models are useful for identifying top candiates at the518

small data scale starting from 100 examples using an active learning approach. The typical519

approach for active learning is by using a surrogate model (i.e. a machine learning model)520

to train on a small subset of data and predict on a large pool of candidates; then, based on521

the predictions of the model, suggest the best candidates to evaluate in the next experiment.522

After the best candidates are evaluated, they are added as part of the training data, then523

the loop is repeated a set number of iterations until the desired property criteria is reached.524

The selection of best candidates from the machine learning predictions is determined based525

on the acquisition function. We evaluate four acquisition functions: expected improvement,526

greedy, most uncertain, and random acquisition functions (see Methods for details).527

Fig. 7 shows the performance of using formulation-property models in an active learning528

framework to identify formulations with the highest density, ∆Hvap, and ∆Hm. Fig. 7A-C529

shows the R2 performance of formulation-property models on a 10% left out test set as a530

function of training size when using four distinct acquisition functions. Fig. 7D-F shows the531

percentage of formulations within the top 5% of density, ∆Hvap, or∆Hm that were selected to532

be in the training set during the active learning iterations. For density as a target property,533

Fig. 7A shows that all acquisition functions result in a test set R2 of ∼0.90 when the534

formulation-property model with less than 500 examples. The greedy acquisition function535

has a lower test set R2 as compared to the other acquisition functions, suggesting that536

the greedy acquistion function results in models that are not as generalizable as compared537

to random selection. However, even though the greedy acquisition function results in less538

accurate models, Fig. 7D shows that the greedy acquisition function captures close to 90%539

of the top 5% density values after the training sizes reach ∼1,500 examples. Conversely, the540

expected improvement and most uncertain acquisition functions only achieve ∼20% of the541

top density candidates at the same training size. The random selection acquisition function542

is expected to be the worst with less than 5% of the top density values identified. At 2,000543

examples, the greedy acquisition function identified formulations with the highest density544

values 14-folds higher than when randomly selecting formulations.545

Similar to density as a target property, Fig. 7B shows that all acquisition functions result546

in ∆Hvap models that achieve a test set R2 of ∼0.90 when the training set contains 500 exam-547

ples, and the greedy acquisition function generally has lower test set R2 as compared to the548

other acquisition functions. Interestingly, Fig. 7E shows that greedy, expected improvement,549

and most uncertain perform similarly in identifying formulations with the top 5% ∆Hvap. At550

the training size of 2,000, ∼15% of the top ∆Hvap is identified for all acquisition functions551

other than random selection; the latter only identified ∼5% of formulations with the the top552

∆Hvap values. Irrespective of expected improvement, greedy, or most uncertain acquisition553

function choice, we observe that formulation-property models can improve the identification554

of formulations with high ∆Hvap values 2-3 times faster than random selection.555

Fig 5 demonstrated that ∆Hm was the most challenging to predict out of the three556

properties for formulation-property models. Fig. 7C shows that varying acquisition functions557

do not dramatically improve generalizability of formulation-property models to predict∆Hm;558
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the most uncertain acquisition function achieved a highest test set R2 of ∼0.80 when the559

training size is 2,000 examples, slightly higher than the random acquisition function. The560

greedy acquisition function struggled to create a generalized ∆Hm model and achieved a test561

set R2 of ∼0.40 for all training sizes. Fig. 7F shows that the most uncertain acquisition562

function performed the best in identifying the formulations with the highest 5% of ∆Hm563

values, followed by expected improvement and greedy acquisition functions. Interestingly,564

the most uncertain acquisition function are not geared towards finding the maximum∆Hm as565

compared to expected improvement and greedy acquisition functions, but the most uncertain566

acquisition function still outperformed the other two approaches by choosing candidates567

with the highest prediction uncertainty. The results in Fig. 7F show that even though568

the formulation-property models may not accurately predict ∆Hm at the small data scale,569

prediction uncertainties of ∆Hm could be useful to identify formulation candidates that are570

outside the domain of the training data and may have extrema of ∆Hm values. The most571

uncertain acquisition function achieves 2-3 times higher likelihood of selecting formulation572

candidates with high ∆Hm values as compared to random selection.573

Fig. 7 demonstrates that formulation-property models are useful to identifying the next574

formulation candidates as compared to random selection irrespective of the acquisition func-575

tion used. The selection of acquistion functions to use for an active learning workflow is576

highly dependent on the target property and how it is related to the underlying formulation577

structure. For simpler properties to predict with high test set R2 close to 0.90, such as den-578

sity or ∆Hvap, the greedy or expected improvement acquisition function generally perform579

well in identifying formulations with high property values. Conversely, for difficult to predict580

properties, such as ∆Hm, most uncertain and expected improvement acquisition functions581

that accounts for prediction uncertainty are better at identifying formulations that may582

be outside of the training domain and represent the extrema of property values. Overall,583

formulation-property relationships can serve as a powerful approach to rapidly screen for-584

mulations even with limited data, provide insight into important ingredient characteristics585

relevant to a target property through feature importance analysis, and provide suggestions586

of next best candidates in an active learning workflow to iteratively identify formulations587

satisfying a property criteria.588
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Figure 7: Active learning using formulation-property models. Left-out test set coefficient of determination
(R2) as a function of train size when training formulation-property models to maximize (A) density, (B) heat
of vaporization (∆Hvap), and (C) enthalpy of mixing (∆Hm) using an active learning approach for expected
improvement, greedy, most uncertain, and random acquisition functions. 10% of the 30,142 formulation
examples were randomly selected as the left-out test set such that the test set contains unique formulations
that are unseen in the training data pool. The percentage of formulations that are within the top 5% of
the target property as a function of training size is shown for (D) density, (E) ∆Hvap, and (F) ∆Hm for
the same acquisition functions used in A-C. The reported R2 and top 5% is an average of three iterations of
active learning runs with different random seeds, and the uncertainty of R2 is the standard deviation of the
different seeds.

4. Conclusion589

In this work, we developed formulation-property relationships that input ingredient stru-590

ture and composition to predict formulation properties, which is broadly applicable to a wide-591

range of materials applications. First, we developed a formulation dataset by identifying mis-592

cible solvent mixtures based on miscibility tables and varied the number of components from593

pure to five component systems that results in a total of 30,142 formulation examples (Fig.594

1 and Table 1). We developed three distinct formulation-property relationships, namely the595

formulation descriptor aggregation (FDA), formulation descriptor Set2Set (FDS2S), and the596

formulation graph (FG) approach (Fig. 2). Then, we performed high-throughput classical597

molecular dynamics (MD) simulations to generate formulation properties, such as density,598

heat of vaporization (∆Hvap), and enthalpy of mixing (∆Hm), all of which correlate with599

experimental data for specific solvent mixtures with a high correlation coefficient R2 greater600
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than ∼0.84 (Fig. 3). Using the large, simulation-derived formulation dataset, we found that601

increasing the number of components generally results in a narrower and denser property602

distribution, which suggests that mixtures of ingredients can allow for fine-tuning capabilities603

of the property space that is not possible with single component systems alone (Fig. 4). We604

benchmarked the different formulation-property approaches and found that the FDS2S ap-605

proach performed the best in accurately predicting density, ∆Hvap, and ∆Hm at both small606

and large data scales, achieving a test set R2 ≥ 0.96 on all properties when trained with607

90% of the data (Fig. 5). Analyzing the top features related to the formulation properties608

revealed that particular substructures were important, such as the inclusion of heavy halogen609

atoms to increase formulation density, inclusion of benzene, hydroxyl, or methylene groups610

to increase ∆Hvap, and inclusion of nitrogen-containing compounds to decrease ∆Hm (Fig.611

6). Finally, when using formulation-property relationships in an active learning framework612

(Fig. 7), we observed that these models can rapidly identify the highest density, ∆Hvap, and613

∆Hm values at least 2-3 times more likely than random guessing, which demonstrates that614

these formulation-property models are useful for designing formulations even when starting615

with a small dataset of less than a hundred examples.616

The results highlight the strengths of both high-throughput MD simulations and machine617

learning approaches in identifying formulations with promising properties. MD simulations618

can rapidly compute formulation properties that accurately correlate with experiments, hence619

enabling a way to accurately generate formulation properties for a wide-range of material620

systems. These simulation-derived properties were useful to benchmark machine learning621

workflows to identify accurate formulation-property relationships. Aside from benchmark-622

ing purposes, these simulation-derived properties could be used as inputs into formulation-623

property relationships to predict more challenging formulation properties, such as viscosity624

of binary mixtures [14], charging efficiency in battery electrolytes [15, 16], fuel characteristics625

[8], or drug solubility in solvent mixtures [60]. Future work will focus on expanding the utility626

of these formulation-property relationships by encoding physics-based properties to improve627

model accuracy, enabling the optimization of formulations using the formulation-property628

relationships, and evaluating feature importance tools on graph-based formulation-property629

models.630
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