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Abstract
Approximately 40% of marketed drugs ex-
hibit suboptimal pharmacokinetic profiles. Co-
crystallization, where pairs of molecules form a
multicomponent crystal, constitutes a promising
strategy to enhance physicochemical properties
without compromising the pharmacological activ-
ity. However, finding promising co-crystal pairs
is resource-intensive, due to the vast number of
possible combinations. We present DeepCocrys-
tal, a novel deep learning approach designed to
predict co-crystal formation by processing the
‘chemical language’ from a supramolecular van-
tage point. Rigorous validation of DeepCocrystal
showed a balanced accuracy of 78% in realistic
scenarios, outperforming existing models. By
leveraging properties of molecular string repre-
sentations, DeepCocrystal can also estimate the
uncertainty of its predictions. We harness this
capability in a challenging prospective study, and
successfully discovered two novel co-crystal of
diflunisal, an anti-inflammatory drug. This study
underscores the potential of deep learning – and
in particular of chemical language processing – to
accelerate co-crystallization, and ultimately drug
development, in both academic and industrial con-
texts.

1. Introduction
Co-crystallization enables the optimization of the pharma-
cokinetic properties of active pharmaceutical ingredients
(APIs) [1,2]. Via co-crystalization, supramolecular interac-
tions between the API and another molecule (coformer)
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are established to form a multicomponent crystal [3] (Fig.
1a). The resulting co-crystal preserves the bioactivity of the
lead molecule while enhancing desirable properties, such
as solubility, and stability. Owed to the high number of
possible combinations, finding the optimal coformer for a
given API is far from trivial, and ultimately relies on a labor-
and time-intensive process based on trial and error [4,5].

Machine learning – which extracts relevant information
from chemical datasets [6] – can aid in prioritizing API-
coformer pairs for co-crystallization [7–11]. Current methods,
however, might struggle to generalize to previously unseen
molecules [12]. This is in part due to limitations of training
datasets, which are unrealistically imbalanced towards exist-
ing co-crystals [13]. Therefore, there is a need for approaches
that are more robust to data imbalance and demonstrate
stronger generalizability to previously unseen molecules.

Here we introduce DeepCocrystal, a novel deep learning ap-
proach designed to learn the “supramolecular language” of
co-crystallization. Supramolecular chemistry can be viewed
as a language [14–16]: atoms (‘letters’) form molecules
(‘words’), whose combinations give rise to supramolecular
interactions (‘sentences’). Building on this analogy, we ex-
tend current chemical language processing techniques [17–20]

— which predict molecular properties from single string
representations [21,22] — to predicting supramolecular inter-
actions between pairs of molecules (i.e., co-crystallization).

DeepCocrystal represents single molecules (API and co-
former) as SMILES (Simplified Molecular Input Line Entry
Systems [21]) strings (Fig. 1b), whose chemical informa-
tion is combined to predict whether they form co-crystals.
Thanks to intriguing properties of the SMILES language [23],
DeepCocrystal addresses the data imbalance and estimates
prediction uncertainty, pivotal for prospective applications.

In this work, DeepCocrystal shows superior performance
and generalization capacity than existing approaches [24–27].
When applied prospectively to identify coformer candidates,
all high-certainty predictions of DeepCocrystals were con-
firmed experimentally – leading to the identification of two
previously unreported diflunisal co-crystals. To the best of
our knowledge, this is the first application of “supramolecu-
lar language” processing to predict co-crystallization – open-
ing novel opportunities in supramolecular chemistry.
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Figure 1. Overview of key elements of DeepCocrystal for co-crystal prediction. a) The co-crystallization between an active pharmaceutical
ingredient (API) and a coformer involves the formation of a multicomponent crystalline structure (co-crystal), in which the API and
coformer are held together by non-covalent interactions. b) SMILES strings, which convert a molecular graph into one string. One
molecule can be represented by many different SMILES strings, based on the starting (non-hydrogen) atom and the chosen direction
for graph traversal. c) DeepCocrystal represents API and coformers via SMILES strings and passes them through 1-dimensional (1D)
convolutions. Fully-connected layers are then used to predict the co-crystallization output as a continuous number between 0 and 1, which
can be then discretized (with a cut-off of 0.5) to perform a prediction (“negative” pair if below, and “positive” pair otherwise).

2. Results and Discussion
2.1. DeepCocrystal architecture

DeepCocrystal has at its core Convolutional Neural Net-
works (CNNs) [28] for ‘chemical language’ processing.
CNNs are a class of deep learning models commonly used
for processing sequences of text [29]. Via convolution –
which involves sliding a filter (kernel) over the input text –
CNNs can capture information and features at different lev-
els of abstraction, and progressively aggregate it to provide
a prediction. DeepCocrystal leverages SMILES [21] strings
as an input, which are derived from traversing a molecular
graph from a non-hydrogen atom, and annotating atoms and
bonds with specific symbols (Fig. 1b). CNNs have been pre-
viously applied to predict the properties of single molecules
from their SMILES strings [17–19].

DeepCocrystal extends traditional chemical language pro-
cessing approaches beyond the ‘one-molecule-one-property’
paradigm, to learn simultaneously from the SMILES strings
of pairs of molecules (i.e., API-coformer pairs). In particu-
lar, DeepCocrystal uses two separate CNNs to learn ‘latent
representations’ of the input molecular structures (of each
API and coformer), and then aggregates this information
via a fully-connected neural network, to predict the poten-
tial co-crystallization of the input pair (Fig. 1c). Via the
DeepCocrystal architecture, the co-crystalization potential
of any molecular pair is predicted as a number between 0
(negative) and 1 (positive).

In this work, every API-coformer pair was presented to the
network twice, once per every separate CNN, as previously
suggested [11,27]. This strategy allows artificially increasing
the number of inputs available for model training. Moreover,
we experimented with different SMILES string variations,
to serve as input for DeepCocrystal. In particular, we ex-
perimented with (a) canonical SMILES, which provide a
univocal string per every molecular structure via standard-
ization algorithm [30], and (b) ‘randomized’ SMILES, which
can provide a different SMILES string based on the cho-
sen starting atom and the graph traversal route (Fig. 1b).
Randomized SMILES strings were used to perform ‘data
augmentation’ [23], i.e., to artificially inflate the number of
data available for training by using multiple SMILES for a
single molecule.

2.2. DeepCocrystal training and validation

To train and validate DeepCocrystal, we collected and
manually curated a dataset of experimentally-determined
co-crystal structures, from (a) the Cambridge Structural
Database [31] and (b) existing co-crystal literature [27,32–36].
Moreover, a set of in-house experiments was conducted
to measure the co-crystalization of additional molecular
pairs. The collected dataset comprises a total of 6632 API-
coformer pairs, of which 5240 (79%) are co-crystals (“pos-
itive”) and 1392 (21%) are physical mixtures (“negative”,
i.e., no observed co-crystallization).
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The training, validation and internal test sets were created
by stratified splits of this dataset (10 randomly sampled
subsets with 10% molecules in validation and test folds).
In addition to using canonical SMILES as input, we also
experimented with different levels of augmentation: (a)
[positive:negative = 1:4], where one randomized SMILES
string is used for every molecule in a “positive” pair, and
four SMILES are used for molecules in “negative” pairs,
and (b) [positive:negative = 2:7], where a two-fold and a
seven-fold augmentation are used for the SMILES strings of
positive and negative pairs, respectively. Each model variant
was evaluated for its classification performance [37] (Table 1),
i.e., via Recall (ability to correctly classify positive pairs, Eq.
1), Specificity (ability to correctly classify negative pairs,
Eq. 2) and Balanced Accuracy (overall performance, Eq. 3).
These metrics were computed by considering predictions
lower than 0.5 as a “negative”, or “positive” otherwise.

All DeepCocrystal variants reached a Balanced Accuracy
above 88%, with the 2:7 augmentation performing the best.
When looking at class performance, different trends can be
observed. In identifying “positive” pairs, canonical SMILES
lead to the best performance (up to 5% increase in recall).
All DeepCocrystal variants have a good capacity to rec-
ognize “positive” pairs, with 1:4 and 2:7 augmentations
showing comparable performance. DeepCocrystal trained
on canonical SMILES showed a significantly higher Recall
than the two augmented models (Wilcoxon signed-rank test,
p < 0.05). On the contrary, the 2:7 SMILES augmentation
significantly improves the ability to identify negative pairs
(Wilcoxon signed-rank test, p < 0.05), resulting in an 8%
increase in specificity compared to the canonical version.
This evidence highlights how SMILES augmentation on the
negative class, can aid in mitigating the data unbalance.

2.3. Model benchmarking

The predictive performance of DeepCocrystal was then eval-
uated on an external test set, which was manually curated
by combining public data with in-house experimental co-
crystallization results of selected APIs (see Materials and
Methods). This external set contained 364 pairs (129 are
co-crystals and 235 non-co-crystals), with a lower substruc-
ture similarity [38] to the training set than the internal test
set (Supporting Fig. S1) – constituting a more challenging
validation set.

DeepCocrystal was benchmarked with four existing ap-
proaches: (i) CCGNet [27], which relies on graph neural
networks to perform a prediction; (ii) CC-Descriptor ML,
which relies on an array of ‘classical’ machine learning
models trained on co-crystal descriptors [26]; (iii) Descriptor-
DNN, based on a fully-connected neural network trained on
molecular descriptors [24]; and (iv) Fingerprint-DNN, a fully-
connected neural network trained on extended connectivity

fingerprints [25,39]. To ensure comparability and account
for the lack of provided code, data, and/or hyperparame-
ters, we re-implemented and trained Descriptor-DNN and
Fingerprint-DNN, using the same dataset as DeepCocrystal
(see Materials and Methods).

DeepCocrystal consistently outperformed the benchmarks
(Table 1). DeepCocrystal, in its augmented 2:7 configu-
ration, achieved 15%-21% higher balanced accuracy and
12%-56% higher specificity than the benchmarks, albeit
with a moderate recall reduction (of up to 15% lower).
These results indicate that DeepCocrystal finds a better
trade-off between positive and negative prediction power
than the benchmarks, which are unbalanced toward the pos-
itives. Furthermore, the SMILES augmentation increased
the balanced accuracy by 10% and 19%, respectively for 1:4
and 2:7 augmentation levels, compared to using canonical
SMILES strings, indicating a higher generalization potential
provided by learning from different SMILES versions of the
same molecule.

2.4. Uncertainty estimation

To extend the applicability of DeepCocrystal to real-
world scenarios, we equipped it with an estimate of its
(un)certainty. We represented each molecular pair with ten
different (pairs of) SMILES strings, and used DeepCocrys-
tal (2:7) predictions to estimate uncertainty. Considering
the predictions on SMILES ensembles (i.e., by average pre-
diction, Fig. 2), allows detecting some of the model errors.

We tested two ways of estimating the DeepCocrystal’s un-
certainty starting from its predictions on the ‘molecular-
pair ensemble’ (i.e., 10-fold SMILES repetitions for each
molecular pair): (a) Majority voting, whereby the number of
agreements in the predicted class per each molecular pair is
used as a measure of confidence (the higher, the better); and
(b) Standard deviation-based estimation, whereby the stan-
dard deviation across augmented SMILES (per each pair) is
computed (the lower, the better). For each approach, several
thresholds of uncertainty (i.e., on standard deviation or on
number of agreeing predictions) were used to analyse their
effect on performance, in terms of classification accuracy
and number of molecules retained for prediction (Table 2).

For both uncertainty estimation strategies, DeepCocrys-
tal performance consistently increases when using stricter
thresholds (up to 10% improvement across metrics), with a
progressively smaller number of predicted pairs (Table 2).
Both approaches have their merits and drawbacks. Standard
deviation outperforms majority voting in classification per-
formance (up to 2% improvement), at the expanses of the
number of predicted molecular pairs (57 fewer pairs). The
approach to use should be chosen on a case-by-case basis,
and here, we used a threshold on standard deviation equal
to 0.10, to maximize prediction performance.
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Table 1. Performance of DeepCocrystal. DeepCocrystal was tested on two test sets, one internal and one external. The internal test sets
was composed of 664 molecular pairs, which were sampled by stratified splits of the collected dataset. The external set was composed
of 364 pairs collected in a second phase of the project, and containing more structurally diverse molecular pairs. The external test set
was used to benchmark DeepCocrystal with existing literature models (i.e., Fingerprint-DNN, Descriptor-DNN, CC-Descriptor-ML,
and CCGNet [24–27]). Balanced accuracy (global performance), recall (performance on “positive” pairs), and specificity (performance on
“negative” pairs) are reported for each set and each model (the closer to 100%, the better). The best performance per metric is highlighted
in boldface for each considered test set.

Test set Model BAcc Recall Specificity

Internal DeepCocrystal - canonical 88% ± 2% 96% ± 1% 79% ± 6%
DeepCocrystal - augmented (1:4) 88% ± 2% 91% ± 2% 86% ± 3%
DeepCocrystal - augmented (2:7) 89% ± 2% 92% ± 2% 87% ± 3%

External DeepCocrystal - canonical 59% 93% 26%
DeepCocrystal - augmented (1:4) 69% 71% 66%
DeepCocrystal - augmented (2:7) 78% 75% 81%

CCGNet [27] 60% 51% 69%
CC-Descriptor-MLa [26] 63% 79% 48%
Descriptor-DNN [24] 63% 84% 41%
Fingerprint-DNN [25] 57% 90% 25%

aPerformance computed by excluding five molecular pairs that were used for model training.

Table 2. Uncertainty estimation with DeepCocrystal. External test set molecules were represented as 10 SMILES strings each before
prediction (using DeepCocrystal 2:7). Two approaches were considered to estimate uncertainty, i.e., majority voting, which picks the most
frequent class among the predictions (per molecular pair), and standard deviation computed on the individual model predictions per each
pair. Different uncertainty thresholds on each approach were analyzed for their effect on the model performance, as well as on the number
of molecular pairs predicted. The number and percentage of predicted pairs (i.e., predictions below the considered thresholds), balanced
accuracy (BAcc), recall, and specificity are reported. DeepCocrystal on canonical SMILES (which is invariant to augmentation and
cannot be used for uncertainty estimation) was used as a performance baseline. The best performing models per metric are highlighted in
boldface.

SMILES input Method Thr. No. Pairs (%) BAcc Recall Specificity

Canonical - - 364 (100%) 78% 75% 81%

Augmented Major. ≥ 50% 364 (100%) 76% 75% 77%
(10-fold) Major. ≥ 60% 348 (96%) 77% 75% 79%

Major. ≥ 70% 313 (86%) 79% 77% 82%
Major. ≥ 80% 287 (79%) 82% 79% 84%
Major. ≥ 90% 254 (70%) 84% 82% 86%
Major. = 100% 218 (60%) 87% 86% 89%

St. dev. ≤ 0.50 364 (100%) 76% 75% 77%
St. dev. ≤ 0.40 351 (96%) 77% 76% 78%
St. dev. ≤ 0.30 275 (76%) 82% 80% 83%
St. dev. ≤ 0.20 227 (62%) 86% 85% 87%
St. dev. ≤ 0.10 191 (52%) 88% 86% 90%
St. dev. ≤ 0.05 161 (44%) 88% 84% 91%
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Figure 2. Relationship between DeepCocrystal predictions and
classification performance. The SMILES of external test set sam-
ples were augmented 10 times and the average prediction was
computed per API-coformer pair. Such average prediction was
used to classify the molecular pairs based on a cut-off of 0.5 (neg-
ative if below, and positive otherwise). Molecular pairs were by
comparing their true class with the predicted class: TP = True
Positive; FP = False Positive; FN = False Negative; TN = True
Negative. Box plots depict the distribution of DeepCocrystal’s pre-
dictions for each group (central line: median; box: inter-quartile
range; whiskers: minimum and maximum values). The median
predictions of DeepCocrystal were significantly different between
true and false classifications (i.e., TP vs. FP, and TN vs. FN;
Kruskal-Wallis H-test, p < 0.05).

2.5. Prospective experimental application

We applied DeepCocrystal prospectively, to previously un-
seen molecular pairs. Diflunisal, an anti-inflammatory
drug [40] (Fig. 3), was selected as API, since its poor wa-
ter solubility renders co-crystallization a viable strategy
to enhance its bioavailability [41]. As potential coformers,
we selected 12 natural products containing polyphenolic
or purine moieties (Supporting Table S11), due to their co-
administrability and health benefits such as central nervous
system stimulation, reduced risk of neurodegenerative dis-
eases, and anti-inflammatory properties [42–45].

10-fold augmentation was performed on each SMILES
strings, and the co-crystalization potential of the respec-
tive 12 API-coformer pairs was predicted with DeepCocrys-
tal (Supporting Table S11). For experimental validation,
three categories of predictions were considered (Table 3):
(a) top-two high-certainty, positive prediction (adenine and
caffeine), (b) top-two high-certainty, negative predictions
(rosmarinic acid and riboflavin), and (c) two most uncer-
tain predictions (theobromine and xanthine). Each selected
pair was tested in the lab via well-established protocols,
i.e., via grinding, liquid-assisted grinding, and slurry meth-
ods [46]. The co-crystalization outcome was determined on
the obtained powder samples, via infrared spectroscopy and
solid-state nuclear magnetic resonance (see Materials and
Methods).
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Figure 3. Coformer candidates for diflunisal (API), selected for
the prospective experimental validation. DeepCocrystal was used
to select two ‘positive’ predictions (adenine and caffeine), two
‘negative’ predictions (rosmarinic acid and riboflavin), and two
high-uncertainty predictions (theobromine and xanthine) for exper-
imental testing. The experimental tests confirmed DeepCocrystal
predictions (Table 3).

Table 3. Results of the prospective experiments guided by Deep-
Cocrystal. DeepCocrystal (2:7 augmentation) was used to predict
the co-crystalization potential with diflunisal, among a list of 12
candidates. Mean and standard deviation of the predictions are
reported (as computed on 10-fold SMILES augmentation), and a
threshold on the standard deviation . The experimental outcome
after lab validation is reported for six selected molecules. Symbols
indicate the outcome of the predictions and experimental valida-
tion (× = negative outcome; ? = uncertain outcome; ✓= positive
outcome).

Tested DeepCocrystal Experimental
coformer Prediction Outcome Outcome

Adenine 0.99 ± 0.00 ✓ ✓
Caffeine 0.99 ± 0.01 ✓ ✓
Theobromine 0.66 ± 0.35 ? ×
Xanthine 0.63 ± 0.38 ? ×
Rosmarinic acid 0.02 ± 0.02 × ×
Riboflavin 0.00 ± 0.00 × ×
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All four high-certainty predictions of DeepCocrystal (ade-
nine and caffeine as ‘positive’ predictions, and rosmarinic
acid and riboflavin as ‘negative’ predictions) were confirmed
experimentally (Table 3). To the best of our knowledge, the
use of adenine and caffeine as coformers for diflunisal has
not been previously reported. Future dissolution studies
and activity assays will be needed to investigate whether
this co-crystal leads to improvement in the solubility and
pharmacokinetic profile of diflunisal, as observed in other
caffeine-based systems [47–49]. Furthermore, both selected
high-uncertainty pairs (theobromine and xanthine) did not
form co-crystals (Table 3), indicating the usefulness of our
uncertainty estimation approach to rule out false predic-
tions. This experimental validation confirms the potential
of DeepCocrystal to accelerate the discovery of novel co-
crystal pairs, even with the structurally-similar selection of
potential coformers selected in this study.

SMILES augmentation seemed pivotal to achieve these re-
sults. DeepCocrystal trained on canonical SMILES, in fact,
predicted all purine derivate coformers as ‘positive’ for co-
crystallization with high scores (see Supporting Table S11).
These findings indicated that chemical language process-
ing and SMILES augmentation allowed DeepCocrystal to
capture small structural changes that might be relevant for
co-crystallization. DeepCocrystal’s capacity to correctly rec-
ognize both negative and positive pairs with high certainty
underscores its potential to reduce experimental efforts in
co-crystal screening and discovery.

3. Conclusions
Optimizing the pharmacokinetic properties of active com-
pounds is an ever-lasting challenge in drug discovery, and co-
crystallization is an attractive strategy to address this issue.
However, identifying suitable co-crystallization partners for
active compounds is both resource- and time-intensive. To
accelerate this process, we developed DeepCocrystal, a deep
chemical language processing approach designed to predict
the co-crystallization of any selected molecular pairs.

This study shows the potential of DeepCocrystal to advance
the state-of-the-art. DeepCocrystal owes its performance to
the intriguing properties of the SMILES language, which al-
lowed mitigating data imbalance and estimating uncertainty.
By learning (and then combining) single-molecule informa-
tion, DeepCocrystal learns elements of the “supramolecular
language” [14–16] of co-crystal formation. The experimental
validation of DeepCocrystal further corroborated its poten-
tial and identified adenine and caffeine as two previously
unreported coformers of diflunisal. These results, taken
together, underscore the potential of DeepCocrystal to ac-
celerate the discovery of co-crystallization partners.

This first-in-time adoption of the “supramolecular language”

perspective with SMILES strings shows its potential for co-
crystalization prediction. While this study only focused
on ‘two-word sentences’ (i.e., molecule pairs), our ap-
proach could be extended to supramolecular interactions
among multiple molecular partners. Ultimately, extensions
of DeepCocrystal might open unexplored opportunities in
supramolecular chemistry, e.g. for drug development [50],
materials discovery, [51] and beyond.

4. Materials and methods
Dataset creation and curation

INTERNAL DATA

Co-crystal data were collected from the Cambridge Struc-
tural Database [31], by searching for all the structures with no
more than two different interacting organic molecules per
asymmetric unit, using ConQuest 2021.2.0 [52]. Hydrates,
solvates, metal-organic systems, and duplicates were elimi-
nated, leading to 9647 co-crystals (“positive pairs”). Non-
co-crystal structures, i.e., physical mixtures of two materials
that do not form a co-crystal, were sourced from literature
(1274 pairs, 88%) and in-house experiments (174 pairs,
12%), resulting in 1448 “negative” molecular pairs. All
molecules were represented by canonical SMILES strings
and entries longer than 80 characters were removed. Salts
were deleted, the stereochemistry annotations were omitted,
and molecular salts were converted into neutral molecules
by uncharging the components, using RDKit (v. 2023.03.3).
Molecules that only contributed to one class (i.e., either
exclusively partaking in ”positive” pairs or in ”negative”
pairs) were removed. The resulting dataset contained 5240
co-crystal structures and 1392 non-co-crystal pairs, span-
ning different subclasses, i.e., pharmaceutical, π–π, and
energetic co-crystals.

EXTERNAL TEST SET

The external test set was built to contain co-crystallization
data of pharmaceutical co-crystal of anti-inflammatory, anti-
tubercular, nootropic, and anti-depressant drugs from both
the scientific literature [53–65] and in-house experimental co-
crystallization screening. 134 co-crystalization data were
collected in-house, via co-crystallization lab experiments
(Supporting Tables S6, S5, S9, S8, S10, S7). Co-crystal
formation was tested via mechanochemical (grinding and
liquid-assisted grinding) and solution-based synthetic tech-
niques (slurry and slow evaporation) [5,66,67], with at least
three replicates and by changing the polarity of the solvent
in syntheses involving its use. The co-crystal formation was
investigated comparing the Fourier transform infrared (FT-
IR) spectrum of the powder samples obtained with those of
the starting materials, and confirmed by solid-state NMR.
We report the FT-IR spectrum of the novel co-crystals in
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the Supporting Information (Supporting Figs. S2-S31). The
resulting external test set collect 364 data of which 129 are
co-crystal and 235 non-co-crystal.

Model training and optimization

DATA PREPARATION

For training and validating DeepCocrystal, and the re-
trained benchmarks (i.e., Fingerprint-DNN, and Descriptor-
DNN) the internal dataset was split into training, validation,
and test folds (80%, 10%, 10%, respectively) using stratified
splitting. The splitting was repeated ten times with different
random seeds.

DEEPCOCRYSTAL

DeepCocrystal was implemented in Tensorflow (v. 2.7.1).
Various SMILES augmentation ratios were used for the
training set (1:4 and 2:7 positive:negative augmentation
ratios), in addition to canonical SMILES. The SMILES
strings were label-encoded and padded to a length of 80
characters. Random search was used for hyperparameter
optimization (Supporting Table S1), by: (a) running 3000
hyper-parameter combinations, (b) using early stopping on
validation accuracy, with a patience of five epochs, and a
tolerance of 10-5, and (c) selecting the combination with the
best mean validation accuracy across the 10 dataset splits.
The top-performing model is used to predict the test set.

BENCHMARKS

CCGNet. The model was applied by using all the
data and source code available in the original repository:
https://github.com/Saoge123/CCGNet. After testing the
code for reproducibility, it was applied, without modifica-
tion, to predict the co-crystallization data of the external test
set. The absence of duplicates, between the external test set
of this work and the training set of CCGNet, was ensured.
CCGNet associates each API-coformer pair with a score;
positive scores are assigned to the co-crystal class, while
negatives are to the non-co-crystals.

CC-Descriptors-ML. The model was re-implemented as
described in the original paper [26]. Each of the models of
this approach (i.e., an ensemble of seven models developed
using Support Vector Machine, XGBoost, Light Gradient-
Boosting Machine, and Random Forest algorithms) was
trained on 8, 10, or 14 selected features from 16 descriptors
that show correlation with co-crystallization [26], including
fingerprints, molecular radius, RDkit molecular descriptors
and Hansen solubility parameters [68]. Training set prepara-
tion followed the same procedure as before. The external
test set performance was reported considering instances
where at least four models produced positive results for
co-crystals and negative results for non-co-crystals, as sug-

gested by the authors. Duplicate entries between our ex-
ternal test set and the dataset shared for this model were
checked and removed from the test set (five molecule pairs).

Descriptor-DNN model. 0D, 1D, and 2D ‘classical’ molec-
ular descriptors (in total 1056 descriptors per molecule)
were calculated by Mordred [69]. The descriptors of API and
coformers were concatenated, obtaining 2112 descriptors
for each API-coformer pair. The features were standardized
using standard scaling and passed through fully connected
layers. We conducted hyperparameter optimization using
the same strategy applied for DeepCocrystal (see Supporting
Table S1).

Fingerprint-DNN model. The model was trained on ex-
tended connectivity fingerprints (radius=2 and nBits=1024),
computed by RDKit (v. 2023.03.3) [70]; the fingerprints
of the APIs and coformers were concatenated and passed
through fully connected layers. We conducted hyperpa-
rameter optimization using the same strategy applied for
DeepCocrystal (see Supporting Table S1).

CLASSIFICATION PERFORMANCE

Model performance was quantified via Recall (Rec), Speci-
ficity (Sp), and Balanced Accuracy (BAcc), computed as
follows [37]:

Rec =
TP

TP + FN
× 100, (1)

Sp =
TN

TN + FP
× 100, (2)

BAcc =
Sp+Rec

2
× 100. (3)

TP , TF , FP , and FN are the number of true positives
(i.e., correctly predicted co-crystals), true negatives (i.e., cor-
rectly predicted non-co-crystals), false positives and false
negatives, respectively. Recall (Rec), quantifies the ability
to accurately predict co-crystals, while Specificity (Sp) cap-
tures the ability of a model to accurately predict negative
API-conformer pairs. Balanced accuracy is a global mea-
sure of overall classification performance. For all metrics,
the closer to 100%, the better the model performance [37].

Experimental laboratory validation

DIFLUNISAL-PURINES EXPERIMENTS

Diflunisal (Apollo Scientific Ltd, 98%), adenine (TCI, 98%),
caffeine (TCI, 98%), theobromine (Sigma-Aldrich, 98%),
xanthine (Sigma-Aldrich, 99%), rosmarinic acid (Thermo
Scientific, >97%), and riboflavin (Sigma-Aldrich, 99%)
were used as received. Acetone, ethanol, ethyl acetate and
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dichloromethane were selected as solvents for the liquid-
assisted grinding tests. Slurry experiments were conducted
using 1 mL of ethanol, hexane or acetonitrile. Diflunisal-
caffeine co-crystal in the form of a white microcrystalline
powder was obtained by grinding 100 mg (0.4 mmol) of
diflunisal and 78 mg (0.4 mmol) of caffeine for 20 min-
utes, after which drops of ethanol were added, continuing
the liquid-assisted grinding for a further 20 minutes and
repeating the adding of ethanol every 5 minutes. Diflunisal-
adenine was obtained by slurry in ethanol: 100 mg of di-
flunisal (0.4 mmol) and 54 mg (0.4 mmol) of adenine were
mixed in a 10 mL beaker, adding 1 mL of ethanol. The
suspension was left under stirring for two days at room
temperature. After solvent evaporation, the sample was ob-
tained in the form of a microcrystalline white powder. The
powder samples were characterized by FT-IR ATR (Support-
ing Information, Figs. S34 and S33) and solid-state NMR
(Supporting Fig. S35 and S36).

FOURIER TRANSFORM INFRARED SPECTROSCOPY

FT-IR spectra were reordered on an Equinox 55 (Bruker,
Milan, Italy) spectrometer with an ATR reflectance attach-
ment. Spectra were collected in the 400-3800 cm−1 range
with a resolution of 2 cm−1 and 16 scans.

SOLID-STATE NMR

Solid-state NMR spectra were acquired with a Bruker
Avance II 400 Ultra Shield instrument, operating at 400.23,
100.63 and 40.56 MHz, for 1H, 13C and 15N nuclei, respec-
tively. Diflunisal-caffeine and diflunisal-adenine powdered
sample was packed into cylindrical zirconia rotors with a
4 mm o.d. and a 90 mL volume. 13C and 15N CPMAS
spectra were acquired using a ramp cross-polarisation pulse
sequence with a 90° 1H pulse of 3.60 ms, a contact time of
3 (13C) or 4 (15N) ms, an optimized recycle delays, and a
spinning speed of 12 kHz and 9 kHz, respectively. The 13C
CPMAS spectra were registered for 140 scans for diflunisal-
caffeine and 880 scans for diflunisal-adenine, while the 15N
spectra for 13064 and 26400 scans, respectively. For every
spectrum, a two-pulse phase modulation (TPPM) decou-
pling scheme was used, with a radiofrequency field of 69.4
kHz. The 13C and 15N chemical shift scales were calibrated
through the signals of γ-glycine (13C methylenic peak at
43.7 ppm and 15N peak at 33.4 ppm with reference to NH3)
as an external standard.
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and C. B. Aakeröy, “Evaluating the predictive abil-
ities of protocols based on hydrogen-bond propensity,
molecular complementarity, and hydrogen-bond en-
ergy for cocrystal screening,” Crystal Growth & De-
sign, vol. 20, no. 11, pp. 7320–7327, 2020.

[8] F. Molajafari, T. Li, M. Abbasichaleshtori, M. H.
ZD, A. F. Cozzolino, D. R. Fandrick, and J. D.
Howe, “Computational screening for prediction of co-
crystals: method comparison and experimental valida-
tion,” CrystEngComm, 2024.

[9] D. Wang, Z. Yang, B. Zhu, X. Mei, and X. Luo,
“Machine-learning-guided cocrystal prediction based
on large data base,” Crystal Growth & Design, vol. 20,
no. 10, pp. 6610–6621, 2020.

[10] D. Yang, L. Wang, P. Yuan, Q. An, B. Su, M. Yu,
T. Chen, K. Hu, L. Zhang, Y. Lu, et al., “Cocrystal
virtual screening based on the xgboost machine learn-
ing model,” Chinese Chemical Letters, vol. 34, no. 8,
p. 107964, 2023.

[11] Y. Kang, J. Chen, X. Hu, Y. Jiang, and Z. Li, “A
cocrystal prediction method of graph neural networks
based on molecular spatial information and global
attention,” CrystEngComm, vol. 25, no. 46, pp. 6405–
6415, 2023.

[12] C. von Essen and D. Luedeker, “In silico co-crystal
design: assessment of the latest advances,” Drug Dis-
covery Today, p. 103763, 2023.

[13] T. Heng, D. Yang, R. Wang, L. Zhang, Y. Lu, and
G. Du, “Progress in research on artificial intelligence
applied to polymorphism and cocrystal prediction,”
ACS omega, vol. 6, no. 24, pp. 15543–15550, 2021.

[14] P. J. Cragg and P. J. Cragg, An introduction to
supramolecular chemistry. Springer, 2010.

[15] J.-M. Lehn, “Supramolecular chemistry—scope and
perspectives molecules, supermolecules, and molecu-
lar devices (nobel lecture),” Angewandte Chemie Inter-
national Edition in English, vol. 27, no. 1, pp. 89–112,
1988.

[16] C. P. Brock and J. D. Dunitz, “Towards a grammar of
crystal packing,” Chemistry of materials, vol. 6, no. 8,
pp. 1118–1127, 1994.

[17] M. Hirohara, Y. Saito, Y. Koda, K. Sato, and Y. Sakak-
ibara, “Convolutional neural network based on smiles
representation of compounds for detecting chemical
motif,” BMC bioinformatics, vol. 19, pp. 83–94, 2018.

[18] T. B. Kimber, S. Engelke, I. V. Tetko, E. Bruno, and
G. Godin, “Synergy effect between convolutional neu-
ral networks and the multiplicity of smiles for im-
provement of molecular prediction,” arXiv preprint
arXiv:1812.04439, 2018.

[19] D. van Tilborg, A. Alenicheva, and F. Grisoni, “Expos-
ing the limitations of molecular machine learning with
activity cliffs,” Journal of chemical information and
modeling, vol. 62, no. 23, pp. 5938–5951, 2022.
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Supporting Information
Models hyper-parameters

Table S1. Hyper-parameters optimization. The best hyper-parameters found for each model implemented in this work are reported.

Hyper-parameter Values DeepCocrystal
canonical

DeepCocrystal
(1:4)

DeepCocrystal
(2:7)

Fingerprint
DNN

Descriptor
DNN

No. convolutions 1, 2 , 3, 4 1 1 2
No. filters 16, 32, 64, 128, 256 256 256 256
Kernel sizes 3, 4, 5, 7 4 3 4
Convol. activation relu, selu relu selu selu
Number dense 1, 2, 3, 4, 5 5 4 3 1 1
Dense layer size 256, 512, 1024 512 1024 1024 1024 512
Dense activation relu, selu relu relu relu relu relu
Embedding dim. 32, 64, 128, 256 256 64 32
Dropout rate 0.0, 0.1, 0.25 0.0 0.25 0.1 0.1 0.1
Optimizer adam, rmsprop adam adam adam rmsprop adam
Learning rate 5e-2, 1e-3, 5e-3, 5e-4 5e-2 5e-2 5e-2 5e-2 5e-2
Batch size 64, 256, 512, 1024 512 64 512 64 64

Internal test

Table S2. Dataset sampling: training set = 80% (5306 data), validation set = 10% (663 data), test set = 10% (664 data). After the stritified
splitting, the data in training and in validation sets are augmentated (1:4 ratio – 1 times positive data and 4 times negatives; 2:7 ratio –
2 times positive data and 7 times negatives) by SMILES augmentation, duplicates are checked and removed. Model performances are
evaluated by predicting the co-crystallization of pairs in the 10 test sets using canonical SMILES as molecule inputs.

training set validation set test set

setup YES NO total YES NO total YES NO total
0 (1:4) 8382 8887 17269 1048 1110 2158 525 139 664
1 (1:4) 8380 8881 17261 1047 1106 2153 525 139 664
2 (1:4) 8377 8889 17266 1048 1109 2157 525 139 664
3 (1:4) 8382 8887 17269 1044 1108 2152 525 139 664
4 (1:4) 8380 8882 17262 1048 1110 2158 525 139 664
5 (1:4) 8380 8887 17267 1048 1109 2157 525 139 664
6 (1:4) 8382 8882 17264 1048 1112 2160 525 139 664
7 (1:4) 8379 8879 17258 1048 1108 2156 525 139 664
8 (1:4) 8381 8890 17271 1048 1108 2156 525 139 664
9 (1:4) 8378 8885 17263 1048 1109 2157 525 139 664

0 (2:7) 16743 15508 32251 2092 1937 4029 525 139 664
1 (2:7) 16795 15425 32220 2097 1935 4032 525 139 664
2 (2:7) 16737 15491 32228 2093 1939 4032 525 139 664
3 (2:7) 16748 15494 32242 2085 1941 4026 525 139 664
4 (2:7) 16732 15510 32242 2097 1930 4027 525 139 664
5 (2:7) 16731 15500 32231 2093 1934 4027 525 139 664
6 (2:7) 16736 15496 32232 2090 1935 4025 525 139 664
7 (2:7) 16736 15506 32242 2093 1942 4035 525 139 664
8 (2:7) 16743 15489 32232 2093 1931 4024 525 139 664
9 (2:7) 16728 15495 32223 2091 1928 4019 525 139 664
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Table S3. DeepCocrystal performance on internal test per setups. Balanced accuracy (BAcc), Recall and Specificity are computed and
reported for DeepCocrystal - canonical and DeepCocrystal - augmentated (1:4 and 2:7 configurations).

canonical 1:4 augmentation 2:7 augmentation

setup BAcc Recall Spec. BAcc Recall Spec. BAcc Recall Spec.
0 0.88 0.96 0.79 0.89 0.91 0.86 0.87 0.91 0.83
1 0.88 0.97 0.79 0.86 0.96 0.76 0.88 0.90 0.87
2 0.85 0.99 0.71 0.89 0.91 0.87 0.92 0.93 0.91
3 0.89 0.97 0.81 0.90 0.87 0.94 0.88 0.96 0.80
4 0.88 0.94 0.81 0.88 0.91 0.85 0.91 0.93 0.88
5 0.83 0.98 0.68 0.87 0.92 0.81 0.90 0.91 0.89
6 0.88 0.96 0.81 0.87 0.88 0.86 0.90 0.94 0.86
7 0.90 0.95 0.85 0.89 0.92 0.86 0.90 0.90 0.89
8 0.88 0.97 0.80 0.88 0.89 0.88 0.86 0.88 0.85
9 0.92 0.95 0.88 0.90 0.90 0.91 0.91 0.93 0.88

average 0.88 0.96 0.79 0.88 0.91 0.86 0.89 0.92 0.87
STD 0.02 0.01 0.06 0.01 0.02 0.05 0.02 0.02 0.03

Table S4. Performance comparison on internal test. The developed model trained on extended connectivity fingerprints and descriptors
metric were compared to similar models reported in literature.

This work Literature
Model Accuracy BAcc Recall Specificity Accuracy

Fingerprint-DNN 0.94 ± 0.01 0.91 ± 0.01 0.96 ± 0.01 0.85 ± 0.02 0.97 ± 0.01 [25]

Descriptors-DNN 0.93 ± 0.01 0.89 ± 0.01 0.96 ± 0.01 0.83 ± 0.03 0.83 [24]

External test

In-house experimental screening are performed for prothionamide, pyrazinamide, p-aminosalicylic acid, sulpiride, lamotrig-
ine, flurbiprofen, ketoprofen, naproxen and gentisic acid. The external test set includes also 230 published co-crystallization
data of structurally similar molecules. The not pubblished data are reported in the following tables.

Figure S1. Similarity of the test sets to the training set. Maximum Tanimoto similarity of test set compounds to the training set is computed
using fingerprints (nBits=1024, radius=2). The distribution across test set samples is visualized. The distributions show that the curated
external test set contains structurally more novel compounds than the internal test set and presents a more challenging evaluation setting.
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Table S5. Pyrazinamide experimental co-crystal screening results (× = no-co-crystal; ✓= co-crystal).

Coformer Grinding LAG Slurry Slow evap. EXP IR spectrum

2,5-dihydroxyterephtalic acid × ✓ × × 1 Figure S2
pyridine-2,6-dicarboxylic acid × × ✓ × 1 Figure S3
trimesic acid × ✓ × ✓ 1 Figure S4
phtalic acid × × × × 0
mandelic acid × × ✓ × 1 Figure S5
caffeine × × × × 0
prothionamide × × × × 0

Table S6. Prothionamide experimental co-crystal screening results (× = no-co-crystal; ✓= co-crystal).

Coformer Grinding LAG Slurry Slow evap. EXP IR spectrum

adipic acid × × × × 0
tartaric acid × × ✓ ✓ 1 Figure S6
ibuprofen × × × × 0
indomethacin × × × × 0
glutamic acid × × × × 0
isoniazide × × × × 0
proline × × × × 0
4-acetamidobenzoic acid × × × × 0
ketoglutaric acid × × ✓ × 1 Figure S7
nicotinic acid × × × × 0
hydroquinone × × × × 0
caffeic acid × × × × 0
benzoic acid × × × × 0
GABA × × × × 0
trimesic acid × × ✓ ✓ 1 Figure S8
pyridine-2,6-dicarboxylic acid × × ✓ ✓ 1 Figure S9
vanillic acid × × × × 0
phthalic acid × × ✓ ✓ 1 Figure S10
mandelic acid × × × × 0
diflunisal × × ✓ × 1 Figure S11
nalidixic acid × × × × 0
2,3-pyrazinedicarboxylic acid × × ✓ × 1 Figure S12
pyridine-2,3-dicarboxylic acid × × × × 0
naproxen × × × × 0
gentisic acid × × × × 0
caffeine × × × × 0
theophylline × × × × 0
pyrogallol × × × × 0

Table S7. Lamotrigine experimental co-crystal screening results (× = no-co-crystal; ✓= co-crystal).

Coformer Grinding LAG Slurry Slow evap. EXP IR spectrum

2,6-dihydroxybenzoic acid × ✓ × ✓ 1 Figure S13
2,6-dimethylbenzoic acid × ✓ × × 1 Figure S14
2,6-(trifluoromethyl)benzoic acid × ✓ × × 1 Figure S15
salicylic acid × ✓ × × 1 Figure S16
benzoic acid × ✓ × × 1 Figure S17
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Table S8. p-aminosalicylic acid experimental co-crystal screening results (× = no-co-crystal; ✓= co-crystal).

Coformer Grinding LAG Slurry Slow evap. EXP IR spectrum

adipic acid × × × × 0
ascorbic acid × × × × 0
caffeic acid × × × × 0
citric acid × × × × 0
nicotinic acid × × × × 0
quercetin × × × × 0
pimelic acid × × × × 0
hippuric acid × × × × 0
4-aminobenzoic acid × × × × 0
lysine ✓ × ✓ × 1 Figure S18
lactic acid × × × × 0
aspartic acid × × × × 0
glycolic acid × × × × 0
thymine × × × × 0
adenine × ✓ ✓ ✓ 1 Figure S19
histidine × × × × 0
glutamine × × × × 0
acetylsalicylic acid × × × × 0
ketoglutaric acid ✓ × × × 1 Figure S20
theobromine × × × × 0
phenylalanine × × × × 0
N-acetylcysteine × × × × 0
prothionamide × × × × 0
5-aminouracil × × × × 0
riboflavin × × × × 0
rosmarinic acid × × × × 0
ethionamide × × × × 0
malonamide × × × × 0
maleamic acid × × × × 0
barbituric acid × × × × 0
2-thiobarbituric acid × ✓ × ✓ 1 Figure S21
carbocysteine × × × × 0
oxalic acid × × ✓ ✓ 1 Figure S22
tartaric acid × × × ✓ 1 Figure S23
malonic acid × ✓ × ✓ 1 Figure S24
maleic acid × ✓ × × 1 Figure S25
fumaric acid × × × × 0
malic acid × × × × 0
glutaric acid × × ✓ ✓ 1 Figure S26
succinic acid × × × × 0

Table S9. Non-steroidal ant-inflammatory drugs and gentisic acid experimental co-crystal screening results (× = no-co-crystal; ✓=
co-crystal).

Coformer Grinding LAG Slurry Slow evap. EXP IR spectrum

gentisic acid - adenine ✓ ✓ 1 Figure S27
gentisic acid - guanine ✓ ✓ ✓ 1 Figure S28
KET - tyramine × ✓ × ✓ 1 Figure S29
FLU - tyramine × ✓ × ✓ 1 Figure S30
NAP - tyramine × ✓ × ✓ 1 Figure S31
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Table S10. Sulpiride experimental co-crystal screening results (× = no-co-crystal; ✓= co-crystal). The co-crystal characterization is
reported in a separate pubblication [71]

.
Coformer Grinding LAG Slurry Slow evap. EXP

adipic acid × × ✓ ✓ 1
4-aminobenzoic acid × × ✓ × 1
caffeic acid × × ✓ × 1
fumaric acid × × ✓ ✓ 1
maleic acid × × ✓ × 1
malic acid × × ✓ ✓ 1
malonic acid × × ✓ × 1
nicotinic acid × × ✓ ✓ 1
succinic acid × × ✓ × 1
acetazolamide × × ✓ ✓ 1
ibuprofen × × ✓ × 1
indomethacin × × ✓ ✓ 1
quercetin × × × × 0
hippuric acid × × × × 0
lactose × × × × 0
d-mannitol × × × × 0
caffeine × × × × 0
cytosine × × × × 0
thymine × × × × 0
trimesic acid × × × × 0
piracetam × × × × 0
N-acetylcysteine × × × × 0
ketoglutaric acid × × × × 0
tyrosine × × × × 0
GABA × × × × 0
proline × × × × 0
lysine × × × × 0
theophylline × × × × 0
ascorbic acid × × × × 0
n-propyl gallate × × × × 0
glutamic acid × × × × 0
L-phenylalanine × × × × 0
melatonine × × × × 0
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Figure S2. Pyrazinamide - 2,5-dihydroxyterephthalic acid. FT-IR
ATR spectrum of the novel multicomponent crystal form (blue)
compared with those of the starting materials (light grey = 2,5-
dihydroxyterephthalic acid, black = pyrazinamide).

Figure S3. Pyrazinamide - pyridine-2,6-dicarboxylic acid. FT-IR
ATR spectrum of the novel multicomponent crystal form (blue)
compared with those of the starting materials (light grey = pyridine-
2,6-dicarboxylic acid, black = pyrazinamide).

Figure S4. Pyrazinamide - trimesic acid. FT-IR ATR spectrum
of the novel multicomponent crystal form (blue) compared with
those of the starting materials (light grey = trimesic acid, black =
pyrazinamide).

Figure S5. Pyrazinamide - mandelic acid. FT-IR ATR spectrum
of the novel multicomponent crystal form (blue) compared with
those of the starting materials (light grey = mandelic acid, black =
pyrazinamide).

Figure S6. Prothionamide - tartaric acid. FT-IR ATR spectrum
of the novel multicomponent crystal form (blue) compared with
those of the starting materials (light grey = tartaric acid, black =
prothionamide).

Figure S7. Prothionamide - ketoglutaric acid. FT-IR ATR spec-
trum of the novel multicomponent crystal form (blue) compared
with those of the starting materials (light grey = ketoglutaric acid,
black = prothionamide).
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Figure S8. Prothionamide - trimesic acid. FT-IR ATR spectrum
of the novel multicomponent crystal form (blue) compared with
those of the starting materials (light grey = trimesic acid, black =
prothionamide).

Figure S9. Prothionamide - pyridine-2,6-dicarboxylic acid. FT-IR
ATR spectrum of the novel multicomponent crystal form (blue)
compared with those of the starting materials (light grey = pyridine-
2,6-dicarboxylic acid, black = prothionamide).

Figure S10. Prothionamide - phthalic acid. FT-IR ATR spectrum
of the novel multicomponent crystal form (blue) compared with
those of the starting materials (light grey = phthalic acid, black =
prothionamide).

Figure S11. Prothionamide - diflunisal. FT-IR ATR spectrum of
the novel multicomponent crystal form (blue) compared with those
of the starting materials (light grey = diflunisal, black = prothion-
amide).

Figure S12. Prothionamide - 2,3-pyrazinedicarboxylic acid. FT-IR
ATR spectrum of the novel multicomponent crystal form (blue)
compared with those of the starting materials (light grey = 2,3-
pyrazinedicarboxylic acid, black = prothionamide).

Figure S13. Lamotrigine - 2,6-dihydroxybenzoic acid. FT-IR ATR
spectrum of the novel multicomponent crystal form (blue) com-
pared with those of the starting materials (light grey = 2,6-
dihydroxybenzoic acid, black = lamotrigine).
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Figure S14. Lamotrigine - 2,6-dimethylbenzoic acid. FT-IR ATR
spectrum of the novel multicomponent crystal form (blue) com-
pared with those of the starting materials (light grey = 2,6-
dimethylbenzoic acid, black = lamotrigine).

Figure S15. Lamotrigine - 2,6-(trifluoromethyl)benzoic acid. FT-
IR ATR spectrum of the novel multicomponent crystal form (blue)
compared with those of the starting materials (light grey = 2,6-
(trifluoromethyl)benzoic acid, black = lamotrigine).

Figure S16. Lamotrigine - salicylic acid. FT-IR ATR spectrum
of the novel multicomponent crystal form (blue) compared with
those of the starting materials (light grey = salicylic acid, black =
lamotrigine).

Figure S17. Lamotrigine - benzoic acid. FT-IR ATR spectrum
of the novel multicomponent crystal form (blue) compared with
those of the starting materials (light grey = benzoic acid, black =
lamotrigine).

Figure S18. p-aminosalicylic acid - lysine. FT-IR ATR spectrum
of the novel multicomponent crystal form (blue) compared with
those of the starting materials (light grey = lysine, black = p-
aminosalicylic acid).

Figure S19. p-aminosalicylic acid - adenine. FT-IR ATR spectrum
of the novel multicomponent crystal form (blue) compared with
those of the starting materials (light grey = adenine, black = p-
aminosalicylic acid).
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Figure S20. p-aminosalicylic acid - ketoglutaric acid. FT-IR ATR
spectrum of the novel multicomponent crystal form (blue) com-
pared with those of the starting materials (light grey = ketoglutaric
acid, black = p-aminosalicylic acid).

Figure S21. p-aminosalicylic acid - 2-thiobarbituric acid. FT-IR
ATR spectrum of the novel multicomponent crystal form (blue)
compared with those of the starting materials (light grey = 2-
thiobarbituric acid, black = p-aminosalicylic acid).

Figure S22. p-aminosalicylic acid - oxalic acid. FT-IR ATR spec-
trum of the novel multicomponent crystal form (blue) compared
with those of the starting materials (light grey = oxalic acid, black
= p-aminosalicylic acid).

Figure S23. p-aminosalicylic acid - tartaric acid. FT-IR ATR spec-
trum of the novel multicomponent crystal form (blue) compared
with those of the starting materials (light grey = tartaric acid, black
= p-aminosalicylic acid).

Figure S24. p-aminosalicylic acid - malonic acid. FT-IR ATR spec-
trum of the novel multicomponent crystal form (blue) compared
with those of the starting materials (light grey = malonic acid,
black = p-aminosalicylic acid).

Figure S25. p-aminosalicylic acid - maleic acid. FT-IR ATR spec-
trum of the novel multicomponent crystal form (blue) compared
with those of the starting materials (light grey = maleic acid, black
= p-aminosalicylic acid).
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Figure S26. p-aminosalicylic acid - glutaric acid. FT-IR ATR spec-
trum of the novel multicomponent crystal form (blue) compared
with those of the starting materials (light grey = glutaric acid, black
= p-aminosalicylic acid).

Figure S27. gentisic acid - adenine. FT-IR ATR spectrum of the
novel multicomponent crystal form (blue) compared with those of
the starting materials (light grey = adenine, black = gentisic acid).

Figure S28. gentisic acid - guanine. FT-IR ATR spectrum of the
novel multicomponent crystal form (blue) compared with those of
the starting materials (light grey = guanine, black = gentisic acid).

Figure S29. ketoprofen - tyramine. FT-IR ATR spectrum of the
novel multicomponent crystal form (blue) compared with those of
the starting materials (light grey = tyramine, black = ketoprofen).

Figure S30. flurbiprofen - tyramine. FT-IR ATR spectrum of the
novel multicomponent crystal form (blue) compared with those of
the starting materials (light grey = tyramine, black = flurbiprofen).

Figure S31. naproxen - tyramine. FT-IR ATR spectrum of the
novel multicomponent crystal form (blue) compared with those of
the starting materials (light grey = tyramine, black = naproxen).
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Diflunisal-purine

DEEPCOCRYSTAL PREDICTION

Table S11. Results of the Prospective Study and of DeepCoCrystal prediction. The model predictions (with the canonical and with the
augmented SMILES) are reported, along with the results of majority voting. Predictions are compared with the experimental validation
(n.a. = not tested; ✓= positive; × = negative).

Tested DeepCocrystal DeepCocrystal Majority Lab
coformer Canonical Augmented (2:7) vote validation

Caffeine 0.99 0.99 ± 0.01 100% ✓
Adenine 0.99 0.99 ± 0.00 100% ✓
Theobromine 0.99 0.66 ± 0.35 60% ×
Xanthine 0.99 0.63 ± 0.38 60% ×
7-hydroxycoumarin 0.99 0.26 ± 0.29 80% n.a.
Ternatin 0.99 0.26 ± 0.27 80% n.a.
Resveratrol 0.61 0.21 ± 0.28 90% n.a.
Quercitin 0.94 0.06 ± 0.09 100% n.a.
Cinnamic acid 0.21 0.05 ± 0.07 100% n.a.
Curcumin 0.09 0.03 ± 0.05 100% n.a.
Rosmarinic acid 0.94 0.02 ± 0.02 100% ×
Riboflavin 0.05 0.00 ± 0.00 100% ×

CO-CRYSTAL CHARACTERIZATION (SOLID-STATE NMR AND IR SPECTROSCOPY)

Figure S32. Chemical structure and atom numbering of diflunisal (DIF), caffeine (CAF) and adenine (ADE).

13C (Figure S35) and 15N (Figure S36) CPMAS SSNMR spectra of diflunisal-caffeine (DIF-CAF) and of diflunisal-adenine
(DIF-ADE) are recorded to investigate structural information, such as the number of independent molecules in the unit
cell and the proton position along hydrogen-bond axes. The spectra confirm the formation of two novel crystal forms
with a discrete degree of crystallinity (average full width at half maximum value of about 120 Hz). The structures of
both supramolecular systems are characterized by the presence of one DIF molecule and one molecule of the respective
coformer per asymmetric unit, since only a single signal pattern is detectable for each compound. The shift toward lower
frequencies of the signal of the diflunisal carboxylic group (C1’, see Fig. S32) in the DIF-CAF sample (from 175.2 to
172.9 ppm), combined with the shift of the unsaturated nitrogen of the imidazole ring (N9) signal (from 230.0 ppm for pure
caffeine to 221.1 ppm for DIF-CAF), suggests the formation of the COOH· · ·Nar H-bond interaction, involving these two
groups. Determining the main supramolecular interactions in DIF-ADE is challenging due to the high number of donor
and acceptor groups in adenine. The most probable hypothesis is the formation of the COO−· · ·+NH3 hydrogen bond
interaction, involving a proton transfer from the carboxylic group of DIF to the most basic group (N10) of ADE. This
interaction is confirmed by the C1’ signal at 175.4 ppm and the N10 signal at 83.7 ppm in DIF-ADE, showing a shift of 7
ppm compared to pure ADE. The supramolecular interaction involving the N1, N3 and N7 atoms are neutral as detected
from the maximum shift of the signals of 31 ppm, consistent with neutral XH· · ·Nar hydrogen bond interactions, where X
could be the hydroxylic group of DIF as well as the NH or NH+

3 groups of the ADE. Nonetheless, the recorded chemical
shifts are consistent and unequivocally indicate the formation of a novel multicomponent crystal form.
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Figure S33. Diflunisal - caffeine. FT-IR ATR spectrum of the novel multicomponent crystal form (blue) compared with those of the
starting materials (light grey = caffeine (CAF), black = diflunisal(DIF)).

Figure S34. Diflunisal - adenine. FT-IR ATR spectrum of the novel multicomponent crystal form (blue) compared with those of the
starting materials (light grey = adenine (ADE), black = diflunisal(DIF)).
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Figure S35. 13C (100 MHz) CPMAS spectra of DIF-CAF and DIF-ADE, compared with the respective starting materials, acquired with a
spinning speed of 12 kHz at room temperature. The numbering of DIF, CAF and ADE atoms refers to Figure S32. The assignment of 13C
signals for DIF-CAF was made possible through the non-quaternary suppression experiment. Focusing on the C1’ signal, its chemical
shift in the DIF-CAF spectrum suggests the formation of the COOH· · · Nar synthon, differently for DIF-ADE where the COO−· · ·+NH3

hydrogen bond interaction is detected.
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Figure S36. 15N (40.56 MHz) CPMAS spectra of DIF-CAF (top), DIF-ADE (bottom) compared with pure CAF and pure ADE, acquired
with a spinning speed of 9 kHz at room temperature. The numbering refers to Figure S32.
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