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Abstract: Radical chemistry is synthetically useful but can be plagued by the non-

intuitive reaction course and indiscriminate reactivity profile. Herein, dynamic radical 

effect is revealed as a conceptual logic for the predictive achievement of radical reaction 

selectivity. The reversible bonding association/dissociation of two radicals serves as a 

synthetic handle for directing one radical to the target reaction recourse, without the 

participation of the other radical. A Mn catalytic protocol has been developed for 

cycloalkene ring expansion synthesis of azaheterocycles. An initial azidyl radical 

addition to alkene and subsequent reversible O2 occupation of C-radical site prevents 

further radical coupling and steers the reaction toward the intramolecular rearrangement 

pathway. A broad substrate scope has been established for the synthesis of pyridine and 

isoquinoline derivatives. This new radical synthetic perspective promises as an 

important guiding principle for empowering radical-based chemical transformations. 

Keyword: Dynamic Radical Effect; Manganese Catalysis; Cycloalkene; Ring 

Expansion; Azaheterocycle. 
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 Radical reactions are chemical transformations that involve the participation of 

open-shell species with unpaired electrons.1 This mode of reaction chemistry has 

emerged as an important tool for organic synthesis, in many ways complementary to 

the polar counterpart.2 Despite the synthetic utility, a major drawback associated with 

radical chemistry is, frequently, its non-intuitive reaction course and indiscriminate 

reactivity profile. To address the issue, extensive experimental efforts have been 

directed at the mechanistic understanding of reaction pathway and rational achievement 

of reaction selectivity.3 A representative conceptual advance of broad impact is 

persistent radical effect (Scheme 1), a proposition devised to account for and for access 

to the synthetically valuable high cross-selectivity of radical bonding association 

event.4 Two radicals, when differing significantly in lifetimes, with one termed as a 

transient radical (short lifetime) and the other termed as a persistent radical (long 

lifetime), can undergo effective cross-coupling with each other to afford target product. 

This is a strikingly discriminative reaction course that can be predominant (e.g., at the 

stationary state) over other alternative pathways. Indeed, persistent radical effect has 

been repeatedly observed in radical processes and a hallmark of those processes is the 

locked-in bonding affiliation of persistent radical, irrespective of the intermediate 

reaction course of transient radical (e.g., atom transfer radical addition and atom 

transfer radical polymerization reactions).5 Herein we wish to disclose the discovery of 

dynamic radical effect (Scheme 1), in reference to a phenomenon that the bonding 

association between two radicals (e.g., a transient radical and a persistent radical) is 

reversible and upon bonding dissociation, one radical (e.g., the transient radical) 
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Scheme 1. Persistent Radical Effect and Dynamic Radical Effect. 
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proceeds to the target reaction course without the participation of other radical (e.g., the 

persistent radical).6 In particular, a Mn-catalyzed cycloalkene ring expansion 

transformation has been achieved for the synthesis of azaheterocycles (Scheme 2): 

Initial azidyl radical addition to cycloalkene affords a transient C-centered radical; 

cross-coupling association with a persistent diradical O2 to a peroxy radical blocks the 

C-radical site from second azidation; reversible dissociation of O2 (low temperature 

favors association and disfavors dissociation; high temperature favors both association 

and dissociation) regenerates the C-radical; attack on the azido group extrudes N2 and 

provides an aziridinyl radical; intramolecular rearrangement furnishes the 

azaheterocycle product. 

Scheme 2. Mn-Catalyzed Cycloalkene Ring Expansion Transformation. 

 

https://doi.org/10.26434/chemrxiv-2024-sfchs ORCID: https://orcid.org/0000-0003-4681-7895 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-sfchs
https://orcid.org/0000-0003-4681-7895
https://creativecommons.org/licenses/by-nc-nd/4.0/


 Radicals are high-energy species and reaction with an alkene typically progresses 

to the double addition state.7 For a N-centered azidyl radical (as well as other 

electrophilic radicals), double azidation has been routinely observed as an, essentially 

predestined, reaction end point.8 In this circumstance, typically no innate radical chain 

cycle is operative due to the inefficient azidyl transfer process (as in many atom transfer 

radical addition reactions) and transition metal catalysis is a requisite (with the second 

azidation designated as the radical-metal crossover reaction from the persistent radical 

effect formalism perspective).9 For the mono addition of a N-centered moiety, nitrene 

is generally the reactive species of choice. Although the nature of the electronic states 

(singlet or triplet) can be subject to debate under various scenarios (e.g., in different 

transition metal complexes), the valency deficiency ensures the exclusive single nitrene 

transfer reactivity.10 The dynamic radical effect as witnessed in the reversible 

association/dissociation of O2, serving to temporarily occupy the transient radical site 

and competitively exclude the site from further radical coupling, offers a distinct 

mechanistic platform for the mono addition of a radical species. More importantly, it is 

expected that the dynamic radical effect might evolve into a generically applicable 

strategy for directing the radical reaction to a totally different transformation pathway. 

For example, the low-temperature association of O2 and its high-temperature 

dissociation can be a prospective switch for the stepwise, as opposed to the 

conventional continuous, double radical addition to an alkene, with intermediate 

manipulation of the radical process possible.11 In fact, the dynamic, reversible radical-

radical, radical-neutral molecule bonding association/dissociation might be 
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ubiquitously present in radical processes, setting dynamic radical effect as a unique 

thermodynamic/kinetic control handle for synthetic radical coupling reactions. As an 

added note, dynamic radical effect is distinct from radical-based catalysis (e.g., radical 

addition/elimination catalysis) as the latter implicates the full participation of radical 

catalyst throughout the catalytic cycle. 

 We commence our experimental inquiry into a Mn-catalyzed reaction between 1-

phenylcyclopentene (1a) and TMSN3 under the oxidative atmosphere of air. The 

selection of Mn catalysis is for two reasons: 1) transition metals in general can serve as 

versatile buffering sites for radical species, exhibiting a highly productive capture-

release turnover efficiency; 2) Mn ranks third in abundance among transition metals 

and features rich redox properties.12 The option for polar TMSN3 (polar with respect to 

the Si-N bond, related to the redox potential) as the azide source is in view of its easy 

oxidative conversion to an azidyl radical; this contrasts with the less polar, PhSO2N3-

like reagent (less polar with respect to the S-N bond), which typically reacts via a 

bimolecular homolytic substitution (SH2) or nitrene pathway.13 Initial screening of 

reaction conditions identifies Mn(acac)3 (10 mol%) as a viable catalyst precursor, with 

PPh3 (20 mol%) as the ligand and NH4OAc (1.0 equiv) as the additive, and 25% ring-

expanded product 2-phenylpyridine (1b) can be obtained after 10 h of 80 oC reaction in 

dimethoxyethane (DME). The yield can be increased to 30% with a change to MnCl2. 

With MnCl2 fixed, extensive survey of ligands reveals a bidentate nitrogen-based ligand, 

L16, as the optimum choice, and a 62% yield can be reached. Further check into the 

solvents informs a yield of 71% in CH3CN and a yield of 73% in DME/CH3CN (2:1). 
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In DME/CH3CN (2:1), with the oxidative atmosphere altered from air to O2, the yield 

can be optimized to 77% for a shortened 3 h reaction. 

 With the reaction condition optimized and synthetic protocol developed, the 

simple-ring cycloalkene substrate scope is then examined (Scheme 3). A broad range 

of substitution patterns, both electron-donating and electron-withdrawing, on the 

phenyl ring of 1a are compatible with the ring expansion transformation to pyridine 

derivatives.14 For the electron-donating para substitution, an alkyl group (Me, 2a, 74%; 

tBu, 3a, 72%) largely maintains the product yield; the reactivity is drastically lower 

with the vinyl group (4a, 37%); the phenyl group (5a), in contrast, can elevate the yield 

to 84%; the OMe group (6a, 76%) provides a higher yield than the OPh group (7a, 

67%); the swap of O with S offers a similar reactivity (SMe, 8a, 73%). For the electron-

withdrawing para substitution, the yield is generally preserved with a halide group (F, 

9a, 73%; Cl, 10a, 76%; Br, 11a, 70%); notably, the reactivity is also sustained with CF3 

(12a, 82%), COOMe (13a, 80%), CN (14a, 75%), and NO2 (15a, 68%) groups. For the 

ortho substitution, likely due to the steric hindrance, the product yield (Ph, 16a, 43%; 

OMe, 17a, 71%; F, 18a, 56%; Cl, 19a, 51%) can be reduced to a varied degree as 

compared to the para counterpart. For the meta substitution, with the relaxation of steric 

hindrance (versus the ortho counterpart), the yield (Ph, 20a, 81%; OMe, 21a, 75%; F, 

22a, 69%; Cl, 23a, 71%) is restored to the para counterpart level. The meta, meta, para 

trisubstitution (24a, 79%) is also compatible with the reaction. The replacement of 

phenyl in 1a with 1-naphthyl (25a, 48%) results in a vast drop in the product yield. The 

replacement with a heterocyclic group (2-pyridyl, 26a, 66%; 2- benzofuryl, 27a, 73%; 
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Scheme 3. Substrate Scope of Simple Cyclopentene Rings.a,b 
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aReaction condition: 1a-36a (0.2 mmol), TMSN3 (0.5 mmol), MnCl2 (10 mol%), NH4OAc (1.0 

equiv), L16 (20 mol%), DME:CH3CN=2:1 (2 mL), under O2, 80 °C, 3 h. bIsolated yields. 

2-thiophenyl, 28a, 45%; 2-benzothiazolyl, 29a, 52%) shows a varied effect on the yield. 

The extra para positioning of a second cyclopentene ring on 1a (30a, 44%) offers a 

https://doi.org/10.26434/chemrxiv-2024-sfchs ORCID: https://orcid.org/0000-0003-4681-7895 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-sfchs
https://orcid.org/0000-0003-4681-7895
https://creativecommons.org/licenses/by-nc-nd/4.0/


double ring-expanded product. With the phenyl substitution scope explored and broad 

functional group tolerance verified, the cyclopentenyl substitution scope of 1a is next 

investigated. Apparently both steric and electronic effects play a role in determining the 

reactivity: The yield is decreased to 54% with the 2-Me substitution (31a), whereas 

with the 3,4-diphenyl substitution (32a), an 80% yield can be acquired; with an extra 

para Cl group on the 3-phenyl of 32a (33a), the yield is lowered to 66%, and the 

replacement of 3-phenyl of 32a with 2-furyl (34a, 57%) also diminishes the yield. 

Satisfactorily, (E)-1-styrylcyclopentene (35a, 44%) and 1-

methoxycarbonylcyclopentene (36a, 21%), with an alkenyl and an ester group (instead 

of a phenyl group as in 1a) directly attached to the cyclopentene ring, are also viable 

substrates for the reaction. 

 With the simple cyclopentene ring substrate scope inspected, the scrutiny of fused 

cyclopentene ring scope is then executed (Scheme 4). The ring expansion of indene 

(37a) can progress to a 50% yield for the target product isoquinoline. The 3-Me (38a, 

31%), 3-Et (39a, 62%), and 3-cyclopropyl (or 3-Cyp) (40a, 48%) substitutions show 

respectively a lower, a higher, and an intermediary yield. The yield reaches 65% with 

the 3-phenyl substitution (41a). An extra para substitution on the 3-phenyl group trims 

the yield to a varied extent depending on the substituent (tBu, 42a, 54%; OMe, 43a, 

58%; F, 44a, 60%; Cl, 45a, 61%; CF3, 46a, 51%). With the substitution at the ortho 

position (OMe, 47a, 51%; F, 48a, 48%), the yield goes down further. With the meta 

substitution (OMe, 49a, 55%; F, 50a, 56%), the yield rises back to the para counterpart 

level. The change of 3-phenyl substitution (as in 41a) to the 2-phenyl substitution (51a) 
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slashes the yield to 42%. 

Scheme 4. Substrate Scope of Fused Cyclopentene Rings.a,b 
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aReaction condition: 37a-51a (0.2 mmol), TMSN3 (0.5 mmol), MnCl2 (10 mol%), NH4OAc (1.0 

equiv), L16 (20 mol%), DME:CH3CN=2:1 (2 mL), under O2, 80 °C, 3 h. bIsolated yields. 

 With the substrate scope fully probed, protocol applications in various late-stage 

synthetic settings are pursued (Scheme 5). An estradiol-derived compound A1 can be 

transformed to product B1, with the 1-cyclopentenyl-to-2-pyridyl correspondence ring 

expansion, at a 48% yield. Likewise, a pterostilbene-derived compound A2 can be 

transformed to B2 (69%); An eugenol-derived A3 can be transformed to B3 (77%). 

Noteworthy in these transformations is the tolerance of remote hydroxyl and alkene 

groups. The protocol competency in a multi-step synthesis scenario is exemplified with 

vismodegib (Scheme 5), a U.S. Food and Drug Administration-approved medication 

for the interfering of Hedgehog signaling pathway.15 A three-step procedure sequence 

of Suzuki coupling between A4 and A5 to B45 (94%), amide bond formation between 

B45 and A6 to B456 (92%), and ring expansion of B456 to B7 (vismodegib, 68%) 
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features an overall yield of 59%. 

Scheme 5. Ring Expansion of Biologically Relevant Molecule Derivatives. 
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 With the synthetic applications demonstrated, an experimental inquisition into the 

reaction mechanism is undertaken. Control experiments for the ring expansion 

transformation of 1a suggest the required engagement of MnCl2, TMSN3, and O2 (no 
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product detected without either one of three), beneficial effect of ligand L16 (yield in 

absence: 39%) and NH4OAc (yield in absence: 44%), and as a corollary, TMSN3 as the 

nitrogen source in azaheterocycles. An initial hint at the radical, instead of the nitrene 

nature of the ring expansion process comes from three observations (Scheme 6): 1) the 

interception of a 2-azido-3-TEMPO (2,2,6,6-tetramethyl-1-piperinedinyloxy) adduct of 

37a, 37a-AT (24%), in the presence of TEMPO, 2) the regioselective site location of 

the azido group in 37a-AT, 3) the virtually complete repression of ring expansion 

reaction course for 1a and 37a by both TEMPO and butylated hydroxytoluene (BHT). 

These observations advocate azidyl radical addition to cycloalkene as the ring 

expansion boot step. Apparently, O2, together with L16-ligated Mn, is responsible for 

the oxidative azidyl radical generation. Following this mechanistic insight, a further 

meticulous room temperature (rt) (instead of 80 oC optimized condition) experiment for 

1a and 37a allows the isolation of 2-azido-1-hydroperoxy adduct of 1a (1a-AH, 31%) 

and 2-azido-3-hydroperoxy adduct of 37a (37a-AH, 44%), respectively. This 

observation, albeit rt-based, reveals that O2 can compete effectively against azidyl 

radical for bonding association with the C-radical. The mechanistic significance of O2 

bonding association for the ring expansion process herein is evidenced by the successful 

transformation of 1a-AH and 37a-AH, through extrusion of the hydroperoxy group, to 

the respective ring-expanded products (23% and 17% yield, respectively) under 80 oC 

optimized condition. The non-ideal yield can be attributed to the extra hydrogen atom 

affixed to the peroxy group, which is absent in the authentic ring expansion process. 

Collectively, these observations are consistent with the reversible association and  
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Scheme 6. Mechanistic Experiments I. 

 

dissociation of O2 in the ring expansion transformation. The dynamic radical effect, as 

showcased herein in the reversible association/dissociation of O2, competitive 

temporary occupation of the C-radical site and exclusion from further radical coupling, 

has also been independently identified and corroborated in an Fe oxidative system 

(Scheme 7): without the dynamic radical effect, 1a undergoes successive azidation to 

the diazidation product 1a-AA (19%) at 80 oC under 1.5 equiv Fe(NO3)3·9H2O and N2; 

with the dynamic radical effect of O2 interference, the competitive ring expansion 

transformation to target product (33%) can be observed under 10 mol% 
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Scheme 7. Mechanistic Experiments II. 

 

Fe(NO3)3·9H2O.9a Last, a critical enabling factor for the emergence of dynamic radical 

effect is the slow release of azidyl radical for the maintenance of an appropriate 

concentration (diazidation can compete effectively at a high azidyl radical 

concentration) (Scheme 7). Indeed, the initial extended release of azidyl radical 

followed by the addition reaction with 1a can still sustain the product formation (3 h-3 

h sequence, 54%; 12 h reaction, 75%; 12 h-12 h sequence, 33%). Taken together, key 

mechanistic prerequisites for achieving the dynamic radical effect include: appropriate 

concentration of azidyl radical, favored competitive O2 association/dissociation 

dynamics with C-radical over azidyl radical, and efficient and productive 
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intramolecular radical rearrangement. 

 In conclusion, a Mn catalytic protocol has been developed for cycloalkene ring 

expansion synthesis of azaheterocycles. A radical azidyl-derived process is operative 

for the broad-scope production of pyridine and isoquinoline derivatives. The dynamic 

radical effect, featuring the reversible association/dissociation of O2 and competitive 

temporary occupation of transient radical site and exclusion from further radical 

coupling, directs the reaction toward the intramolecular ring expansion rearrangement 

pathway. This new conceptual perspective on the radical processes promises as an 

important general guiding principle for both the understanding and design of radical-

empowered synthetic schemes. 
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