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Abstract  
Liquid formulations design typically involves searching a high-dimensional space, owing to 

the combinatorial selection of ingredients from a larger subset of available ingredients, with a 

relatively limited experimental budget. Therefore, we need to efficiently select the most 

informative experiments. These experiments need to optimise the composition of these 

industrially-manufactured products towards customer defined target-properties. Consequently, 

we have a mixed discrete-continuous Design of Experiments (DoE) problem, for which there 

are few computationally efficient solutions, with the exception of maximum projection designs 

with quantitative and qualitative factors (MaxProQQ). However, such purely space-filling 

designs can select experiments in infeasible regions of the design space. Here, we explore a 

system of shampoo formulations, where only stable products are considered feasible. We show 

a weighted-space filling design, where predictive phase stability classifiers are trained for 

difficult-to-formulate sub-systems, to guide these experiments to regions of feasibility, whilst 

simultaneously optimising for chemical diversity through building on MaxProQQ.  
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Introduction 
Liquid formulations are complex multi-component mixtures where the ingredients have been 

selected, processed, and combined in a specific way to obtain well-defined target properties, 

functionality and performance (Conte et al., 2011). Selecting which ingredients to use and what 

concentrations to use them at constitutes a mixed discrete-continuous design problem. 

Typically, these products, which are produced across several industries (e.g., consumer care, 

agrochemical, pharmaceutical; Bagajewicz et al., 2011; Bernardo and Saraiva, 2005; Gani, 

2004; Narayanan et al., 2021; Taifouris et al., 2020), are developed through trial-and-error by 

specialists with extensive experience in the given domain. Industry seeks a more systematic 

methodology to develop formulated products, particularly, as we wish to formulate novel 

products, either for enhanced performance and functionality (Gani and Ng, 2015; Martín and 

Martínez, 2013), or for environmental reasons (Jessop et al., 2015; Kelly, 2023). We aim to 

train predictive surrogate models for liquid formulations design, so in simple terms, we needed 

to generate the most informative set of experimental data which represents our design space.   

 

As formulations design is a combinatorial problem of ingredients selection, we often have a 

very large design space to explore, yet we have a limited experimental budget. This is generally 

true for chemical/chemical engineering problems as experiments are time-, resource-, and 

labour-intensive, but particularly for formulations design, as developing a fully automated, 

high-throughput liquid formulations workflow is very challenging (Cao et al., 2021). 

Therefore, we needed an efficient design of experiments (DoE) methodology. 

 

Here, we prepared shampoo formulations with two surfactants, a conditioning polymer, and a 

thickener in a base of water, as shown in Figure 1. This chemical system is similar to a previous 

study from our group (Cao et al., 2021), but with an extended set of ingredients to choose from: 

12 surfactants, four conditioning polymers, and two thickeners, i.e., 528 possible ingredient 

combinations, which necessitated the development of new methods. We have separately 

detailed our high-throughput liquid formulations workflow to prepare and characterise these 

formulations (Chitre et al., 2024). Our overall goal is to develop accurate property (phase 

stability, turbidity, rheology) prediction models across the entire design space; therefore, our 

DoE objective was to develop an optimally space-filling design. 
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In an earlier study, we developed a “Bridge DoE” for liquid formulations, which looked at 

selecting a ternary combination of surfactants from a set of five, i.e., 10 possible combinations 

(Cao et al., 2023). This prior work demonstrated balanced exploration and exploitation of the 

design space, however, relied on an expensive objective function (Eqn. 1) which scales 

particularly poorly to an over 50-fold higher dimensionality design space in this study. 
 

∅(𝑫) = ω log+𝐸-[U(𝑫)]1 + (1 − ω)log	(d(𝑫)) 	 (1) 
 

Here, ω ∈ [0,1] is a weighting between the two parts of the bridge DoE objective function 

relating to the phase stability and viscosity test results, respectively; 𝑫 is the design scaled to 

be between 0 and 1; 𝐸-[U(𝑫)] is the expected utility relating to estimation of,  or prediction 

from, a machine learning model of the phase stability response and d(𝑫) is the average 

Euclidean distance between all possible pairs of rows in 𝑫. Firstly, all possible pairs of rows 

in 𝑫 combinatorially explodes with the set of ingredients to choose from and secondly, the 

expected utility function was approximated by Monte Carlo integration which was expensive 

to evaluate and becomes more problematic as the design space grows. Therefore, the Bridge 

DoE was intractable for this work. 

 

We therefore returned to traditional space-filling designs (Johnson et al., 1990; McKay et al., 

1979), for which Joseph (2016) provides an excellent review. In practice, Maximin Latin 

Hypercube Designs (Mm LHD) are the most commonly used due to their simplicity and 

availability in software packages (Morris and Mitchell, 1993). However, a LHD only works 

with continuous factors. Therefore, sliced Latin hypercube designs (SLHD) were introduced 

(Qian, 2012), which are a type of LHD that can be further partitioned into 𝑡 smaller LHDs 

called slices where 𝑡 is the number of all possible combinations of the categorial factors. The 

method was improved to find an alternative, more computationally efficient construction of the 

SLHD (Ba et al., 2015), yet as the number of nominal factors increases, 𝑡 increases 

exponentially, and so this method is limited for its application to formulations design. 

Furthermore, whilst maximin (S)LHDs have optimal space-filling properties in the full 𝑝-

dimensions of a design problem and uniform 1-d projections, their space filling properties in 

lower-dimensional projections, 2, . . . , 𝑝	– 	1, can be poor. In the formulations context, this 

could mean you have good space-filling properties when you consider the full design space, 

including all ingredients, but for example, if you wanted to fix one of the ingredients, say a 

new bio-sourced thickener molecule, and investigate the response of the surfactants compatible 
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with this thickener, then in this reduced dimensional space, (S)LHDs would not ensure good 

space-filling properties and you could have several experiments correlated with eachother, i.e., 

not providing new information. Consequently, an alternative design criterion, Maximum 

Projection (MaxPro), with equal computational cost to the Morris & Mitchell Mm LHD 

criterion, was proposed, which ensures good projections to all the subspaces of the factors 

(Joseph et al., 2015). This method was further extended as MaxProQQ to work with both 

quantitative and qualitative factors (Joseph et al., 2020), as required for formulations design.  

 

MaxProQQ could be directly used to generate space-filling liquid formulation designs, 

however, purely space-filling methods can result in the selection of points in areas of little 

relevance, for example, where it is known no response can occur (Bowman and Woods, 2013). 

For this work, we are interested in measuring the phase stability, turbidity, and rheology of the 

prepared formulations, however, only the stable formulations are characterised for their 

turbidity and rheology, as these measurements are not meaningful for inhomogeneous mixtures 

(Chitre et al., 2024). This is summarised in Figure 1 which shows that a set of experiments are 

executed according to the DoE. These formulations are then assessed for their phase stability, 

with the stable samples being titrated to an industrially specified pH target (Chitre et al., 2023). 

We then waited for a fixed amount of time (pre-agreed with our industrial partner as 36 hours) 

before re-assessing the formulations’ stabilities and characterising the stable products for their 

turbidity and rheology. So, every unstable formulation resulted in no turbidity and rheology 

data, without which we cannot train any property prediction models for these targets. 

Therefore, we used and present a weighted-space filling design to guide our experiments to 

regions of phase stability. However, we do not know a priori which regions of the formulations 

design space will be stable. Therefore, we used an active learning approach to train a predictive 

phase stability classifier across the design space, which would be used to guide difficult-to-

formulate sub-systems to regions of stability, as part of a machine learning-guided DoE (ML-

guided DoE). Here the DoE component of the method was developed using the MaxProQQ 

package. With this study, we show that we are able to optimise for the chemical diversity and 

phase stability in our formulations dataset. 

 

The remainder of the paper is structured as follows. Firstly, we present the methodology for 

our phase-stability guided MaxProQQ designs, including details for featurising our liquid 

formulations and training predictive stability classifiers. We then show in the Results and 

Discussion section, that we have been able to optimise our systems towards phase stability and 

https://doi.org/10.26434/chemrxiv-2024-18rgd ORCID: https://orcid.org/0000-0001-7621-0889 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-18rgd
https://orcid.org/0000-0001-7621-0889
https://creativecommons.org/licenses/by/4.0/


 5 

demonstrate the spread and coverage of our designs. Finally, we present the performance of 

ML stability classifiers and discuss the chemical interpretability of our results.  

 

 
Figure 1. Overview of liquid formulations workflow driven by an ML-guided DoE method for 

a (weighted-) space filling design towards phase stability and chemical diversity. 

 

Materials and Methods  
Formulations Featurisation 

We used commercial formulation ingredients as received from BASF. These materials with 

their chemical structures are fully detailed in a separate work, as part of the Supplementary 

Information (SI) of our formulations workflow and dataset (Chitre et al., 2024). We formulated 

from a set of 12 surfactants, four conditioning polymers (𝑃!  = Luviquat® Excellence, 𝑃"  = 

Dehyquart® CC6, 𝑃# = Dehyquart® CC7 Benz, 𝑃$ = Salcare® Super 7), and two thickeners (𝑇! 

= Arlypon® TT, 𝑇" = Arlypon® F). Of these, we note that 𝑃! and 𝑃" were relatively highly 

charged cationic polyelectrolytes, whilst 𝑃# and 𝑃$ had a lower charge density. This will be 

used later. 

 

In order to develop a phase stability classifier for a weighted-space filling design, as introduced 

earlier, we needed to featurise our formulations in a machine-readable manner (Wigh et al., 

DoE: suggest 
experiments

Prepare 
formulations

Assess phase 
stability 

Titrate 
formulations 

& wait 36 
hours

Re-assess 
phase stability 
& characterise 

stable 
formulations

Water

Surfactants

Polymer

Thickener

https://doi.org/10.26434/chemrxiv-2024-18rgd ORCID: https://orcid.org/0000-0001-7621-0889 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-18rgd
https://orcid.org/0000-0001-7621-0889
https://creativecommons.org/licenses/by/4.0/


 6 

2022). Unfortunately, effectively featurising macromolecules, such as the polymeric and 

thickener ingredients, is an open question with many promising recent studies (Kim et al., 2018; 

Kuenneth and Ramprasad, 2023; Lin et al., 2019) but no general solution to date. Mixtures of 

such molecules – i.e., formulations,  are even more difficult to represent. Currently, the simplest 

approach is to directly take the concentrations of polymer and thickener added, and a one-hot 

encoding of the ingredients, as in our previous work (Cao et al., 2021). Since we are presently 

unable to find a chemically suitable featurisation for the polymer and thickener ingredients, 

and to reduce the dimensionality of the DoE problem, we split the design space into eight 

distinct sub-systems for each possible polymer, thickener combination: 

(𝑃!, 𝑇!), (𝑃!, 𝑇"), (𝑃", 𝑇!)	. . . (𝑃$, 𝑇"). Intuitively, we could also expect fixed combinations of 

polymer and thickener to exhibit some chemically similar behaviours with the different classes 

of surfactant molecules (anionic/non-ionic/amphoteric/cationic). This step of fixing the 

polymer and thickener reduced our design problem by two dimensions to a 5D problem: i) four 

continuous variables for the concentrations of the surfactants, polymer, and thickener 

(𝐶%!, 𝐶%", 𝐶& , 𝐶'); and ii) one discrete variable with 66 levels representing the choice of 

surfactant pair.  

 

One of the limitations of our previous work, where we have featurised formulations without 

any structural information, is that the trained models cannot be generalised to any new 

ingredients without effectively re-starting the experimental campaign (Cao et al., 2021). Hence, 

we would like to find a more generalisable featurisation for the surfactants, so that we can make 

in-silico predictions for a new drop-in replacement. As small organic molecules, there are many 

methods for featurising this type of ingredient with i) string-based representations, e.g., 

SMILES (Öztürk et al., 2016; Schwartz et al., 2013; Vidal et al., 2005); ii) molecular graphs 

(Qin et al., 2021; Yang et al., 2019); and iii) molecular features (from 0D to 3D descriptors) 

(Abooali and Soleimani, 2023; Consonni and Todeschini, 2010; Ghiringhelli et al., 2015; 

Seddon et al., 2022). This list is not exhaustive. There are in particular many different 

cheminformatics packages (Bray et al., 2020; Moriwaki et al., 2018; O’Boyle et al., 2011; Yap, 

2011) that can enumerate large numbers of descriptors, which should be feature engineered 

down to a more sensible subset relative to the dataset size available for training. However, 

many of these featurisations require large training datasets or are not directly interpretable. 

With formulations design, we are constrained to generating hundreds, not thousands, of 

samples, even with state-of-the-art lab facilities, and so we developed a more chemically 

meaningful featurisation based on the surfactant functional groups, as shown in Figure 2. This 
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was hypothesised to improve model performance and explainability, as illustrated in the 

Results & Discussion section. 

 

We used our physical chemistry knowledge that a surfactant’s behaviour is primarily governed 

by its head group and chain length (Kronberg et al., 2014). As highlighted in Figure 2a for an 

example surfactant (Texapon® SB 3 KC), we can enumerate all the distinct functional groups 

(FG) – either algorithmically (Ertl, 2017), or by hand since we only have twelve surfactants 

here – and count their frequency. This data is summarised in the SI of our formulations dataset 

(Chitre et al., 2024). Additionally, not highlighted in Figure 2a, is the length of the alkyl chain, 

(CH2)x. As we worked with real, industrial materials, these surfactant ingredients have a 

distribution of chain lengths which we characterised via UPLC-MS, as detailed in the SI of our 

previous work (Chitre et al., 2024). This FG and chain length data is represented by the orange 

matrix in the top-right hand corner of Figure 2b. This shows that we can take the matrix dot 

product of the experimental surfactant concentrations and FG data to re-express the surfactants 

in terms of concentrations of functional groups and append the polymer and thickener 

concentrations to generate a suitable featurisation for a sub-system of formulation samples.    

 

 
Figure 2. Surfactants featurisation via functional groups (FG) (a) Counting the unique FGs in 

an example surfactant ingredient; and (b) showing how this is used with the experimental data 

to encode the formulations by their surfactant FG, polymer, and thickener concentrations. The 

(𝑚, 𝑛) below the dataframes show dimensions of 𝑚 rows and 𝑛 columns.  
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Phase Stability-guided MaxProQQ Designs 

Scheme 1. ML-guided DoE algorithm for a particular (polymer, thickener) sub-system. 

(1) Generate a random starting design 𝐃𝐢𝐧𝐢𝐭 and candidate set 𝐂 of 𝑛+,+- and 𝑁 points, 
respectively, where 𝑁	 = 	360,000. 
 

• Use MaxPro’s CandPoints with 4 continuous factors and 1 nominal factor with 
66 levels ( 𝐶"⬚

!"  surfactant pair combinations). 
 

(2) Convert 𝐃𝐢𝐧𝐢𝐭 which has 4 continuous factors ∈ [0, 1] and a nominal factor, which is a 
one-hot encoding of the surfactants pair, into 𝐃𝐢𝐧𝐢𝐭∗ , the initial experimental design which 
is a CSV file readable by our Opentrons OT-2 protocol. 
 

• Convert the design variables based on the desired concentration (conc.) bounds 
for the surfactants (S), polymer (P), and thickener (T) ingredients:  

i. 8 ≤ 𝑆!, 𝑆" ≤ 130
0
% 

ii. 1 ≤ 𝑃 ≤ 30
0
% 

iii. 1 ≤ 𝑇 ≤ 50
0
% 

 

• Use a look-up table for the surfactant pair encoding. 
 

(3) Perform the experiments and record their compositions. Use the inverse operations of 
step 2 to generate the prepared design 𝐃.  

 

(4) IF < 𝜒 of the initial formulations are stable: 
 

• Train a phase-stability classifier on the experimental dataset with the: 
i. Surfactant conc. converted to functional group (FG) conc. 

ii. Polymer and thickener concentrations used as is, with both (i) and (ii) pre-
processed with min-max scaling. 

iii. Phase stability used as the output 𝑦 to train the classifier. 
 

• Test a variety of machine learning (ML) models and select the best performing 
one to make in silico predictions for the stability of samples in the candidate set 𝐂. 

 

• Filter 𝐂 by a phase stability criterion to a restricted candidate set 𝐂∗which is a 
subset of samples with a higher probability of stability. Use this for step 5. 

ELSE:  

 PASS and use 𝐂 for step 5. 

 

(5) Use MaxProAugment to suggest 𝑛122 additional experiments (𝐃∗) using a one-at-a-time 
greedy optimisation procedure based on the existing dataset 𝐃 and (restricted) candidate 
design. Go to step 3 and repeat until sufficient samples are prepared. Then move onto the 
next polymer-thickener sub-system. 
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Scheme 1 outlines the algorithm for the ML-guided DoE method which was motivated in the 

Introduction. We firstly randomly generate 360,000 points in the design space (using MaxPro’s 

CandPoints function); these points are taken to represent the total set of possible experiments. 

We used a fixed random seed to always generate the same candidate set, 𝐂, across all iterations 

of the active learning loop for a particular polymer, thickener sub-system, and also for all the 

sub-systems investigated. Therefore, we are always proposing experiments from the same 

potential design space. Our industrial partner had recommended a set of concentration bounds 

for us to formulate within, as detailed under step (2) in Scheme 1. If we discretised these bounds 

in 0.5 w/w% intervals and accounted for the surfactants selection problem, then we have 

approximately 360,000 combinations; hence, the size selected for 𝐂. Here, 0.5 w/w% was 

determined to be an appropriate step which could be comfortably resolved by our experimental 

procedure - automated viscous liquids handling on the Opentrons OT-2 robot (Chitre et al., 

2024). We note, we could accurately determine the composition of the prepared formulations; 

however, we could not always accurately dispense the target amounts specified from our DoE, 

especially for the highly viscous formulation ingredients. Therefore, on each iteration of the 

DoE, we suggested the next batch of experiments based on the actual, recorded compositions.  

 

We start with an initial design for a fixed sub-system of polymer and thickener, 𝐃𝐢𝐧𝐢𝐭, with 

𝑛+,+- number of points, where 𝑛+,+- was typically set to 36 samples, the maximum throughput 

of our formulations workflow in a week. We analysed the proportion of stable formulations in 

our initial design. If < 𝜒 of the formulations were stable, these sub-systems were defined as 

“difficult-to-formulate”, in which case we applied a phase-stability guided DoE strategy. This 

ensured a large number of experiments would not be wasted without generating any turbidity 

or rheology data. Otherwise, we preferred a purely space-filling design for the other sub-

systems, as this imposes no restriction, allowing better modelling of the entire design space. 

For this study, 𝜒 = 40%. 

 

For the difficult-to-formulate sub-systems, we would train a predictive phase stability 

classifier, using a featurisation of the experimental data as explained in the previous sub-

section. Details for how we trained this classifier are described in the SI. We would then use 

this classifier to predict the phase stability of each point in our candidate set, 𝐂, and apply a 

phase stability cut-off (between 0 and 1) to drop any points without a minimum probability of 

stability, to generate a restricted candidate set, 𝐂∗. This phase-stability cut-off would be 
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modified on each iteration of the DoE as explained in the Results & Discussion section. For 

the other, more stable sub-systems, we kept the original candidate set. Finally, we used a greedy 

search algorithm to select the next batch of experiments out of the (restricted) candidate design 

to best augment the already collected experimental data based on the MaxPro criterion (using 

the MaxProAugment function). If 36 additional experiments are requested, instead of 

performing an expensive optimisation to simultaneously calculate the 36 best points, a one-at-

a-time greedy optimisation procedure sequentially suggests points 1 to 36. There is a small 

trade-off in optimality for substantially increased computational efficiency, as we wish to be 

able to generate designs on-the-fly in a high-dimensional design space for high-throughput 

experimental campaigns. The code for the complete method is provided in the SI. 

 

Results and Discussion  
Formulating Stable Systems 

The method outlined above was for a particular polymer, thickener sub-system. This was 

applied on all eight sub-systems; however, for the formulations with 𝑃" (Dehyquart® CC6) too 

few formulations were stable, so we could not train an accurate stability classifier. We prepared 

174 samples over two months with this polymer, but less than 15% of these formulations were 

stable. There are some domains, e.g., in finance detecting credit card fraud, where we can work 

with a heavily imbalanced dataset, for e.g., < 1% of the data may be a fraudulent transaction, 

yet we can develop a predictive ML model (Bin Sulaiman et al., 2022; Tran and Dang, 2021). 

However, this is a big data problem, a luxury we are not afforded when working with 

formulations, therefore, this highlights the continued importance of the formulator’s expertise 

to suggest suitable concentration bounds for us to explore within. Henceforth, we exclude sub-

systems (𝑃", 𝑇!) and (𝑃", 𝑇") from our results for difficult-to-formulate sub-systems, as we 

could not apply the weighted-space filling design without a predictive stability classifier. We, 

therefore, had three sub-systems for which our ML-guided DoE was used, as shown in Figure 

3. For the rest, a purely space-filling MaxProQQ design was used throughout. We highlight, 

with the exception of (𝑃$, 𝑇!), the difficult-to-formulate sub-systems were primarily those 

prepared with the highly charged cationic polyelectrolytes, 𝑃! and 𝑃" because these would often 

form coacervates with the anionic surfactants in our set of ingredients. 

 

Figure 3 shows that with our phase stability-guided MaxProQQ designs, we could tune our 

experiments to stable regions of the design space across all three sub-systems. The proportion 
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of stable formulations in a batch are coloured with a hue to represent the phase stability cut-

off. This threshold was progressively increased over each round. Initially, we want a low 

threshold to favour exploration of the design space, and as we have more experimental data 

and train a better stability classifier, we can exploit this model to strongly bias our formulations 

to regions of stability, as seen if you compare the first and last points across all three sub-

systems. Note, for the first point, the stable in round and overall stable (%) are equivalent and 

the initial design was generated by random sampling. 

 

 

Figure 3. ML-guided DoE used to bias formulation sub-systems towards regions of phase 

stability.  

 

The phase stability cut-off is used to tune the balance between complete exploration of the 

design space (low threshold) and exploitation of the stability classifier to predicted stable 

regions in the design space (high threshold). This stability cut-off is increased on each iteration. 
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The only example from Figure 3 where our ML-guided DoE fails to increase the stable in round 

(%) is after the first round of experiments with (𝑃!, 𝑇!). We go from 29 to 13% of formulations 

being stable in round 1 vs. 2. However, this can be clearly explained as shown by Table S1 in 

the SI. Tables S1 - S3 provide the full set of phase stability-guided DoE results for all three 

sub-systems, complementary to Figure 3. Initially, we chose to apply a cut-off as some top x% 

of experiments. On round one of (𝑃!, 𝑇!), which was the first sub-system we explored, we 

restricted the candidate set to the top 20% of stable predicted experiments; however, this cut-

off was equivalent to a 0.29 phase stability threshold, which would still include a majority of 

unstable formulations, as seen in round two. We, therefore, soon switched to only defining the 

phase stability cut-off as a predicted probability of stability between zero and one, so we could 

more clearly control the degree of stability tuning. Additionally, as seen in Table S1, the best 

classifier at round one had ROC AUC and 𝐹! scores of 0.62 and 0.73, respectively, which 

corresponds to a moderately predictive classifier. As highlighted above, it is essential to be able 

to develop a highly predictive classifier, otherwise, we cannot apply this weighted search 

strategy effectively. By contrast, the initial classifiers trained for (𝑃!, 𝑇") and (𝑃$, 𝑇!) are 

excellent (see Tables S2 and S3), and so we could successfully guide our difficult-to-formulate 

sub-systems to regions of stability in just one or two iterations. 

 

Design Coverage and Spread  

The other objective of our ML-guided DoE was to optimally space-fill so that we can develop 

predictive surrogate models over the entire formulations design space. We already established 

that we fixed the polymer and thickener for a particular sub-system and explored all these sub-

systems, therefore, we look at the spread of surfactants used in Figure 4. We prepared a total 

of 384 formulations for the three difficult-to-formulate sub-systems, as identified earlier, and 

438 further samples for the remaining five sub-systems. The dashed lines in Figure 4 show the 

expected number of samples per surfactant if we had uniformly sampled the ingredients. We 

observe that for the purely space-filling designs, our surfactants’ distribution is very close to 

this expected value, showing excellent space-filling properties. By comparison, and as we 

would expect, we have a non-uniform distribution for the stability-guided experiments as our 

classifier learned that certain surfactant(s) would lead to unstable results with a particular 

polymer, thickener, or indeed, another surfactant. For example, as stated earlier 𝑃! and 𝑃" are 

highly charged cationic polyelectrolytes, so Texapon® SB 3 KC, Plantapon® ACG 50, and 

Plantapon® LC7, which are anionic surfactants would often form coacervates with these 
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ingredients, and therefore you see they are under sampled for the stability-guided designs. And 

following this argument, Dehyquart® A-CA, the only cationic surfactant in the set, was 

particularly favoured for the stability-guided experiments. Despite this, we have still sampled 

all the ingredients relatively well, which was achieved through modifying the phase stability 

cut-off to balance exploration of our design space, which leads to a more space-filling design, 

and simultaneously exploiting our classifier to drive the experiments to feasible regions of the 

design space. 

 
Figure 4. Spread of surfactants across the formulations dataset, sub-divided by the purely 

space-filling designs and stability-guided designs for the difficult-to-formulate sub-systems. 

 

Looking at the selection of surfactants, polymer, and thickener covers the qualitative variables 

in our design problem; in Figure 5 we show the coverage of our quantitative design variables 

– ingredient concentrations (w/w%). As stated in Step (2) of Scheme 1, we aimed for the 

surfactants to have a distribution between 8 – 13 w/w%, conditioning polymers 1 – 3 w/w%, 

and thickeners 1 – 5 w/w%. We observe a good distribution of concentrations across all the 

ingredients, where the median and interquartile ranges (IQR) are given by the dashed lines on 

https://doi.org/10.26434/chemrxiv-2024-18rgd ORCID: https://orcid.org/0000-0001-7621-0889 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-18rgd
https://orcid.org/0000-0001-7621-0889
https://creativecommons.org/licenses/by/4.0/


 14 

the violin plots in Figure 5. Therefore, our full formulations design space has been represented 

in the generated dataset. We only note that for some ingredients, namely the very viscous ones, 

we exceeded the suggested concentration bounds for experimental reasons, however, this is 

acceptable and still informative towards developing property prediction models. 

 
Figure 5. Distribution of formulation ingredient concentrations across the surfactants, 

conditioning polymers, and thickeners, which had target ranges of 8 – 13, 1 – 3, and 1 – 5 

w/w%, respectively. The median concentration and interquartile ranges are shown on the plots. 

Where the target ranges have been exceeded this is due to viscous liquid handling challenges. 
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Phase Stability Classifiers and Chemical Interpretability 

We now assess in Figure 6 the quality of the phase stability classifiers trained over the complete 

set of experimental data for the three difficult-to-formulate sub-systems. The receiver operating 

characteristic (ROC) curves in Figure 6 show the performance of the classification models at 

all different classification thresholds and the area under this curve (ROC AUC) provides an 

aggregate measure of the classifier’s performance. Additionally, we have the class-weighted 

F1 scores for the three classifiers. Both of these metrics go from 0 to 1 and whilst what 

constitutes a good score may be field or subject-dependent, typically, anything above 0.8 is 

good and above 0.9 is an excellent classifier. Given our relatively limited experimental budget 

and the high-dimensionality of this formulations case-study, we have developed highly 

predictive stability classifiers. 

 

 
Figure 6. Receiver operating characteristic (ROC) curves for the best phase stability classifiers 

for each of the three difficult-to-formulate sub-systems. 

 

Since we have trained strong phase stability classifiers and used a chemically interpretable 

representation for the surfactants, we can now draw reliable scientific insights from the results 

presented in Figure 7, showing feature importances and explanations for the (𝑃!, 𝑇!) sub-

system. These results for the (𝑃!, 𝑇") and (𝑃$, 𝑇!) sub-systems are presented in Figure S3. The 

results in Figure S2 show that across all three sub-systems the best performing stability 

classifier was a random forest. This has the beneficial property that we can directly compute 

feature importances for tree-based models (Breiman, 2001), as shown in Figure 7a (and Figure 
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S3). These results are computed based on the decrease in model performance if a particular 

feature is removed. Another popular method in the field of ML interpretability is the use of 

SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 2017). These values show how 

each feature affects the final prediction (Lundberg et al., 2020). SHAP is based on the 

magnitude of feature attributions. Feature importances and SHAP values are different 

measures, but it is interesting to note that the order of features presented in both Figures 7a and 

7b are very similar. In both cases, the concentration of thickener is the most important factor 

governing phase stability, with Figure 7b showing less thickener is better for preparing stable 

formulations. These results are directly interpretable for the chemist or formulator, as we have 

attributed the stability (or instability) to surfactant functional groups, or polymer and thickener 

concentrations. Furthermore, as shown for an illustrated sample in Figure S4, SHAP can also 

provide feature attributions on a sample-by-sample basis for a deeper investigation of a 

formulation’s properties. These a posteriori analyses can aid in developing novel formulated 

products. Further discussion linking the chemistry of the functional groups to the phase stability 

results is out of the scope of this work and will be treated in a future discussion.  

 
Figure 7. Chemical interpretability of the phase stability classifier for sub-system (P!, T!)  via 

(a) random forest feature importances; and (b) SHAP feature explanations. 

 

Conclusions 
We developed a weighted-space filling design for liquid formulations built on restricting 

MaxProQQ designs to stable predicted regions of difficult-to-formulate sub-systems, where a 

sub-system looked at a fixed polymer and thickener combination. We produced a chemically 

interpretable featurisation by considering the functional groups present in our surfactant 

ingredients. Future work would be to extend the molecular representation also to the 

macromolecular ingredients. We successfully trained highly predictive phase stability 

classifiers for three difficult-to-formulate sub-systems. We used these classifiers to guide our 
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experiments to regions of stability. For the other five sub-systems, we used purely space-filling 

designs to better cover the entire design space. However, we discuss through the use of a 

tuneable phase stability cut-off in our ML-guided DoE method how we balanced exploration 

of our design space with exploitation towards feasible regions for the difficult-to-formulate 

sub-systems too. Therefore, the overall spread and coverage of our designs show satisfactory 

properties – a relatively uniform spread of ingredients and coverage of the entire concentration 

ranges we were interested in. The resulting experimental dataset from this work, therefore, 

represents the full design space from the set of available ingredients and suggested 

concentrations from our industry partner, which can now be used to develop property 

prediction models to accelerate formulation design.  

 

Code Availability 
The R script developed for this work, as well as Jupyter notebook to train the phase stability 

classifiers, is available at https://github.com/sustainable-processes/formulations_ML-DoE.  
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Supplementary Information for Machine Learning-Guided 

Space-filling Designs for High Throughput Liquid 

Formulations Development 
 

Training a Phase Stability Classifier  
Our formulations dataset, as featurised by the method shown in Figure 2, represents a 

structured, tabular dataset. We have a two-class classification problem – predict whether a 

formulation is stable (1) or not (0).  We firstly trained and tested three different ML models: 

logistic regression (logreg), Naïve Bayes (NB), and a decision tree (DT) using default scikit-

learn hyperparameters to develop a baseline performance for our phase stability classifier. We 

see from Figure S2 that we are able to improve on this baseline, as expected, when we tune 

more complicated models. We assessed the performance of the classifier via two metrics: i) 

area under the receiver operating characteristic curve (ROC AUC); and ii) a class-weighted F1 

score. The results of these baseline classifiers is shown in Figure S1. 

 

 
Figure S1. Comparison of three different ML models to establish a baseline performance for 

training a phase stability classifier over the different formulations sub-systems.  

 

Given the relatively small dataset size, we concluded that deep learning models like neural 

networks were inappropriate for this classification task. Instead, we focused our efforts on three 

particular ML models: random forests (RF), support vector machines (SVM/SVC), and 

XGBoost (XGB). RF and XGB in particular are ensemble methods which typically work very 
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well on this type of data – structured and tabular. We focused on extensive hyperparameter 

tuning for these models using k-fold cross-validation (with 𝑘 = 6) and three different methods: 

GridSearchCV, RandomSearchCV and BayesOpt (BO), as shown by the results in Figure S2. 

For each of the ML models, we tuned the following hyperparameters: 

 

• RF: n_estimators, min_samples_split, min_samples_leaf, 

max_features, class_weight 
• SVC: C (regularisation parameter), kernel, degree (if polynomial kernel), 

class_weight 
• XGB: learning_rate, n_estimators, max_depth, min_child_weight, 

gamma, colsample_bytree  
 

Further details can be found in the Jupyter Notebook on the linked GitHub repository 

(https://github.com/sustainable-processes/formulations_ML-DoE) for training the phase 

stability classifier. We note, for the SVC we only used the grid search method, as we could 

exhaustively enumerate all our hyperparameter combinations. 

 

Presented in Figure S2 are the ROC AUC and F1 scores as evaluated on the test-set for RF, 

SVC, and XGB models trained with different hyperparameter search strategies. We used a 

75:25 train:test split. This data is presented for the phase stability classifier trained on the full 

experimental data for each sub-system. Here, RFs are the best-performing model across each 

sub-system. However, Tables S1-3 show that this is not always the case. An SVC or XGB may 

also be the best performing model at different iterations of the DoE. Figure S2 shows the ML 

performance differs in an unpredictable way based on the hyperparameter search strategy. We 

cannot pick a single best method and therefore, we exhaustively try all the tools at our disposal 

to ultimately develop the most predictive models, whose ROC curves are shown in Figure 6.  
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Figure S2. Results from hyperparameter tuning across three different ML models (Random 

Forest, Support Vector Classifier, XGBoost) using k-fold cross validation (𝑘 = 6) and three 

different hyperparameter search methods (GridSearchCV, RandomSearchCV, BayesOpt).  

 

Phase Stability-guided Design of Experiments   
Complementary to Figure 3 in the main text, Tables S1 – S3 provide a tabular summary of the 

phase stability-guided DoE results, additionally including the best performing ML model at 

each iteration of the DoE, along with its evaluation metrics (ROC AUC, 𝐹!).  
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Table S1. Phase-stability guided DoE results for (𝑃!, 𝑇!) 

Round ML Model & 

Performance 

(ROC, F1 Scores) 

Phase stability cut-off 

(top % stable or lowest 

probability of stability) 

# Stable in 

Round 

Overall % 

Stable  

0 N/A N/A 17/96 17.7 

1 Random Forest 

(0.62, 0.73) 
Top 20% (0.29) 7/24 20.0 

2 Random Forest 

(0.83, 0.78) 
Top 10% (0.38) 3/24 18.8 

3 Random Forest 

(0.83, 0.87) 
Top 5% (0.57) 19/36 25.0 

4 XGBoost 

(0.80, 0.82) 
(Top 3.7%) 0.80 19/36 30.1 

 

Table S2. Phase-stability guided DoE results for (𝑃!, 𝑇") 

 

Table S3. Phase-stability guided DoE results for (𝑃#, 𝑇!) 

 

Round ML Model & 

Performance 

(ROC, F1 Scores) 

Phase stability cut-off 

(top % stable or lowest 

probability of stability) 

# Stable in 

Round 

Overall % 

Stable  

0 N/A N/A 8/36 22.2 

1 SVC 

(1.00, 1.00) 
(Top 8.4%) 0.60 11/24 31.7 

2 SVC 

 (0.96,  0.93) 
(Top 0.13%) 0.75 24/24 51.1 

Round ML Model & 

Performance 

(ROC, F1 Scores) 

Phase stability cut-off 

(top % stable or lowest 

probability of stability) 

# Stable in 

Round 

Overall % 

Stable  

0 N/A N/A 13/48 27.1 

1 Random Forest 

(0.85, 0.91) 
(Top 14.8%) 0.60 27/36 47.6 
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Chemical Interpretability 
Figure 7 in the main text discusses the random forest feature importances and SHAP feature 

explanations for the (𝑃!, 𝑇!) phase stability classifier. Here a similar analysis is presented for 

the other two difficult-to-formulate sub-systems in Figure S3.  

 

 
Figure S3. Feature importances and SHAP feature explanations for the phase stability 

classifiers for formulation sub-systems: (a) (𝑃!, 𝑇") and (b) (𝑃#, 𝑇!). 

 

Additionally, SHAP can provide feature explanations for individual formulations, as shown for 

a particular sample from sub-system (𝑃!, 𝑇!) in Figure S3. Here the base value of 0.30 indicates 

the probability of any random sample within that sub-system being stable. This agrees with the 

result presented in Table S1. For the particular sample presented, it has a 0.19 probability of 

stability, and we can observe which individual features contribute to this prediction.  

 

 
Figure S4. Explained phase stability prediction for an example formulation. 
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