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ABSTRACT: 5-Membered N-heteroarynes have long been considered synthetically inaccessible; however, we recently reported the 
use of a bisphosphine-ligated nickel center to stabilize and enable the formation of these otherwise unobtainable intermediates. Mo-
tivated by this success, we were compelled to study the role of the ancillary phosphine in aryne formation and reactivity. Herein, a 
set of four bidentate phosphine ligands with altered phosphine substituents and backbone length are interrogated for their competence 
as ancillary ligands for 5-membered N-heteroaryne formation. We determined that ligands with phenyl phosphine substituents or 
linker lengths longer than three carbons were unsuitable for this purpose, while ligands having alkyl phosphine substituents and one, 
two, or three carbon linkers allowed for successful aryne formation. Reactivity studies using 2-PyZnBr as a nucleophilic coupling 
partner revealed intriguing regioselectivity enhancement (up to >20:1 r.r.) when utilizing ligands with altered linker lengths. We 
hypothesize that regioselectivity can be traced back to structural differences between these Ni-aryne complexes, as evidenced by 
crystallographic characterization. 

     Nitrogen containing heterocycles are essential elements of 
medicinally relevant molecules as well as agrochemicals and 
materials.1–4 To this end, N-heterocyclic arynes are important 
synthons for highly-decorated N-heteroarenes. While many in-
dolynes and pyridynes with the aryne bond in the six-membered 
ring have been used in the synthesis of natural products,5–7 the 
universal use of the heteroaryne synthon is limited due to the 
inaccessibility of 5-membered N-heteroarynes. Paton, Garg, 
and Houk have elegantly demonstrated the reason for this inac-
cessibility using a computational workflow to predict the syn-
thetic utility of N-heterocyclic arynes (Figure 1A).8  
     Our group was interested in leveraging metals to overcome 
this inaccessibility as the s-donation and p-back donation be-
tween the aryne and the metal alleviates the strain associated 
with the triple bond through elongating it.9,10 We recently dis-
closed access to the first inaccessible aryne, Ni-bound 7-aza-
2,3-indolyne (Figure 1B).11 This complex had remarkable re-
activity in that it readily reacts with electrophiles, nucleophiles, 
and enophiles.12,13 This ambiphilic reactivity opens up a wide 
variety of substituents at the 2 and 3 positions of 7-azaindole. 
Excellent regioselectivity was observed with most coupling 
partners (C(sp3) and C(sp) hybridized organometallic nucleo-
philes, alkyl halides, aldehydes, and iodoniums). This is in 
alignment with the Ni–C1 and Ni–C2 bond lengths being in-
equivalent, meaning one site is electronically differentiated 
from the other.14 Interestingly, with C(sp2) nucleophiles such as 
2-PyZnBr, poor regioselectivity was observed.  
     With these observations, we hypothesized that changing the 
identity of the bidentate phosphine ligand could impact both re-
activity and selectivity. The donor ability of the phosphine lig-
and is governed in part by the geometry and orbital overlap of 
the metal and phosphine ligand.15 Thus, altering the geometry 
by increasing or decreasing the linker length of the ligand may  
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allow its donor ability to be finely tuned. These interactions 
consequently impact the amount of back donation into the aryne 
bond.16 Similarly, the non-linker substituents on the phosphine 
impact the donation and proximity of the phosphine to the metal 
which in turn also effects the amount of electron density that 
can be back donated to the aryne.17 Regioselective addition 
could also be impacted by these two phenomenon by changing 
the Ni–C bond lengths.18 Herein we report a systematic study to 
understand the importance of these factors for aryne formation 
or borate byproduct formation.  

 
    We initiated this study by synthesizing a variety of bidentate 
phosphine ligated s-aryl complexes via ligand exchange from 
the corresponding N,N,N’,N’-tetramethylethylenediamine 
(TMEDA) ligated complex 2-TMEDA (Figure 2). Our previ-
ous work utilized a triphenylphosphine ligated s-aryl complex 
for ligand exchange,11 however, we discovered that oxidative 
addition and ligand exchange were cleaner and more efficient 
using the TMEDA ligand.19,20 We successfully synthesized the 
previously-studied 7-azaindole complex bearing a 1,2-bis(dicy-
clohexylphosphino)ethane (dcpe) ligand (3-dcpe) in 85% yield 
using this method. We then altered the phosphorus substituents 
to phenyl rings using a ethylenebis(diphenylphosphine) (dppe) 
ligand to synthesize complex 3-dppe in >98% yield. Next, we 
synthesized complexes with cyclohexyl substituents but varied 
linker length. Complex 3-dcpm bearing a bis(dicyclohex-
ylphosphino)methane (dcpm) ligand was synthesized in 82% 
yield. The 1,3-bis(dicyclohexylphosphino)propane (dcpp) li-
gated complex 3-dcpp was produced in 67% yield, and the 1,3-
bid(dicyclohexylphosphino)butane (dcpb) ligated complex 3-
dcpb was produced in 79% yield. 

    We next attempted transmetallation of each of these s-aryl 
species with the intent of forming the corresponding aryne com-
plex. We hypothesized that complexes with less donating phos-
phine substituents, as in complex 3-dppe, would lead to less-
ened backdonation in the subsequent aryne 4-dppe and a shorter 
C1-C2 bond distance. Upon activation using potassium tert-
pentoxide (KOtPent), we instead observed the formation of an 
intriguing borate species 6-dppe, with transfer of a ligand phe-
nyl group to the nickel center (Figure 3). Monitoring 
transmetallation by 31P{1H} NMR spectroscopy revealed the in-
itial formation of the expected borate species 5-dppe which 
converts into 6-dppe over time. We hypothesize that the struc-
ture of this intermediate borate species 5-dppe is similar to the 
putative intermediate proposed in our previous study.11 The 
conversion of 5-dppe into 6-dppe may be mediated through a 
phoshonium salt formation followed by oxidative addition into 
the P+-Ph bond. We believe this deleterious pathway is more 
prevalent with phenyl ligand substituents due to their smaller 
steric profile which enables closer proximity to the metal center 
for nucleophilic attack and phosphonium salt formation. Addi-
tionally, the electron withdrawing nature of the phenyl substit-
uents make the following oxidative addition more facile leading 
to irreversible formation of 6-dppe. Overall, we ascertained that 
phenyl substituents on the phosphine ligand were unsuitable for 
aryne formation. 

 
     Having observed the detrimental effects of phenyl phosphine 
substituents we returned to cyclohexyl substituents and turned 
our attention to the linker length of the bidentate ligand. We 
began this study by subjecting dcpm-ligated complex 3-dcpm 
to transmetallation conditions with KOtPent as activator (Fig-
ure 4). This led to an intractable mixture of three 7-azaindole 
species as determined by 1H NMR in a 1:1:1 ratio. The presence 
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of a singlet 

in the aromatic region of the 1H NMR spectrum indicates that 
one of these species is protonated at the C1 or C2 position. The 
31P{1H} NMR spectrum revealed two sharp doublets in addition 
to two broad signals. This suggests that only two of the three 
azaindole species are bound to a Ni(dcpm) center. The 11B 
NMR contained two signals at 21.3 ppm and 5.1 ppm. The 5.1 
ppm signal is similar to those we have observed for previous 
borate species, while the 21.3 signal is more similar to the shift 
of the boron signal of the borylaryl bromide aryne precursors or 
a byproduct of transmetallation [tPentO–B(pin)].11 All of these 
data suggest that the mixture of products contains one non-
metallated azaindole with a B(pin) substituent which is hypoth-
esized to be 7, and two metallated azaindoles, only one of which 
is a borate species 5-dcpm. ESI-MS analysis of this mixture 
suggested the potential for one of these species to be the aryne 
complex 4-dcpm, however, we were unable to crystallize any 
of the three products so this could not be confirmed by X-ray 
crystallography. 

 
     We continued the study utilizing longer ligand linker lengths 
(Figure 5). Excitingly, complex 3-dcpp proceeded successfully 
to the corresponding aryne complex 4-dcpp in >98% yield upon 
addition of KOtPent. Crystallographic analysis revealed a C1–
C2 bond length of 1.343(3) Å, which is slightly shorter than the 
previously studied dcpe-ligated analogue: 4-dcpe (1.348(9) 
Å).11 The Ni-C1 vs Ni-C2 distances are also altered in 4-dcpp 
as compared to 4-dcpe. Ni-C2 remains as the longer Ni-aryne 
distance at 1.889(2) Å versus the Ni-C1 distance of 1.848(2) Å, 
however, these values are much more disparate than 4-dcpe (D 
= 0.041 and 0.009 Å, respectively). Excitingly, this indicates 

that the geometry and orbital overlap of the bidentate phosphine 
can impact the electronics and degree of backdonation in these 
aryne complexes. 
     Finally, we attempted transmetallation on 3-dcpb using 
KOtPent (Figure 6). The reaction was allowed to proceed for 
18 hours, however full conversion of 3-dcpb was not observed 
even after this longer reaction time. It should be noted that com-
plex 3-dcpb appears to have fluxional geometry indicated by 
broad signals in the 1H and 13C NMR spectra. The major species 
is hypothesized to have tetrahedral geometry or trans substitu-
tion of the phosphorus atoms at the nickel center. This hypoth-
esis is based on the 31P{1H}NMR spectrum which contains a 
major broad singlet, indicating symmetry of the phosphorus at-
oms. Based on our previous work we believe sigma aryl com-
plexes with trans geometry (and presumably tetrahedral geom-
etry) are inefficient at transmetallation/aryne formation. None-
theless, we did observe a set of sharp doublets in the 31P{1H} 
NMR spectrum in addition to s-aryl 6 and various decomposi-
tion signals. The 11B NMR spectrum reveals 2 signals at 22.4 
and 21.3 ppm. These are similar in shift to the byproduct of 
transmetallation [tPentO–B(pin)] which suggests that 
transmetallation may have occurred;11 however, due to poor 
conversion and the intractable mixture we rule out dcpb as a 
competent ligand to cleanly form an aryne complex. 
 

 
     We next wanted to explore reactivity and/or regioselectivity 
differences between the variously ligated aryne species (Figure 
7). We hypothesized that 4-dcpp would react more regioselec-
tively than the 4-dcpe due to the greater disparity between Ni-
C1 and Ni-C2 distances. We thus subjected aryne both com-
plexes, 4-dcpe and 4-dcpp, to 1 equivalent of 2-pyridylzinc 
bromide. Here we observed a 54% combined NMR yield and 
3.5:1 regioisomeric ratio (r.r.) of products 8 and 8’ using 4-dcpe 
and a 51% combined NMR yield and 5.4:1 r.r. using 4-dcpp 
(Figure 7A). The regioselectivity differences between these 
two complexes suggest that the Ni-aryne distances play a role 
in the regioselectivity of these Ni-bound arynes. This is in keep-
ing with previous regioselectivity studies of six-membered ar-
ynes from our group.18 
     Although we were unable to isolate aryne complex 4-dcpm 
from the transmetallation of 3-dcpm, we were curious if we 
could trap an aryne functionalization product if activation was 
performed in the presence of an aryne coupling partner. We thus 
subjected complex 3-dcpm to two equivalents of 2-PyZnBr, to 
be used for both B(pin) activation and nucleophilic functionali-
zation of the aryne (Figure 7B). Excitingly, we observed 49% 
combined NMR yield and >20:1 r.r., along with 32% NMR 
yield of the debrominated aryne precursor 7 as a byproduct. 
This markedly enhanced regioselectivity suggests that the struc-
ture of 4-dcpm is even more distorted than that of 4-dcpp. Ad-
ditionally, the demonstrated ability to perform an in situ aryne 
formation and functionalization beginning from a relatively sta-
ble s-aryl complex is equally compelling as it renders 5-
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membered N-heteroaryne methodology more amenable to the 
benchtop or Schlenk line. 

 
    In summary, we have explored the effects of phosphine sub-
stituents and linker length on the success of aryne formation as 
well as the reactivity and regioselectivity of corresponding Ni-
aryne complexes. Through these studies we have discovered 
that ligands with phenyl phosphine substituents and/or back-
bones greater than three carbons long are generally unsuitable 
for aryne generation. In contrast, Ni-aryne complexes can be 
successfully generated and isolated using two and three carbon 
linker ligands (4-dcpe and 4-dcpp). These complexes were 
found to be structurally disparate, owing to regioselectivity dif-
ferences upon reaction with 2-PyZnBr. Finally, while a Ni-ar-
yne complex bearing a one carbon linker ligand (4-dcpm) could 
not be isolated, we have performed compelling in situ aryne 
trapping reactions which proceed with excellent regioselectiv-
ity. We anticipate that this systematic ligand exploration will 
inform future studies regarding the formation and reactivity of 
5-membered heteroarynes and will allow for the successful for-
mation and functionalization of a larger breadth of het-
eroarynes. 
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