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Abstract

Algorithmic reaction explorations based on transition state searches can now routinely

predict relatively short reaction sequences involving small molecules. However, applying

these algorithms to deeper chemical reaction network (CRN) exploration still requires the

development of more efficient and accurate exploration policies. Here, an exploration al-

gorithm, which we name Yet Another Kinetic Strategy (YAKS), is demonstrated that uses

microkinetic simulations of the nascent network to achieve cost-effective and deep network

exploration. Key features of the algorithm are the automatic incorporation of bimolecu-

lar reactions between network intermediates, compatibility with short-lived but kinetically

important species, and the incorporation of rate uncertainty into the exploration policy. In

validation case studies of glucose pyrolysis, the algorithm rediscovers reaction pathways previ-

ously discovered by heuristic exploration policies and also elucidates new reaction pathways

to experimentally obtained products. The resulting CRN is the first to connect all major

experimental pyrolysis products to glucose. Additional case studies are presented that in-

vestigate the role of reaction rules, rate uncertainty, and bimolecular reactions. These case
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studies show that näıve exponential growth estimates can vastly overestimate the actual num-

ber of kinetically relevant pathways in physical reaction networks. In light of this, further

improvements in exploration policies and reaction prediction algorithms make it feasible that

CRNs might soon be routinely predictable in many contexts.

1 Introduction1

Reaction prediction methods with minimal heuristic guidance have recently achieved qualitative2

improvements in accuracy, cost, and throughput that make predicting relatively short reaction3

sequences involving small molecules routine in many scenarios.1–11 Although emerging strategies4

vary in detail, they all ultimately rely on characterizing the transition states of prospective reac-5

tions to determine reaction outcomes. In this, the field as a whole has benefited from new low-cost6

potential energy surfaces,12–14 double-ended algorithm refinement including string and band meth-7

ods,15–18 and ongoing developments in machine learning (ML).19–24 Nevertheless, even as it has8

become possible to predict the few-step reactivity of smaller reactants, more sophisticated network9

exploration methods are still required to manage the exponential explosion of potential reactions10

with respect to network size. General solutions for bridging this gap between small-scale reaction11

prediction and the larger reaction network prediction problem have yet to emerge.12

A chemical reaction network (CRN) is composed of the minimal set of molecular species (i.e.,13

network nodes) and reactions (i.e., network edges) necessary to accurately model the concentration14

fluxes of a chemical process (Fig. 1).25 In practice, the whole CRN doesn’t emerge fully formed, and15

its elaboration is often a painstaking and haphazard process. The general problem of CRN explo-16

ration consists of discovering the full CRN starting from a set of initial conditions (Fig. 1A). With17

the development of de novo reaction exploration methods, more systematic explorations of CRNs18

have become possible with the aspiration of eventually being able to predict CRNs from scratch.19

2

https://doi.org/10.26434/chemrxiv-2024-v15kp ORCID: https://orcid.org/0000-0002-7039-4039 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-v15kp
https://orcid.org/0000-0002-7039-4039
https://creativecommons.org/licenses/by-nc-nd/4.0/


However, as the CRN grows, so does the potential range of reactions and intermediates. Every20

reaction exploration yields a new set of products that can serve as potential reactants for further21

exploration, or “terminal” nodes in the graph terminology owing to their position on the edge of22

the network with no outward reaction paths (shown as green in Fig. 1A). The number of potential23

unimolecular reactions to explore per terminal node scales factorially in the worst case with respect24

to molecular size, making it imperative to selectively sample terminal nodes for further exploration.25

Including bimolecular reactions amplifies the problem as the number of unique bimolecular pairs26

grows quadratically with network size, with each pair having (worst case) factorial scaling with27

respect to their combined size (Fig. 1B). Selecting terminal nodes for further exploration is further28

complicated by the fact that many important intermediates are short-lived and can be easily over-29

looked by näıve greedy algorithms. For example, this means that exploration algorithms cannot30

trivially filter single-step endergonic reactions because they may be consequential upon further31

exploration (Fig. 1C). Finally, computational reaction exploration carries unavoidable errors that32

must be propagated through exponential rate equations. As the CRN deepens, and depending33

on the network topology and relevant temperatures, it becomes increasingly unrealistic to model34

concentration fluxes without error estimates (Fig. 1D). These three problems–prioritizing reaction35

exploration amongst possible terminal nodes and bimolecular reactions, retention of short-lived36

but kinetically important intermediates, and uncertainty propagation–constitute a minimum set37

of challenges for any general CRN exploration algorithm.38

In response, various network-level exploration algorithms have been developed that manage the39

trade-offs of deep CRN exploration in different ways.26–38 Recent algorithms include the ab initio40

nanoreactor and its descendants that use reactive molecular dynamics simulations on approximate41

potential energy surfaces under conditions that accelerate reaction observations.29,35–38 Instead42

of using low-level quantum chemistry, stochastic surface walking with neural network (SSW-NN),43

uses a system-specific neural-network potential energy surface (PES) and biased potential-climbing44
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Figure 1: Core challenges for chemical reaction network exploration. A) A sample chemical reac-
tion network with highlighted challenges of deep exploration. B) The number of potential bond
rearrangements grows with the number of atoms in the system. For unimolecular reactions this
scaling is with respect to the number of atoms in the molecule; for bimolecular reactions the space
expands with all possible combinations of reactants and their combined numbers of atoms. In an
exhaustive search, if each reactant generates five products, the fifth exploration step will contain
3906 total species, of which over 7.5 million bimolecular reactant pairs could be explored. C)
Highlights the harm of premature reaction pruning. Kinetically accessible endergonic intermedi-
ates can prove critical to the kinetics of a system and should be retained. D) Failing to propagate
uncertainties can obfuscate the most kinetically relevant reaction pathway. Concentration flux
variation due to reaction rate uncertainty increases as CRNs deepen.
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to explore plausible reaction sequences.30 Relevant to the case studies presented here, SSW-NN45

has been used to discover several novel low-barrier pathways for glucose pyrolysis.8 Broadbelt46

popularized kinetics-guided network exploration with an algorithm to explore combustion systems47

based on kinetic changes upon species addition39 and later also applied a similar kinetics-guided48

exploration to glucose pyrolysis.40–42 Kinetics-guided algorithms have undergone continuous de-49

velopment since their introduction owing to their relatively systematic approach for adding new50

species and reactions to the CRN.43,44 For example, Reaction Mechanism Generator (RMG) uses51

a similar approach for defining an expanding “core” species when growing a reaction network.4452

Most recently, Reiher’s group has developed two algorithms based on monitoring concentration53

fluxes within partially explored reaction networks to select intermediates for further exploration.2854

The most recent iteration is kinetics-interlaced exploration algorithm (KIEA) that iteratively con-55

ducts sensitivity analysis on the kinetics of the network, prunes inaccessible pathways, and refines56

important pathways at higher levels of theory.33 Our group has also leveraged a kinetics-guided57

policy to automate unimolecular exploration with a modified Djistkra algorithm (MDA) that used58

the activation energy of the rate-limiting formation step as a cost function for node selection. Com-59

bined with comprehensive reaction exploration, this simple heuristic algorithm elucidated several60

lower barrier pathways to terminal products missed by earlier glucose pyrolysis studies.2661

While all of these exploration algorithms have found use in specific contexts, none offer generic62

solutions to the CRN prediction problem (Fig. 1). Many of the CRN exploration algorithms63

face common difficulties: sampling bias, computational expense, and limited transferability to64

new systems. Even with approximate TS methods or relying on reaction templates, exhaustively65

searching through all possible reactions and intermediates in a CRN becomes intractable after only66

a few exploration steps, particularly with larger molecules.45 Available CRN exploration algorithms67

that are meant to prioritize reactions when exploring deep reaction sequences still typically run68

into cost limitations. System-specific heuristic exploration algorithms and ML-based methods may69

5

https://doi.org/10.26434/chemrxiv-2024-v15kp ORCID: https://orcid.org/0000-0002-7039-4039 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-v15kp
https://orcid.org/0000-0002-7039-4039
https://creativecommons.org/licenses/by-nc-nd/4.0/


reduce cost or expand the degree of exploration scope, but these are largely nontransferable and can70

show reaction biases or other uncontrolled errors.43,44,46–48 In contrast, kinetics-based algorithms71

are at least in principle systematically improvable with perfect information, but in practice can72

be prone to prioritize greedy searches that follow the low barrier pathway to the exclusion of73

others. For example, the overall lowest barrier pathway may be hidden behind a slow reaction74

that microkinetic modeling may overlook while the network is still being explored.75

Here, we develop a new network exploration algorithm that we call Yet Another Kinetic Strat-76

egy (YAKS), owing to its shared conceptual elements with prior work. YAKS is also thematic77

with the Yet Another Reaction Prediction (YARP) method that serves as the reaction prediction78

engine that we combine here with YAKS. Nevertheless, many aspects of YAKS are unique in79

implementation and meant to address the challenges associated with the CRN exploration prob-80

lem as generally as possible. In particular, YAKS can automatically explore both unimolecular81

and bimolecular search spaces, discover pathways involving local kinetic bottlenecks, and uses82

concentration-flux uncertainty estimates during exploration. The key aspects of YAKS are simple83

kinetics-informed rules for selecting reactants for further reaction exploration. These rules are for-84

mulated to provide well-defined guarantees on the types of CRN topologies that can be discovered85

and to be systematically improvable. After describing its implementation details, several YAKS86

explorations with varying configurations are performed using β-D-Glucose pyrolysis as a model87

exploration problem. These case studies reveal the important role of uncertainty estimation on88

deep network explorations and demonstrate that bimolecular reactions can be automatically and89

tractably handled by YAKS for this system.90
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2 Methods91

This section is organized to first provide a description of the Yet Another Kinetics Strategy (YAKS)92

algorithm (Subsection 2.1), followed by illustrative thought-experiments and examples for under-93

standing the limitations of the algorithm (Subsection 2.2), an illustration of a YAKS cycle (Sub-94

section 2.3), discussion of termination condition and relevant hyperparameters (Subsection 2.4 and95

the SI Section 2), the reactivity characterization engine Yet Another Reaction Program (YARP)96

(Subsection 2.6) and then the computational details associated with the microkinetic modeling97

and reaction characterizations that are specific to the current case studies.98

2.1 Yet Another Kinetic Strategy (YAKS) Stages99

YAKS uses a three-stage recurrent cycle to explore CRNs. In the first stage, the kinetics of the100

available CRN are simulated under application-specific conditions (Fig. 2, Stage 1, microkinetic101

simulations). In the second stage, a selection process is performed that uses the results from the102

microkinetic simulations to identify a subset of species within the CRN for additional reaction103

exploration (Fig. 2, Stage 2). In the third stage, the reactivities of the selected species are104

characterized (Fig. 2, Stage 3), which results in the addition of new species and reactions (nodes105

and edges) to the CRN. These stages are then repeated until reaching a user-specified termination106

condition.107

2.1.1 YAKS: Stage 1108

In the first stage of the exploration cycle, YAKS conducts a microkinetic simulation of the available109

CRN using application-specific initial conditions to obtain approximate steady-state concentrations110

for various species within the CRN. The minimal inputs for microkinetic simulations are the initial111

concentrations and rate equations for all of the reactions that are being modeled. The method112
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Figure 2: Overview of the Yet Another Kinetic Strategy (YAKS) algorithm. In Stage 1 (A),
microkinetic simulations are performed of the currently available CRN subject to some strategic
topology manipulations. In Stage 2 (B), species are selected for unimolecular (blue) and bimolec-
ular (pink) reactivity exploration based on their steady-state concentration. In Stage 3 (C), an
exploration engine characterizes the reactivity of new reactants in unimolecular and bimolecular
scenarios, which expands the CRN and creates the possibility of continuing the YAKS cycle via
Stage 1.
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for generating rate equations (e.g., estimating A-factors and activation energies) is separate from113

YAKS itself and the manner in which these are calculated in the current case studies will be114

described later (Subsection 2.6).115

One of the key distinctions in YAKS is that the CRN topology is manipulated to bias the116

pseudo steady-state concentrations from the Stage 1 microkinetic simulations towards potentially117

useful intermediates for further reactivity exploration. Topology manipulation occurs in two ways.118

First, YAKS keep track of which species have already been selected for unimolecular exploration119

and those that have not. Unless a species has already been selected for unimolecular exploration,120

its bimolecular reactions are not included in the Stage 1 microkinetic simulations. The rationale121

for this is that bimolecular reactivity is more expensive to explore than unimolecular reactivity,122

so it is advantageous to first search for unimolecular reactions that might siphon off concentration123

and forestall bimolecular reactivity. Second, YAKS considers the graphical distance, d0, of each124

species in the CRN from the nearest species that has yet to undergo a reactivity exploration. That125

is, d0 = 0 for any species in the CRN that has yet to be selected in Stage 2 as a reactant for126

exploration, and d0 is defined for all other species as the minimum number of reactions required to127

reach a d0 = 0 species. YAKS uses d0 to manipulate the topology of the network for all species in128

the CRN for which d0 ≤ nd, where nd is a hyperparameter for the exploration that is greater than129

or equal to zero. For species satisfying this condition, no reactions are included in Stage 1 for130

which d0 of the products is larger than d0 of the reactants. In the simplest case of nd = 0, this has131

the effect of excluding the reverse (i.e., “consumption” reactions) for terminal species in the CRN.132

The rationale for this manipulation is that it allows kinetically relevant endergonic intermediates133

to be discovered that would be otherwise not collect concentration in a microkinetic simulation134

inclusive of reverse-reactions.135

The manipulation of the CRN topology so that the d0 ≤ nd nodes are irreversible concentration136

sinks means that sufficiently long microkinetic simulations will result in all steady-state concen-137
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tration accumulating in these species. However in practice, a pseudo steady-state between the low138

overall barrier d0 ≤ nd species and exergonic d0 > nd portions of the network is arrived at very139

quickly with a much longer time constant associated with the slower equilibration with high barrier140

d0 ≤ nd species (See Fig. S8 for an illustration and additional discussion). That is, the topology141

manipulation is designed to equilibrate the d0 ≤ nd species that are kinetically accessible with the142

d0 > nd species that are both thermodynamically and kinetically accessible. For the remainder of143

the work, we will drop the reference to “pseudo” when referring to steady-state concentration for144

simplicity.145

In Stage 1, YAKS also incorporates uncertainty estimates for the steady-state concentrations146

obtained from microkinetic simulations. These estimates are obtained by resampling the CRN147

activation energies from independent normally sampled distributions. The default behavior is to148

use means centered on the values supplied by the reactivity characterization engine (in this case149

YARP, but they could be from other sources), and standard deviations set by the user. The150

kinetics of the CRNs are rerun with these resampled rate parameters until converging the rank-151

ordering of the highest concentration species. In practice, this can involve thousands of microkinetic152

simulations, but given the relatively low costs of simulations this is not a significant bottleneck for153

YAKS (SI Fig. S7).154

2.1.2 YAKS: Stage 2155

In the second stage of the exploration cycle, YAKS selects species from the CRN for further uni-156

molecular and bimolecular reactivity exploration based on the results of the Stage 1 microkinetic157

simulations. The default exploration rules are based on the steady-state concentration (css) of the158

species in the CRN, which is a consequence of the Stage 1 CRN topology manipulation. Other159

plausible selection criteria are maximum instantaneous flux or maximum concentration, which160

would perhaps capture transiently important species but are not further explored here.161
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All species in the CRN are rank-ordered in Stage 2 by css. Different criteria are used to select162

species for unimolecular exploration versus bimolecular exploration based on the css ranking. For163

unimolecular exploration, the top-nuni species with d0 = 0 are selected for Stage 3 character-164

ization, where nuni is a user-specified parameter. When nuni = 1, the exploration will only be165

performed on the species with the highest css. Selecting nuni > 1 results in parallel unimolecular166

explorations of different species in Stage 3. This has the practical effect of better utilizing typical167

high-performance computing resources as well as promoting the discovery of important reaction168

sequences that proceed through relatively high-barrier intermediates.169

Bimolecular reactions introduce additional complexity to CRN exploration but are critical to170

accurately describe many systems. Possible rules range from neglecting bimolecular reactions171

entirely, conducting all bimolecular combinations from a core of reactants, to conducting every172

possible reaction combination between all species in the CRN. As highlighted in Figure 1B, the173

last option is intractable for large networks, nor does it seem to be physically necessary. YAKS174

manages this trade-off by restricting bimolecular reactions to species in the network that are175

sufficiently high in concentration and that have already been explored for unimolecular reactivity176

(i.e., d0 ≥ 1). The rationale for first exploring unimolecular reactivity is that it avoids a premature177

and expensive bimolecular reactivity exploration if a rapid unimolecular reaction path exists. If178

two d0 ≥ 1 species appear within the top-nbi by css ranking, then they are selected for bimolecular179

reaction characterization in Stage 3. The rationale for this is that bimolecular reactivity will180

be favored between species that maintain high-concentration in spite of available unimolecular181

reaction channels. With up to nbi new species per exploration step, bimolecular characterizations182

are limited to
(
nbi

2

)
, or 10 for the YAKS default of nbi = 5. In practice, far fewer bimolecular183

characterizations will occur if the concentration of intermediates does not sufficiently accumulate184

so as to satisfy the top-nbi criteria. Apart from these direct bimolecular explorations, YAKS also185

discovers many bimolecular reactions as the reverse reactions of unimolecular decompositions.186
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2.1.3 YAKS: Stage 3187

In the third stage the exploration cycle, the species that have been identified for unimolecular188

and bimolecular reactivity exploration are passed to an external reaction exploration engine that189

returns a set of new reactions involving these species. To be compatible with YAKS, the external190

engine must return sufficient information to evaluate the rate laws associated with the reaction,191

such that the microkinetic modeling in Stage 1 can be performed.192

In general, the reaction exploration stage is the most expensive step in exploration and this193

motivates the choices in Stages 1-2 to limit the number of species advanced for characterization.194

Reaction exploration engines can vary from programs that apply a fixed set of contextual reaction195

templates, to programs that perform searches based on activation energy characterizations. YAKS196

was developed to be fully compatible with the Yet Another Reaction Program (YARP), which is a197

reaction prediction engine developed by our group that uses generic graphical rules to enumerate198

potential products associated with inputted reactants and then uses accelerated activation energy199

characterizations to predict reactions. Stage 3 concludes with a clean-up phase to ensure that200

there are no duplicated reactions, updates a list of reactions that have been attempted but are201

discovered to be infeasible, and the addition of new products and reactions to the CRN. Returning202

to Stage 1, YAKS incrementally explores the CRN, seeding products from one generation as203

reactants for a subsequent explorations.204

2.2 Motivating Thought Experiments205

The YAKS stages are meant to effectively coarse-grain the dynamics of the real CRN. To under-206

stand this, the following thought experiments might be useful. In these thought experiments we207

will assume that there is an oracle that can reveal the reactivity of any species in the CRN (e.g.,208

all associated unimolecular and bimolecular reactions, such as occurs in Stage 3 of YAKS), and209
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the goal is to query this oracle as little as possible.210

Figure 3: Motivating thought experiments. (A) An idealized linear CRN with unbroken exergonic
reactions from source, A, to terminal species, N. A reaction is missing between species N and
N-1. (B) The same linear CRN as in (A), except now N-1 has a higher free energy than N-2.
This example motivates the topology manipulations performed by YAKS. (C) The same CRN as
in (A), except that an isoenergetic branch has been added at species B. This example motivates
the parallel beam search performed by YAKS. (D) The same CRN as in (C), except that the
branch termini can participate in a favorable bimolecular reaction. This example motivates the
the bimolecular reaction rule used by YAKS. (E) The intial 2 cycles of YAKS glucose exploration.
After discovering only three accessible reactions, YAKS simulates the kinetics and then conducts
reactivity calculations for the four Cycle 2 reactants.

To start, suppose we have a “complete” CRN consisting of a sequence of unimolecular reactions211

A → B → C . . . → N − 1 → N , where all net fluxes flow from A to N (i.e., all reactions are212

exergonic), and completeness means that all intermediates and reactions are present such that213

starting from relevant initial conditions the transient and steady-state concentration distributions214

match the ground truth for all appreciable species (Fig. 3A). Now, suppose we were to delete215

the species with the highest steady-state concentration, N, from the network along with all of216
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its reactions. Where would be the best place to look for the missing node? If microkinetic217

simulations were performed, then the steady-state concentration that had been in N would have to218

be redistributed upstream with the greatest excess in N-1 if the CRN were as simple as described.219

Thus, the best place to look for the missing node (N) would be by exploring the reactivity of the220

node with the highest steady-state concentration. If N-1 had also been deleted, then the largest221

excess concentration would occur in N-2 and this would be the species whose reactivity was most222

promising to explore.223

By induction, the same logic could be applied all the way back to a fully pruned CRN starting224

from A. Working in reverse, the exploration would proceed by characterizing the reactivity of A,225

which, by the definition of this CRN would reveal reactions to (potentially many) irrelevant ender-226

gonic species and B. Microkinetic simulations of this expanded network would have concentration227

pooling in B, whose reactivity would be explored, leading to the discovery of C, and so on until228

discovering N, after which no more exergonic species would be discovered.229

Now let’s consider a modified thought-experiment with a realistic complication. Suppose we230

again have a complete CRN consisting of a linear sequence of reactions A → B → C . . . → N−1 →231

N , however N-1 is endergonic with respect to N-2 and N (Fig. 3B). In other words, N-1 is a short-232

lived but kinetically crucial intermediate. Now what would occur if we were to delete N from the233

network and perform microkinetic modeling? The largest concentration increase would occur in234

N-2, not N-1. So in this case, the concentration increase would occur in the next-nearest neighbor235

of the species that actually needs to be explored, rather than in the species with the concentration236

accumulation itself. Thus, if we adopted a policy of exploring the reactivity of the nodes with237

highest concentration and their nearest neighbors, we would still be able to rediscover N, while a238

purely greedy exploration would not. By induction, this would again work even if we had to start239

from the fully pruned CRN consisting only of A. In general, the number of endergonic intermediates240

determines how far away within a linear CRN that the concentration will pool from the species241

14

https://doi.org/10.26434/chemrxiv-2024-v15kp ORCID: https://orcid.org/0000-0002-7039-4039 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-v15kp
https://orcid.org/0000-0002-7039-4039
https://creativecommons.org/licenses/by-nc-nd/4.0/


that are actually relevant for further reactivity exploration. In the worst case, concentration could242

accumulate in species arbitrarily far away from the deleted species. However, YAKS is guided243

by the heuristic that physical reaction networks tend to only include a relatively small number244

of consecutive endergonic reaction steps. In its default application, YAKS assumes that only one245

kinetically favorable yet endergonic reaction step occurs in the CRN, which means that it explores246

the reactivity of the highest css nodes and their nearest neighbors. This is the rationale for the247

default nd = 0 hyperparameter used in Stage 1 of YAKS to exclude consumption reactions for248

terminal nodes. If sequential endergonic reaction steps are sought, then the next-nearest neighbors249

would also be included in the reactivity exploration (i.e., nd = 1), but also with the associated250

increase in cost.251

The thought experiment can be extended to include branches. Suppose the CRN were modified252

to include an isoenergetic branch such that A → B(→ C ′ → . . . → N ′) → C . . . → N , where253

the parentheses indicate a branch off of B consisting of an exergonic sequence of reactions leading254

eventually to N’ which is isoenergetic with N (Fig. 3C). If N and N’ were both deleted, then255

there would be two sites of excess concentration along each branch. In the simplest case, they256

could be investigated in parallel by using an algorithm that searched the reactivity of the top-n257

species by concentration at each stage, rather than just the top species. The situation becomes258

more complicated where the branch occurs (and more generally wherever the branches interact259

with one another, such as through bimolecular reactions). Suppose we pruned the network back260

to the branch with A → B(→ C ′) → C. Unless the two branches were identical in energy, one of261

them would be explored at the expense of the other until fully exploring to N (and possibly other262

irrelevant side-reactions) then backtracking to C’. Alternatively, if multiple points of concentration263

accumulation are investigated for reactivity exploration at every step, then both branches could264

be explored. This is the rationale for selecting nuni > 1 in Stage 2 of YAKS. The YAKS default265

of nuni = 5 used here means that YAKS could simultaneously explore up to five separate network266
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branches at a time.267

Finally, the thought experiment can be extended to include bimolecular reactions. Suppose268

the CRN were modified to include an important bimolecular reaction between the ends of each269

isoenergetic branch such that A → B(→ C ′ → . . . → N ′) → C . . . → N ∪N +N ′ → PNN ′ , where270

PNN ′ is an exergonic product formed from reacting the two isoenergetic speciesN andN ′ (Fig. 3D).271

If the bimolecular reaction is deleted from the CRN, then there would be excess concentration in272

N and N’ and it could be rediscovered by allowing reactions between the top-2 species with highest273

steady-state concentration. If N and N’ were also deleted from the network, then N-1 and N’-1274

would be the sites of accumulation. Here, it would be wasteful to bimolecularly react N-1 and275

N’-1 because there is a unimolecular for each that is relatively inexpensive to discover. This is276

the rationale in YAKS for limiting bimolecular explorations to species that have already been277

unimolecularly characterized.278

These thought-experiments highlight the behaviors of partially explored CRNs under idealized279

scenarios. Under such conditions, YAKS provides discoverability guarantees of reaction sequences280

involving up to nd exergonic intermediates, the discovery of unimolecular branch points with up281

to nuni exergonic products, and the discovery of up to
(
nbi

2

)
bimolecular channels per exploration282

step. No guarantees are possible when the CRNs deviate from these idealized topologies. One283

such complication is CRNs with physically relevant branches with large energy differences (e.g.,284

suppose that N and N’ had very different energies in the last thought experiment). However, the285

benchmarks of this work support the conclusion that the YAKS exploration heuristics are still286

useful for economically exploring more complex networks.287

2.3 Illustrative Cycle288

For the sake of illustration, the first two YAKS exploration cycles for glucose pyrolysis are briefly289

explained (Fig. 3E). Initially, the CRN consists only of the initial reactants and reactions provided290
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by the user, which in this case would be D-glucose. Stages 1-2 are trivial when starting with a291

lone reactant, because there is no CRN yet and the reactant is the only species with concentration.292

If the user had started with a subset of known reactions, then a non-trivial Stage 1 would need to293

be performed. Thus the first YAKS cycle for D-glucose trivially advances to Stage 3 and passes294

D-glucose itself to YARP for unimolecular reactivity characterization. The results from Stage 3295

expand the CRN about D-glucose.296

In Stage 1 of the second cycle, d0 = 1 for D-glucose and d0 = 0 for all of the newly discovered297

products. The CRN used for microkinetic simulations in this stage consists of all the reactions298

involving D-glucose, but none of the reverse reactions involving the d0 = 0 species as reactants.299

Because of the great difference between the low-barrier reaction rate and all other reactions, the300

uncertainty in the rates plays no role in rank ordering the species by css, but it potentially would301

for more complicated CRNs. In Stage 2, the nuni products of D-glucose with the highest css are302

selected for unimolecular characterization in Stage 3. Because of the d0-rule, the rank ordering of303

css is determined only by activation energy at this stage and not by free energies of reaction. No304

species are selected for bimolecular characterization, because D-glucose is the only available d ̸= 0305

species and it has no steady-state concentration due to the d0-rule and the kinetically accessible306

intermediates. After Stage 3 of the second cycle, a non-trivial CRN topology emerges with several307

branches and over 25 d0 = 0 products upon entering the third cycle.308

2.4 YAKS Termination Conditions309

YAKS explorations can terminate based on a number of criteria, such as reaching a fixed depth,310

encountering no external nodes in the top-n species, the discovery of a particular product, reaching311

a minimum confidence threshold, a computational time limit, or even a combination of several312

methods. Apart from two exceptions, the case-studies reported here were terminated once the313

top-5 unexplored species consisted of less than 30% of the overall concentration of the system.314
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One noiseless unimolecular case-study terminated because the top-5 highest concentration species315

had all previously been explored. The uncertainty-guided case-study terminated at a fixed depth316

of 20 cycles.317

2.5 Comparison of YAKS with Other Methods318

The distinguishing features of YAKS are the topology manipulation of the partially explored net-319

work, the maintenance of nuni parallel search beams across the network, and the even-handed320

incorporation of bimolecular and unimolecular reactions based on intermediate steady-state con-321

centrations. However, the use of microkinetic simulations is shared by many other algorithms.322

The most modern example is the Kinetics-interlaced exploration algorithm (KIEA), which explores323

CRNs based on microkinetic modeling and quantum chemistry based reactivity characterization324

in a gradual fashion.28 However, KIEA approaches exploration protocols much differently. YAKS325

considers all reactions within the CRN at every microkinetic simulation step, which allows for326

backtracking, while KIEA permanently prunes any species with negligible concentration flux in fu-327

ture microkinetic modeling steps. KIEA also relies on manually set thresholds based on mean and328

maximum concentration fluxes to seed species for future reactivity characterization. YAKS uses a329

relative rule to characterize important species while also limiting computational costs. Additional330

detailed comparisons can be found in the SI (Section 5).331

2.6 Yet Another Reaction Program (YARP)332

The YAKS algorithm identifies intermediates and reactants in the system whose reactivity needs333

to be characterized, but it still relies on an external engine to actually do this characterization.334

We have designed YAKS with modularity in mind, such that users could for example query their335

own library of reaction templates for this step. Here, all bimolecular and unimolecular reaction336
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explorations were performed with the YARP 2.0 package.11,49,50 YARP is a method developed337

by our group for TS-based and template-free reaction exploration. The reader is directed to the338

dedicated methods publications for a detailed review of YARP, here we briefly summarize its339

general features and the settings specific to this study.340

To characterize reaction pathways, YARP enumerates all possible products using generic graph-341

based elementary reaction steps (ERS). These ERSs are defined in terms of a fixed number of342

bond-breaks and bond-formations, such as break 2 bonds and form 2 bond (b2f2). For neutral343

closed-shell organic systems such as glucose, the simplest ERS that yields closed-shell products344

is b2f2. In our earlier glucose study we explored conditional b3f3 (Cb3f3), both b2f2 reactions345

and b3f3 reactions that involved at least one π-bond breaking.26 The latter was empirically moti-346

vated by earlier studies showing that b3f3 reactions exclusively involving σ-bonds yielded very few347

competitive reactions.11,50 These ERSs were retained here. From the reactant and ERS-generated348

product graphs, YARP applies standardized routines to generate reactant and product conforma-349

tions and localize transition states. As glucose pyrolysis liberates water through many channels, it350

is important to also consider water-catalyzed proton transfers in the exploration. Here, all reactions351

involving at least one proton transfer were separately tested in water-catalyzed and non-catalyzed352

scenarios. The protocol for water-catalyzed convergence has been previously described and involves353

re-performing the TS localization as a b3f3 (or b4f4) water-mediated reaction rather than a b2f2354

(or b3f3) uncatalyzed proton transfer.45 After TS convergence, intrinsic reaction coordinate (IRC)355

calculations were performed on all TS to confirm that they corresponded to the intended reactant-356

product pair. Final activation energies were calculated as the free energy difference between the357

lowest energy TS and the lowest energy conformation(s) of the isolated reactant(s).358

Several YARP settings were adjusted to be more permissive than in the earlier glucose study.359

These changes make the reactions explored here a superset of those explored in the earlier study.360

In addition to the Cb3f3 ERS described in the last paragraph, all σ-bond b3f3 reactions were also361
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characterized to investigate whether concerted reaction mechanisms missed by the earlier Cb3f3362

exploration are potentially consequential. The earlier study also pre-filtered reactions with an363

enthalpy of reaction (∆Hr) > 20 kcal/mol to limit kinetically irrelevant explorations.26,51 Here364

the ∆Hr filter was dispensed with leading to some notable differences, including the discovery365

of a D-Glucose dehydration reaction to form Levoglucosan with a barrier of 42.67 kcal/mol that366

was previously missed. To avoid more expensive DFT-level TS optimizations, YARP can also367

optionally pre-filter reactions based on low-level estimates of the activation energy. Here, any TS368

with a barrier > 65 kcal/mol at the GFN2-xTB level was excluded from DFT-level exploration,369

which is 15 kcal/mol higher than the previous study.370

2.7 Computational Details371

Reaction characterization was performed by YARP v2.0.50 The Conformer-Rotamer Ensemble372

Sampling Tool (CREST)52 was used to generate reactant and product conformers with the GFN2-373

xTB potential,12 then joint-optimization and conformer selection routines were used to align and374

select up to five conformers per attempted reaction.53 Double-ended growing string searches were375

used to generate approximate TSs using nine images per string.17,54,55 The approximate TSs were376

then optimized to saddle points using Berny optimization as implemented in Gaussian 16.10.56377

GFN2-xTB was used as a low-level method for GSM and Berny optimization prior to a final378

DFT-level Berny optimization. All GFN2-xTB calculations were performed with the xTB pro-379

gram (version 6.4.0). DFT calculations were carried out using Gaussian 16.10. Unless stated380

otherwise, all results are reported using optimized geometries, energies, and frequencies calculated381

at the B3LYP-D3/TZVP level of theory, all energy units are kcal/mol, and thermally dependent382

properties use 298.15 K as a reference temperature. This is the same level of theory used in earlier383

studies and so has been adopted here. Energies are generally reported to two decimal places for384

reproducibility, but our previous benchmarks on the accuracy of DFT and conformational uncer-385
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tainty for similar classes of reactions suggest that these values are only accurate to within ∼3386

kcal/mol on average, and so the discussion focuses on differences on that scale or larger.53,57 These387

errors are uncorrelated and together imply a possible 4.25 kcal/mol error. This study used these388

two uncertainty regimes, corresponding to DFT only uncertainties and DFT and conformational389

sampling uncertainties combined.390

The version of Cantera used in this study is 2.6.0.58 Guides on how to use Cantera are available391

at [https://cantera.org] with documentation at [https://zenodo.org/record/6387882]. Under de-392

fault conditions, our microkinetic modeling simulates an ideal gas mixture in an isothermal reactor.393

For this study, the system was modeled at 623 K and 101.3 kPa. Microkinetic simulations ran394

for 1200 0.1 second time steps, sufficient time for the system to resolve towards a pseudo-steady395

state between the kinetically accessible terminal nodes in the CRN and the kinetically and ther-396

modynamically accessible internal nodes. Cantera supports more complicated reactors, but this397

setup is inexpensive and proved sufficient to supersede previous glucose pyrolysis explorations. At398

every time integration step, Cantera updates the system density, mean molecular weight, internal399

energy, entropy, and enthalpy as well as all mole fractions and chemical potentials. Cantera tracks400

species production/destruction rates defined as dci
dt

= Ri where ci is the molar volume in units of401

mol
m3 and Ri is the production rate of volume-specific species in units of mol

m3s
. Cantera further tracks402

individual reaction rates, defined as Ri =
∑Nrxns

j=1 vijrj where vij is the stoichiometric coefficient403

of species i in reaction j and rj is the volume-specific stoichiometric reaction rate for reaction j.404

Individual reaction fluxes are used to map the highest flux pathways through the network during405

later uncertainty analysis and pruning (Fig. 7). The primary Cantera reaction type used by YAKS406

is the elementary reaction, which relies on Transition State Theory and the Arrhenius equation to407

calculate rate constants. The Arrhenius equation is of the form k = AT be
−Ea
RT , where k is the rate408

constant, A is the pre-exponential factor, T is the simulation temperature, b is the temperature409

exponent, Ea is the activation energy, and R is the universal gas constant. No additional tem-410
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perature dependency was assumed, so b was set to 0 in all simulations. A was approximated as411

kBT
h

where kB is the Boltzmann constant and h is Planck’s constant. The free energy of activation412

calculated by YARP was assigned as Ea for each reaction.413

3 Results and Discussion414

To directly compare with previous studies, YAKS was applied to explore the reaction networks415

associated with D-Glucose pyrolysis.26,46,47,59 The ultimate goal of this case-study is to elaborate a416

network consisting of low-barrier pathways to the major experimental products of glucose pyrolysis.417

By mass percent these are hydroxymethylfurfural (HMF), hydroxyacetaldehyde (HAA), furfural418

(FF) with high yields, and 3-(2H)-furanone (3FO), dihydroxyacetone (DHA), and 3-hydroxy-γ-419

butyrolactone (HBL) with lower yields.60 The discovery of pathways to all of these products in a420

single unified network is still an unresolved problem. Additionally, recent studies have revealed421

new low barrier pathways to individual products that suggest the individual reaction mechanisms422

have yet to be established.423

This section is organized to first discuss the full D-Glucose pyrolysis CRN discovered by YAKS424

(i.e., inclusive of all elementary reaction steps, bimolecular reactions, and with flux uncertainty es-425

timates) followed by subsections discussing comparative case studies to investigate the importance426

of each YAKS component.427

3.1 The Overall CRN428

The uncertainty-guided Unimolecular Cb3f3 YAKS CRN is shown in Figure 4. This network has429

been condensed for clarity to show only the three lowest barrier reactions from any node under430

45 kcal/mol. After 20 YAKS cycles, the uncertainty-guided CRN included 931 species and 983431

unique reactions with activation energies less than 65 kcal/mol. Of these, 756/931 species were not432
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further explored as YAKS did not consider them kinetically relevant (i.e., they never met Stage 2433

selection criteria), 95/931 were intermediates that YAKS selected for only unimolecular reactivity434

characterization, 3/931 were species that YAKS selected for both unimolecular and bimolecular435

reactivity characterization, and 80/931 were terminal species that were newly discovered in the436

last cycle and thus not considered for further characterization. That the overwhelming number of437

species in the network are unexplored is an illustration of the work being performed by YAKS in438

down-selecting important reactants for reaction characterization. Within 9 exploration steps (the439

same number of steps explored in the earlier MDA study), YAKS identified pathways to 5/6 major440

experimental products, HMF, FF, HAA, DHA, and HBL. Backward reaction searches—manually441

conducted explorations from the experimental products back to the explored CRN—starting from442

FF, 3FO, and HMF were able to connect along the low barrier pathway to the forward-explored443

network within one, two, and two reaction steps, respectively. The full CRN, composed of all444

forward and backward searches, recovers the low barrier pathways and multiple routes to all six of445

the major experimental products. The full CRN comprises 4733 species with 5395 unique reactions446

under 65 kcal/mol and is the first unified reaction network connecting all major experimental447

products.448

The YAKS exploration is more efficient and accurate than the MDA exploration. The simpler449

MDA exploration was limited to unimolecular chemistry and was only able to discover pathways450

to 2/6 of the major experimental products as part of the forward search.26 The MDA network451

was sufficiently broad that backwards searches were able to connect an additional three products452

to the network, with equal or lower barriers as discovered in the SSW study.8 In contrast, YAKS453

rediscovered the low barrier pathways to DHA and HAA one and four steps earlier than the MDA454

exploration, respectively. YAKS also found new pathways to levoglucosan, 1-Hydroxy-2-propanone455

(HA), and HBL that were missed by the simpler forward MDA approach, owing to its reliance on456

simple ERS.457
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YAKS also overcomes the choice paralysis that faces later stage MDA explorations. During458

D-Glucose pyrolysis, all significant reaction channels diverged from a single rate-limiting reaction459

step, making downstream intermediates equally desirable and severely hindering the ability to460

select species to explore.26 The 8th MDA step suggested 33 different intermediates to characterize,461

more than all species explored up to that point, effectively halting exploration. In contrast, YAKS462

can distinguish between species that share a common rate-limiting step by accounting for secondary463

bottlenecks through microkinetic modeling. The YAKS exploration performed here ran nearly 3x464

deeper than the MDA exploration without any selection issues.465

The microkinetic modeling used by YAKS constitutes a negligible computational cost relative to466

the reactivity characterization. For example, YAKS Stage 3 activities for the exploration associated467

with Figure 4 exceeded 1,000 node-hours on our local cluster, while the microkinetic modeling468

involved minutes (> 0.3% of the total exploration time). By construction, this YAKS workload469

distribution generalizes to other systems. The automation associated with YAKS also saves untold470

hours of human toil associated with manual job initiation that are difficult to quantify.471

Parallel noiseless CRN explorations with different ERS types and with or without seeded bi-472

molecular reactions were performed to investigate how sensitive the CRN discovered in 4 was to473

the underlying YAKS settings. Specific differences between these CRNs and the full CRN are474

discussed in the following sections, but overall characteristics are as follows. The unimolecular475

Cb3f3 network, shown in SI Fig. S1, ran for 17 exploration steps, stopping after the top-5 highest476

concentration species had all previously been explored, and comprises 1145 unique reactions under477

65 kcal/mol and 983 species. The bimolecular Cb3f3 CRN fell below the minimum confidence478

threshold in 14 YAKS cycles and comprised 797 species with 947 unique reactions. The unique479

bimolecular portion of the network is shown in Fig. 5 and a larger subnetwork is shown in SI Fig.480

S2. The unimolecular b3f3 CRN fell below the minimum confidence threshold after 17 cycles, com-481

prised 1362 species and 1384 reactions and is shown in the SI Fig. S3. Lastly, the b3f3 bimolecular482
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Figure 4: The D-glucose pyrolysis network explored by YAKS. Only unimolecular reactions are
shown for clarity; bimolecular reactions are discussed in Section 3.2. The exploration was performed
with rate uncertainty estimation, bimolecular reactions, and up to b3f3 ERS enabled. Starting
from D-glucose (shown in red), molecules are colored according to their step number, but only
experimental products are labeled. The number adjacent to each arrow refers to the free energy
of activation (∆G†) in kcal/mol. The arrows follow the direction of the network exploration,
but many reverse reactions ∆G† are shown above and below double arrows. From each explored
intermediate, the graphic highlights the three reactions with lowest activation barriers under 45
kcal/mol and select pathways to experimental products. Species shown in black are unexplored
intermediates. Species in shamrock green are experimental products (except the initial exploration
of a major product which retains its original color). For graphic clarity, water is not shown during
dehydration reactions. Highlighted sections of the network are discussed in the text.
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network dropped beneath the confidence threshold after 15 cycles and comprised over 1521 species483

and 1424, a subnetwork is shown in SI Fig. S4. All configurations explored similarly in the shallow484

network, but the direction generally diverged and resulted in crucial pathway omissions as the485

CRN became deeper.486

3.2 Consequences of Expanded Reaction Rules487

The reaction rules that govern CRN exploration pose a compromise between breadth and com-488

putational cost. For D-Glucose, with 24 total atoms and 24 bonds, a b2f2 reaction enumeration489

has
(
24
2

)
= 276 possible rearrangements (without discounting symmetrically equivalent reactions)490

whereas b3f3 enumeration has
(
24
3

)
= 2024 possible rearrangements. All b3f3 reactions can be491

decomposed into sequential b2f2 reactions, and previous testing has confirmed this is usually ki-492

netically preferable unless the reaction involves one or more π-bond rearrangements. For this493

reason, both the earlier MDA exploration and the uncertainty-guided exploration only explored494

Cb3f3 reactions involving one or more π-bond rearrangements.495

B3f3 ERS. To investigate whether the Cb3f3 rule led to the exclusion of any important b3f3 (all496

σ-bond) reactions, the YAKS glucose exploration was reperformed with water-catalyzed reaction497

rules involving all b3f3 (Figs. S3-S4). The inclusion of the b3f3 reactions involving only σ-bonds498

reduced several barriers, introduced new intermediates inaccessible by Cb3f3, and introduced the499

leftmost blue highlighted reaction in Fig. 4, which represents a new pathway to HBL. However,500

virtually all relevant reactions discovered by including the unconditional b3f3 explorations are501

actually b2f2 reactions that were discovered as unintended reactions (i.e., the transition state502

connects a different reactant and product than the one that was used to initiate the search). The503

inclusion of unconditional b3f3 reactions thus mainly provided a form of conformational sampling504

for b2f2 reactions. Only two true b3f3 reactions were discovered that altered YAKS explorations505

(both highlighted in dark blue in Fig. 4), and both of these proved unproductive after further506
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exploration. Unconditional b3f3 reactions thus contributed minimally to CRN knowledge and at507

considerable expense.508

Bimolecular Reactions. Analysis of the bimolecular reaction pathways revealed by YAKS509

suggests that these play a minimal role in D-Glucose pyrolysis at the simulated conditions (Fig. 5).510

Across the D-glucose case studies, over 30 bimolecular reactivity calculations were performed. None511

of these contributed pathways to high-yield experimental products. For example, the same three512

bimolecular reactions between the combinations of DHA, methylglyoxal [SMILES: O=CC(=O)C],513

and water (highlighted in green in Fig. 4 and Fig. 5) were seeded during the eighth exploration step514

of both ERS case-studies. This new reaction channel occupied numerous costly YARP calculations515

and resulted in newly formed endergonic species that largely decomposed back to their original516

reactants or similar small stable compounds upon further exploration and microkinetic modeling.517

Bimolecular reactions did identify a pathway to form HA, a minor product of high temperature518

pyrolysis, highlighted in yellow in Fig. 5. Although HA is one of the few thermodynamically stable519

products of the bimolecular network, it does not experimentally form at the lower temperature at520

which this study was conducted and so even this does not constitute a clear accomplishment.60521

The relatively small number of bimolecular reactions seeded in the exploration ultimately reflects522

the tendency of the species in this CRN to unimolecularly react under pyrolysis conditions before523

accumulating sufficient concentration to bimolecularly react.524

Notably, unimolecular exploration with YAKS still discovers many bimolecular reaction chan-525

nels through the reverse reactions of unimolecular fragmentations and unintended reaction chan-526

nels. Examples of the latter include hydration reactions that are discovered while attempting527

water-catalyzed reactions. All CRNs, regardless of unimolecular or bimolecular formulation in-528

clude over 25 bimolecular reactions. The backward search did identify two routes to form HBL,529

both using hydration reactions, but both are kinetically and thermodynamically unfavorable.530
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Figure 5: Bimolecular subnetworks resulting from bimolecular reactions between combinations of
DHA, water, and methylglyoxal. Species are colored according to their bimolecular exploration
step. Most bimolecular reactions available to the noiseless D-Glucose explorations decompose back
toward original reactants or similar small thermodynamically stable compounds.
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3.3 Uncertainty in Deep Reaction Networks531

To quantify the impact of reaction rate uncertainty in the resulting CRN, we resimulated the532

kinetics of the four noiseless explorations Cb3f3 and b3f3 networks (SI Figs. S1-S4) with resampled533

reaction rates at each stage of the YAKS exploration (see methods). The number of unique primary534

terminal species (UPTS) (left-axis in Fig. 6) and the mean cumulative mass percent (right-axis) of535

the top-5 species was tracked at each exploration stage. A primary terminal species is any species536

with a plurality of the steady-state concentration. As exploration deepens, there is a dramatic537

increase in the number of top-1 species for each exploration step. The b3f3 bimolecular CRN has538

over 70 species that were the top-1 during any of the 1,000 simulations. Expanding the lefthand539

axis to include any species that appeared within the top-5 during any exploration step, the number540

of species grows 3x-11x depending on the step. Without accounting for such uncertainty, a näıve541

noiseless exploration is more likely to fall into shallow local minima and explore more deeply in542

kinetically misguided directions.543

The observation that small deviations in activation barriers can lead to dramatically different544

CRN explorations motivated the use of uncertainty-guided exploration in YAKS. A particularly545

diabolical example from the noiseless D-glucose network involves the species highlighted in pink,546

shown on the bottom right of Fig. 4. The five highlighted reactions were explored during the547

noiseless unimolecular exploration, but the two unhighlighted reactions follow the low barrier548

pathways to form major experimental products, HMF and FF. The difference between the highest549

barriers of the noiseless explored species and the lowest barrier of the unexplored species is 0.16550

kcal/mol, well within DFT and conformational sampling errors. By averaging the results of many551

noisy simulations, the CRN converges toward a more convincing solution.552

The use of a beam-search is the second YAKS feature that is implemented to mitigate rate553

uncertainty. A wider beam search makes shallow YAKS explorations more robust by exploring all554
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possible kinetically relevant branches. For example, YAKS explored the reactivity of every inter-555

mediate connected to the blue highlighted species in Fig. 4 with a barrier less than ˜40 kcal/mol.556

Nevertheless, this benefit is diluted at later stages. For example, the fifth Cb3f3 exploration step557

characterized the reactivity of 20
184

species in the CRN whereas the 17th step explored 80
983

of the558

CRN. As the ERS expands, the problem magnifies. The 16th b3f3 exploration step contained 1362559

distinct species, without an increase in the number of nodes explored per step, which causes each560

exploration beam to become increasingly isolated and greedy.561

Figure 6: Unique primary terminal species (UPTS) and cumulative mass percent (CMP) of top
five species across all exploration steps. UPTS hold a concentration pluarality at the conclusion
of any of the 1,000 microkinetic simulations. Dashed lines correspond to the CMP of the top 5
species at each exploration step. The increase in concentration uncertainty with respect to network
depth is reflected by the coincident increases in UPTS and decreases in CMP. Bimolecular and
B3F3 reaction rules expand chemical space, aggravating the prioritization of the most pertinent
intermediates.

The general effect of including uncertainty-guided exploration is to broaden the exploration of562

the network at the expense of depth. All else being equal, the noiseless exploration will prioritize563

the lowest barrier reaction sequences regardless of their number, whereas long sequences with564

marginally lower barriers are disfavored by error propagation. For example, the lowest barrier565
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pathways to form HMF and FF are 11 and 12 reactions long, allowing a dozen opportunities for566

uncertain barriers to divert flux away. Although we have explored physically motivated ranges of567

activation energy uncertainties, the user could also use this phenomenology to tune the exploration.568

With the benefit of the global network view afforded by Fig. 4 we also highlight two other569

strategies that could be used in conjunction with YAKS to assist exploration despite uncertainty.570

The first method involves starting YAKS anew from an important intermediate partway into the571

network, such as from the yellow highlighted species in Fig. 4 that is seven reactions deep along572

the lowest barrier pathway. YAKS explored only the lowest barrier reaction from the yellow573

species, but a wide beam search from this juncture would certainly identify additional pathways to574

terminal products, especially the low barrier path to 3FO. The second method involves performing575

a sequence of reactivity explorations between microkinetic simulations (i.e., running Stage 3576

multiple times in each cycle). This strategy would allow YAKS to explore sequential endergonic577

reactions in succession as an alternative to using a fixed nd > 0. Although deep exploration is578

inherently uncertain, these strategies can help in practical explorations.579

3.4 The Critical Pathways: Low Barrier or High Flux?580

Do the low-barrier reaction sequences always dominate the flux in large CRNs? To investigate this,581

the reaction fluxes from 1,000 microkinetic simulations with uncertainty sampling were compared582

between the lowest barrier pathways, the highest flux pathways of the CRN from the forward583

exploration, and the the highest flux pathways of the complete CRN with backward searches that584

connected to experimental products (Fig. 7). Blue pathways show the highest flux routes to form585

5/6 experimental products (no pathway to 3FO was found during the forward search). Yellow586

shows the high flux pathways in the complete CRN. Red pathways are the low barrier pathways.587

When a species/reaction is both high flux during the forward and complete CRN, it is green. If in588

the full network, it is high flux and low barrier, it is shown as orange. Lastly, those reaction that589
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are high flux in the forward CRN, full CRN, and low barrier paths are shown in purple.590

Lower barrier reaction pathways often receive the most flux through a network. For example,591

the pathway that forms DHA involves a reaction sequence that exhibits the lowest overall barrier592

(LOB) to DHA and is also the highest flux. Longer discovered pathways to form DHA exhibit593

negligible flux and are functionally irrelevant. The majority of flux through Fig. 7 flows through594

the same low barrier reactions, but there are notable exceptions.595

Shorter reaction pathways with higher overall barriers are often more kinetically relevant than596

longer reaction sequences with lower rate-limiting steps. The shortest route to form HAA, de-597

spite being nearly 1.5 kcal/mol larger in overall barrier, is 4x more favored over the lowest bar-598

rier route, which involves 2x more reactions. Similarly, the high-flux pathways to form HMF,599

FF, 3FO, and HBL all traverse a 33.72 kcal/mol reaction (OCC(C(C(C(=O)CO)O)O)O =>600

OCC(C(C(C(=CO)O)O)O)O, also shown in green between two purple species), whereas the lowest601

barrier pathway has a nearly 3 kcal/mol lower rate-limiting step but involves four reactions.602

One reason for this behavior is that longer reaction sequences siphon flux to more off-target603

channels, even if the overall barrier to a particular species is lower. A second reason is that604

rate uncertainty propagates with respect to sequence length. With randomly injected noise, each605

reaction has an opportunity to become unfavorable, but a single reaction is more likely to remain606

favorable. Thus, kinetically simulated terminal products are more likely to form if the pathways607

to their formation is shorter. The trend is reinforced by HMF and FF, whose LOB pathways are608

11 and 12 reactions long, but highest flux pathways are only 8 and 9 reactions. Uncertain kinetics609

prefer direct reaction pathways.610

Similarly, even with an equal number of reactions, the higher overall barrier pathway doesn’t611

imply lower flux. In the bottom left of Fig. 7, the high flux forward CRN pathway favors a612

seemingly unfavorable reaction (yellow) at 35.87 kcal/mol where the parallel (red) pathway just613

above has an overall barrier 5 kcal/mol lower. Both pathways involve only 2 reactions, with the614
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Figure 7: Characterization of reaction pathways to experimental products. The high flux pathways
of the forward CRN (no backward searches) are shown in blue, the full CRN (with backward
searches) are shown in yellow, and the low barrier pathways of the full CRN are shown in red.
Coincident high flux pathways in the forward and full network are shown in green (yellow + blue =
green). Coincident high flux and low barrier pathways in the full CRN are shown in orange (yellow
+ red = orange). If all three primary colors overlap, the pathway is purple. YAKS spontaneously
identified pathways to 5 of 6 experimental products during the forward search, and low barrier
pathways to all 6 during the backward search. Species are colored according to their exploration
step in Figure 4.
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same purple-shaded reactant and orange-shaded product. The major distinction is that the high615

flux pathway is initially 7 kcal/mol less than the low overall barrier (red) pathway which siphons616

flux away from the purple-shaded reactant instead of the seven other more energetically favorable617

reactions that would compete with the red pathway (reactions highlighted in pink in Fig. 4). The618

low barrier pathway is not as important as the topography of the network when determining the619

most kinetically relevant reactions.620

3.5 Experimental Accuracy621

To compare the calculated CRN with experimental results, it was selectively refined by retaining622

the three LOB reaction pathways that terminated in at least one experimental product and high623

flux pathways from the uncertainty-guided CRN (Fig. 7). In addition to the three lowest pathways624

to HAA, we also kept reactions to HAA from species already included in the CRN. Just as in a625

YAKS exploration, all internal reactions were considered reversible, but reverse reactions were not626

included for terminal edges.627

Table 1: Experimental peak area %60 vs. average peak concentration % results from 1,000 mi-
crokinetic simulations of the refined CRN.

Products Fang et al Results Critical Paths (CP) CP Low Uncertainty CP High Uncertainty

HMF 20% 24.5% 15.3% 9.7%
FF 15% 19.5% 8.2% 4.6%
HAA 13.5% 26.5% 40.4% 47.8%
DHA 3.9% 25.1% 29.9% 30.8%
3FO 3.5% 2.4% 3.0% 2.6%
HBL 3.4% 0% 0% 0%

A comparison of experimental product yields with the simulations of the pruned CRNs reveals628

some qualitative successes but also the limitations of current methods (Table 1).60 Simulated yields629

are normalized to exclude the concentration percent of water so that they can be compared with the630

experimental values. In the noiseless CRN, HMF, FF, and 3FO are reasonably represented while631
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DHA and HAA are severely over represented and HBL is entirely absent. The major experimental632

products, except for HBL, are virtually omnipresent amongst the simulated major products even633

when considering rate uncertainty (Fig. S6).634

Experimental products with longer reaction pathways and higher overall barriers tend to di-635

minish rapidly under greater uncertainty (Table 2). In order, HBL, FF, and HMF lose the largest636

proportion of their noiseless population. Longer reaction pathways encounter more opportunities637

for flux to divert towards other products. As a useful comparison, HMF and 3FO have the same638

overall barriers for their LOB and shortest formation (SF) pathways, but both LOB and SF 3FO639

pathways are one reaction shorter than the HMF pathways. As a result, the 3FO population640

remains stable while HMF depletes by 60% in the high noise simulation scenario. DHA population641

grows moderately under uncertainty, because the DHA SF and LOB pathways are only slightly642

longer and higher barrier than the HAA SF.643

Table 2: Lowest overall barrier (LOB) and shortest formation (SF) pathways for reaction sequences
that produce major experimental products of D-glucose pyrolysis.

Products LOB Reactions LOB Barrier (kcal/mol) SF Reactions SF Barrier (kcal/mol)

HMF 11 30.90 8 33.72
FF 12 34.51 9 34.51
HAA 6 30.90 3 32.15
DHA 4 33.65 4 33.65
3FO 10 30.90 7 33.72
HBL 14 47.34 10 47.43

HAA concentration nearly doubles when simulated with rate uncertainty, because the highest644

yield pathway to form HAA is only three reactions long and the shortest of all critical pathways.645

A downward adjustment in either of the last two reactions will likely increase HAA yield, whereas646

a downward adjustment in both reaction barriers (25% chance) will dramatically increase its final647

concentration. If we were to prune the high flux 32.15 kcal/mol reaction shown in the upper left of648

Fig. 7, the concentration share of HAA would plummet to 13%. Without that pathway, the new649
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HAA SF pathway grows to five reactions, longer than the DHA SF. Considering rate uncertainty650

and additional off-target channels, the combination of LOB and SF is required to rationalize flux.651

4 Conclusion652

The improvements in cost, accuracy, chemical range, and throughput of automated reaction pre-653

diction methods create opportunities to elucidate comprehensive deep reaction networks. Despite654

these advances, work is still required to couple these methods with network exploration algorithms655

that prioritize physically relevant CRN explorations. This work elaborated the YAKS network656

exploration algorithm that uses microkinetic modeling on sequential subnetworks to prioritize657

relevant intermediates for further investigation. Salient features of YAKS are the use of rate un-658

certainty estimation, the manipulation of the network topology to prioritize kinetically accessible659

intermediates, the use of a parallel branch exploration, and the automatic treatment of bimolecular660

reactions involving intermediates. Application of YAKS to the problem of glucose pyrolysis yielded661

the first global reaction network that connects all major experimental products and glucose. This662

network supercedes the prior network generated using the simpler MDA exploration policy with663

the YARP reaction prediction engine. This new network is not substantially larger in terms of664

number of reactions and intermediates than the preceding MDA network; rather, it mainly reflects665

the alternative explorations selected by YAKS compared with the simpler algorithm.666

Although large reaction networks are impressive, exploration efficiency is more important than667

the sheer number of reactions and intermediates that were characterized. Indeed, characterizing668

large numbers of reactions only to discover a few short reaction sequences should be regarded as669

a failure, and the field needs to standardize better metrics of exploration efficiency. Here, several670

case studies were performed where different aspects of the YAKS algorithm were removed. None of671

these changes affected the number of reactions and intermediates that could be characterized, but672
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the omissions did lead to less physically relevant reactions being explored and some being missed673

entirely.674

There are several avenues to further improve YAKS. Exploration algorithms need to address675

the potential for catalytically active intermediates. For example, water was utilized as a catalyst676

for proton transfers here as a hard-coded option, not because YAKS recognized the potential of677

liberated water to act as a catalyst. This differs from exploring bimolecular reactivity, but a similar678

framework could be applied to the two problems. Additionally, non-physical reactions returned by679

the reaction prediction engine can have large effects on the microkinetic simulations and ultimately680

mislead the exploration. Exploration algorithms like YAKS could more generally build in physical681

priors for certain reaction classes in order to make them more robust to artifacts from purely682

computational reaction prediction. These and other ongoing improvements will be necessary to683

expand the classes of CRNs that can be effectively explored from scratch.684

5 Data Availability and Code Availability685

The authors declare that the data supporting the findings of this study are available within the686

paper and its supplementary information files.687

Further raw data sources generated by this work are available at (XXX, figshare link will be pop-688

ulated upon publication XXX), including raw output files and molecular geometries. The YAKS689

software package can be accessed on GitHub (https://github.com/Savoie-Research-Group/yaks).690

Conflicts of interest691

The authors declare no conflict of interest.692

37

https://doi.org/10.26434/chemrxiv-2024-v15kp ORCID: https://orcid.org/0000-0002-7039-4039 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-v15kp
https://orcid.org/0000-0002-7039-4039
https://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements693

The work was made possible by the Office of Naval Research (ONR) through support provided694

by the Energetic Materials Program (MURI grant number:N00014-21-1-2476, Program Manager:695

Dr. Chad Stoltz). B.M.S also acknowledges partial support for this work from the Purdue Process696

Safety & Assurance Center (P2SAC).697

38

https://doi.org/10.26434/chemrxiv-2024-v15kp ORCID: https://orcid.org/0000-0002-7039-4039 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-v15kp
https://orcid.org/0000-0002-7039-4039
https://creativecommons.org/licenses/by-nc-nd/4.0/


References698

(1) Suleimanov, Y. V.; Green, W. H. Automated discovery of elementary chemical reaction steps699

using freezing string and Berny optimization methods. J. Chem. Theory Comput. 2015, 11,700

4248–4259, Publisher: ACS Publications.701

(2) Habershon, S. Sampling reactive pathways with random walks in chemical space: Applications702

to molecular dissociation and catalysis. J. Chem. Phys. 2015, 143, 094106, Publisher: AIP703

Publishing LLC.704

(3) Ismail, I.; Robertson, C.; Habershon, S. Successes and challenges in using machine-learned ac-705

tivation energies in kinetic simulations. The Journal of Chemical Physics 2022, 157, 014109.706

(4) Habershon, S. Automated prediction of catalytic mechanism and rate law using graph-based707

reaction path sampling. J. Chem. Theory Comput. 2016, 12, 1786–1798, Publisher: ACS708

Publications.709

(5) Grambow, C. A.; Jamal, A.; Li, Y.-P.; Green, W. H.; Zádor, J.; Suleimanov, Y. V. Unimolec-710
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(34) Zhang, S.; Makoś, M. Z.; Jadrich, R. B.; Kraka, E.; Barros, K.; Nebgen, B. T.; Tretiak, S.;797

Isayev, O.; Lubbers, N.; Messerly, R. A.; Smith, J. S. Exploring the frontiers of condensed-798

phase chemistry with a general reactive machine learning potential. Nature Chemistry 2024,799

16, 727–734, Publisher: Nature Publishing Group.800

(35) Chang, A. M.; Meisner, J.; Xu, R.; Mart́ınez, T. J. Efficient Acceleration of Reaction Dis-801

covery in the Ab Initio Nanoreactor: Phenyl Radical Oxidation Chemistry. The Journal of802

Physical Chemistry A 2023, 127, 9580–9589, Publisher: American Chemical Society.803

(36) Nishimura, Y.; Nakai, H. Species-selective nanoreactor molecular dynamics simulations based804

43

https://doi.org/10.26434/chemrxiv-2024-v15kp ORCID: https://orcid.org/0000-0002-7039-4039 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-v15kp
https://orcid.org/0000-0002-7039-4039
https://creativecommons.org/licenses/by-nc-nd/4.0/


on linear-scaling tight-binding quantum chemical calculations. The Journal of Chemical805

Physics 2023, 158, 054106.806

(37) Stan-Bernhardt, A.; Glinkina, L.; Hulm, A.; Ochsenfeld, C. Exploring Chemical Space Using807

Ab Initio Hyperreactor Dynamics. ACS Central Science 2024, 10, 302–314.808

(38) Wang, L.-P.; McGibbon, R. T.; Pande, V. S.; Martinez, T. J. Automated Discovery and Re-809

finement of Reactive Molecular Dynamics Pathways. Journal of Chemical Theory and Com-810

putation 2016, 12, 638–649, Publisher: American Chemical Society.811

(39) Susnow, R. G.; Dean, A. M.; Green, W. H.; Peczak, P.; Broadbelt, L. J. Rate-Based Construc-812

tion of Kinetic Models for Complex Systems. The Journal of Physical Chemistry A 1997,813

101, 3731–3740, Publisher: American Chemical Society.814

(40) Vinu, R.; Broadbelt, L. J. A mechanistic model of fast pyrolysis of glucose-based carbohy-815

drates to predict bio-oil composition. Energy & Environmental Science 2012, 5, 9808–9826,816

Publisher: The Royal Society of Chemistry.817

(41) Mayes, H. B.; Nolte, M. W.; Beckham, G. T.; Shanks, B. H.; Broadbelt, L. J. The818

alpha–bet(a) of glucose pyrolysis: computational and experimental investigations of 5-819

hydroxymethylfurfural and levoglucosan formation reveal implications for cellulose pyrolysis.820

ACS Sustainable Chem. Eng. 2014, 2, 1461–1473, Publisher: ACS Publications.821

(42) Kostetskyy, P.; Coile, M. W.; Terrian, J. M.; Collins, J. W.; Martin, K. J.; Brazdil, J. F.;822

Broadbelt, L. J. Selective production of glycolaldehyde via hydrothermal pyrolysis of glucose:823

Experiments and microkinetic modeling. Journal of Analytical and Applied Pyrolysis 2020,824

149, 104846.825

(43) Gao, C. W.; Allen, J. W.; Green, W. H.; West, R. H. Reaction Mechanism Generator: Au-826

44

https://doi.org/10.26434/chemrxiv-2024-v15kp ORCID: https://orcid.org/0000-0002-7039-4039 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-v15kp
https://orcid.org/0000-0002-7039-4039
https://creativecommons.org/licenses/by-nc-nd/4.0/


tomatic construction of chemical kinetic mechanisms. Computer Physics Communications827

2016, 203, 212–225.828

(44) Liu, M.; Grinberg Dana, A.; Johnson, M. S.; Goldman, M. J.; Jocher, A.; Payne, A. M.;829

Grambow, C. A.; Han, K.; Yee, N. W.; Mazeau, E. J.; Blondal, K.; West, R. H.; Gold-830

smith, C. F.; Green, W. H. Reaction Mechanism Generator v3.0: Advances in Automatic831

Mechanism Generation. Journal of Chemical Information and Modeling 2021, 61, 2686–2696,832

Publisher: American Chemical Society.833

(45) Zhao, Q.; Garimella, S. S.; Savoie, B. M. Thermally Accessible Prebiotic Pathways for Form-834

ing Ribonucleic Acid and Protein Precursors from Aqueous Hydrogen Cyanide. Journal of835

the American Chemical Society 2023, 145, 6135–6143.836

(46) Vadaddi, S. M.; Zhao, Q.; Savoie, B. M. Graph to Activation Energy Models Easily Reach837

Irreducible Errors but Show Limited Transferability. 2023; https://chemrxiv.org/engage/838

chemrxiv/article-details/65410dc248dad23120c6e954.839

(47) Stulajter, M.; Rappoport, D. Reaction Networks Resemble Low-Dimensional Reg-840

ular Lattices. 2024; https://chemrxiv.org/engage/chemrxiv/article-details/841

6658fe89418a5379b0b45273.842

(48) Green, W. H. In Computer Aided Chemical Engineering ; Faravelli, T., Manenti, F., Ranzi, E.,843

Eds.; Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Com-844

bustion; Elsevier, 2019; Vol. 45; pp 259–294.845

(49) Zhao, Q.; Savoie, B. More and Faster: Simultaneously Improving Reaction Coverage and846

Computational Cost in Automated Reaction Prediction Tasks. 2020; https://chemrxiv.847

org/engage/chemrxiv/article-details/60c750b8567dfe44aeec58f9.848

45

https://doi.org/10.26434/chemrxiv-2024-v15kp ORCID: https://orcid.org/0000-0002-7039-4039 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-v15kp
https://orcid.org/0000-0002-7039-4039
https://creativecommons.org/licenses/by-nc-nd/4.0/


(50) Zhao, Q.; Savoie, B. M. Algorithmic Explorations of Unimolecular and Bimolecular Reaction849

Spaces. Angew. Chem., Int. Ed. 2022, 61, e202210693.850

(51) Zhao, Q.; Savoie, B. M. Self-Consistent Component Increment Theory for Predicting Enthalpy851

of Formation. Journal of Chemical Information and Modeling 2020, 60, 2199–2207.852

(52) Pracht, P.; Bohle, F.; Grimme, S. Automated exploration of the low-energy chemical space853

with fast quantum chemical methods. Physical Chemistry Chemical Physics 2020, 22, 7169–854

7192, Publisher: The Royal Society of Chemistry.855

(53) Zhao, Q.; Hsu, H.-H.; Savoie, B. M. Conformational Sampling for Transition State Searches856

on a Computational Budget. Journal of Chemical Theory and Computation 2022, 18, 3006–857

3016.858

(54) Zimmerman, P. M. Automated discovery of chemically reasonable elementary reaction steps.859

J. Comput. Chem. 2013, 34, 1385–1392, Publisher: Wiley Online Library.860

(55) Zimmerman, P. Reliable Transition State Searches Integrated with the Growing String861

Method. Journal of Chemical Theory and Computation 2013, 9, 3043–3050.862

(56) Frisch, M. J. et al. Gaussian 16 Revision C.01. 2016.863

(57) Zhao, Q.; Vaddadi, S. M.; Woulfe, M.; Ogunfowora, L. A.; Garimella, S. S.; Isayev, O.;864

Savoie, B. M. Comprehensive exploration of graphically defined reaction spaces. Scientific865

Data 2023, 10, 1–10, Number: 1 Publisher: Nature Publishing Group.866

(58) David G. Goodwin,; Raymond L. Speth,; Harry K. Moffat,; Bryan W. Weber, ”Cantera: An867

Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport868

Processes”. 2021; https://www.cantera.org.869

46

https://doi.org/10.26434/chemrxiv-2024-v15kp ORCID: https://orcid.org/0000-0002-7039-4039 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-v15kp
https://orcid.org/0000-0002-7039-4039
https://creativecommons.org/licenses/by-nc-nd/4.0/
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