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ABSTRACT: The synthesis and crystallographic characterization of BN-benzvalene, the first light-element hetero-benzvalene, is described. 
BN-benzvalenes are produced via photoexcitation of C5-aryl-substituted 1,2-azaborines under flow conditions.  Mechanistic studies support a 
boron-specific, two-step photoisomerization pathway involving a BN-Dewar benzene intermediate, which is distinct from the photoisomeriza-
tion pathway proposed in benzene and phospha- and sila-benzenes for the formation of their respective benzvalene analogues.

Benzene has four valence isomers:1 benzvalene,2 Dewar benzene,3 
prismane, 4  and bicyclopropenyl.5  Among them, benzvalene has 
captured the attention of synthetic chemists due to its unique 
bonding and reactivity.2 The development of a practical and facile 
synthesis of benzvalene by Katz6 has led to the access to additional 
strained hydrocarbon scaffolds, including bicyclo[1.1.1]pentane7,8 
and bicyclo[2.1.1]hexane9 derivatives that are of current interest 
as 3D bioisosteres of benzene in medicinal chemistry.10   
In comparison to the carbonaceous benzvalene, main group het-
eroatom-containing benzvalene derivatives have been less devel-
oped. Kobayashi pioneered the first example in 1977 by synthesiz-
ing the 1,4-diphosphabenzvalene through the photoisomerization 
of 1,4-diphosphabenzene. 11  Subsequently, Regitz, 12  Ando, 13 
Tokitoh, 14  Sekiguchi, 15  Cummins, 16  and Kyushin 17  et al. inde-
pendently synthesized additional phosphorus- and silicon-con-
taining heteroatom benzvalenes (Schemes 1A and 1B). 18  Con-
spicuously, second-row element (B, N, O) hetero-benzvalenes 
have remained elusive to date. 19  Arguably, the involvement of 
heavier and larger 3rd-row main group elements (P and Si) reduces 
the resonance stabilization (due to weak p-bonding) of the corre-
sponding heteroarenes and attenuates the ring strain, resulting in 
some thermodynamic driving force for the formation of the heav-
ier hetero-benzvalene structures.17c, 20 
In this communication, we report the first example of a light-ele-
ment hetero-benzvalene. Specifically, we describe the synthesis, 
characterization, and initial reactivity studies of the boron- and ni-
trogen-containing BN-benzvalene (Scheme 1C). Deuterium la-
beling analysis is consistent with a distinct mechanism that in-
volves a corresponding Dewar valence isomer species (BN-Dewar 
benzene) as an intermediate that undergoes a photo-induced 1,2-
boron shift to furnish the observed BN-benzvalene.  

Our group has had a long-standing interest in the synthetic devel-
opment and applications of 1,2-azaborines,21 which are boron(B)-
nitrogen(N) containing isosteres of benzene. In collaboration 
with the Bettinger group, we discovered that 1,2-azaborine under-
goes a clean photoisomerization to BN-Dewar benzene upon UV 
light irradiation (hv > 280 nm).22 Subsequently, the BN-Dewar 
benzene species has been investigated as potential molecular solar 
thermal  

Scheme 1. Main Group Heteroatom-Containing Benzvalenes 

 
fuels,23,24 new synthetic building blocks for 1,2-aminoborylated cy-
clobutane derivatives,25 and as a monomer for ring-opening me-
tathesis polymerization.26 During our investigation of the photo-
chemistry of 1,2-azaborines, we discovered that a C5-aryl-func-
tionalized 1,2-azaborine (with N-TBS and B-Mes substitution) 
produced the BN-benzvalene isomer in addition to the BN-Dewar 
isomer upon photolysis (Scheme 2).  
Scheme 2. Initial Discovery 

 
To optimize the formation of BN-benzvalene, we selected C5-p-
Tol-N-TBS-B-Mes-1,2-azaborine 1a as a model substrate using a 
Vapourtec UV-150 continuous-flow photochemical reactor with 
adjustable irradiation wavelength (by applying select filters to a 
mercury lamp). As can be seen from Table 1, we determined that 
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280 nm UV irradiation with a residence time of 20 minutes in THF 
(0.10 M) were optimal for the generation of BN-benzvalene. 
Under these conditions, we obtained BN-benzvalene 2a in 88% 
yield without the formation of BN-Dewar benzene 3a as a byprod-
uct (Table 1, entry 1). Shortening the residence time (RT) (entry 
2) or using a longer wavelength (entry 4) resulted in incomplete 
conversion, with BN-Dewar benzene 3a being the major observed 
product. On the other hand, extending the residence time (entry 
3) or using a shorter wavelength (entry 5) resulted in a slightly re-
duced yield of BN-benzvalene 2a, likely due to product degrada-
tion. Hexane and CH2Cl2 are compatible reaction solvents, how-
ever, they produced lower yields compared to THF (entries 6 and 
7). The reaction is scalable to at least 0.50 mmol (200 mg) scale 
without a decrease in yield (entry 8).27 Notably, both products 2a 
and 3a are stable toward silica gel column chromatography under 
an inert atmosphere. 
Table 1. Optimization of the Photoisomerization 

 
We were able to isolate compounds 2a and 3a (Table1, entry 8 and 
entry 9, respectively), and Figure 1 shows their 1H NMR spectra. 
In Dewar isomer 3a, the two methyl groups on TBS (~0 ppm, or-
ange arrow) are diastereotopic as evidenced by two distinct signals 
in the 1H NMR spectrum. Similarly, the benzvalene isomer 2a also 
exhibits two signals for the same methyl groups in its 1H NMR 
spectrum, albeit with less chemical shift difference. The mesityl o-
methyl groups (~2.2 ppm, purple arrow) exhibit exchange dynam-
ics (broadened signals) at room temperature for the BN-Dewar 
benzene 3a compound, whereas sharp diastereotopic mesityl o-
methyl signals are observed for BN-benzvalene 2a. These observa-
tions are consistent with a more restricted B–Mes bond rotation 
for 2a relative to 3a. The original 1,2-azaborine arene C-H proton 
signals Ha, Hb, Hc are upfield shifted in BN-benzvalene 2a relative 
to the signals for BN- Dewar 3a and are consistent with previously 
reported similar tricyclic structures.2a,19a 

 
Figure 1. 1H NMR spectra in CDCl3 of C5-p-Tol-ΒΝ-Dewar ben-
zene 3a (top trace) and p-Tol-BN-benzvalene 2a (bottom trace) 
in CDCl3. 

We next evaluated the scope of C5-aryl functional group under our 
optimized conditions. A broad range of p-substituents are compat-
ible, affording the corresponding products containing alkyl groups 
(entries 2a–2c), trifluoromethoxy group (entry 2d), and halogens 
(entries 2e–2g) in good yields. The unsubstituted C5-Ph-1,2-
azaborine substrate (entry 2h), along with C5-3,5-dimethoxy-phe-
nyl- (entry 2i), and C5-o-tolyl- (entry 2j) derivatives were also suc-
cessfully converted to the BN-benzvalene products. Moreover, 
C5-1,2-azaborines containing electronically diverse heterocycles 
such as thiophene, pyridine, and thiazole (entries 2k–2m) prove 
also to be suitable substrates.  
Table 2. Reaction Scope at the C5 Position 

 
We then turned our attention to determine the scope with respect 
to the nitrogen substituent. The presence of a silicon on nitrogen 
appears to be crucial for product formation. While silicon-based 
groups, such as TMS, TBS, and SiPh3 (entries 2a, 2n, 2o) generate 
the product cleanly, other groups on nitrogen, such as H, Me, Ph, 
and Ts (entries 2p-2s) completely shut down the reaction, with 
unreacted starting material and/or decomposition being observed.  
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Table 3. Reaction Scope at the N Position 

 
BN-benzvalenes (2a–2n) are generally non-crystalline oily 
substances, with the exception being the N-SiPh3-substituted 
2o, which is a white solid. We successfully grew crystals of 2o 
(CCDC 2359775) suitable for single crystal X-ray diffraction 
analysis by slow evaporation from a CH2Cl2 solution at –40 
ºC. We also obtained the structure of the corresponding 1,2-
azaborine starting material 1o (CCDC 2359773) for compar-
ative bonding analysis. Two structural features of 2o are note-
worthy (Figure 2): 1) The N-B bond distance (1.419(3)Å) in 
2o is shorter than that for 1o (1.446(3) Å), which is consistent 
with loss of electron delocalization/aromaticity 28  after the pho-
toisomerization. 2) In 2o, the C–C bond distances associated with 
C6 (C6–C5 = 1.497(3) Å, C6–C3 = 1.494(3) Å) are shorter than 
the C–C bond distances associated with C4 (C4–C3 = 1.531(3) 
Å, C4–C5 = 1.546(3) Å). The bond distance differences are con-
sistent with reported crystallographically characterized amino-
borylated cyclopropanes. 29  Notably, density functional theory 
(DFT) calculations nicely reproduce the experimentally observed 
structural asymmetry in 2o whereas the direct carbonaceous 
benzvalene analogue exhibits symmetrical s-bonding according 
to DFT predictions (See Supporting Information for details). 

 
Figure 2. Crystal Structure of 2o and 1o (hydrogen atoms are 
omitted for clarity). Thermal ellipsoids are drawn at the 50% prob-
ability level. Selected bond lengths in Å for 2o are: N–B = 
1.419(3), N–C6 = 1.479(3), B–C4 = 1.575(3), C4–C3 = 
1.531(3), C4–C5 = 1.546(3), C6–C3 = 1.494(3), C6–C5 = 
1.497(3); Selected bond lengths in Å for 1o are: N–B = 1.446(3), 
N–C6 = 1.388(2), B–C3 = 1.519(3), C3–C4 = 1.355(3), C4–C5 
= 1.421(3), C6–C5 = 1.355(3). 
 
We also used DFT calculations at the B3LYP/6-311G**// 
B3LYP/6-31G** level of theory to evaluate the relative energies of  

Table 4. Relative Energies of 1,2-Azaborine’s Valence Isomers 
(calculated at the B3LYP/6-311G**// B3LYP/6-31G** level of 
theory.)  

 
 
Dewar benzene and benzvalene isomers vs. their (hetero)arene 
structures for both the BN and CC series (Table 4). We deter-
mined that benzvalenes 2a and CC-2a are slightly less stable than 
the Dewar benzene isomers 3a and CC-3a by 3.2 and 2.8 kcal/mol, 
respectively). BN-benzvalene 2a is higher in energy by 49.5 
kcal/mol compared to 1,2-azaborine 1a whereas benzvalene CC-
2a is higher in energy by 68.1 kcal/mol relative to its benzene iso-
mer CC-1a. The difference in the relative stability between the BN 
and CC congeners (BN: 49.5 kcal/mol vs. CC: 68.1 kcal/mol) can 
be ascribed to the stronger resonance stabilization energy present 
in CC-1a vs. 1a.30 
We have also conducted preliminary reactivity studies of BN-
benzvalene 2a and determined that 2a reacts with thiophenol to 
cleanly furnish the ring-opened adduct 4a (Scheme 3).9b,31  Nota-
bly, the reaction is sluggish under dark conditions, and irradiation 
with purple light accelerates the reaction. 32  Compound 4a 
(CCDC 2359774), the first example of a BN-
bicyclo[2.1.1]hexane, is stable towards air and moisture and can 
be isolated by column chromatography under ambient conditions.  
Scheme 3. Synthesis of BN-Bicyclo[2.1.1]hexane 

 
To elucidate the reaction mechanism for the formation of BN-
benzvalene, we conducted the experiments as outlined in Scheme 
4. The observations during our reaction optimization work (Table 
1, entries 2 and 4 vs. entry 1) hinted at BN-Dewar benzene 3a serv-
ing as an intermediate toward the formation of BN-benzvalene 2a. 
We were able to isolate pure BN-Dewar benzene 3a and determine 
that 3a cleanly converts to 2a under the standard reaction condi-
tions (Scheme 4, eq 1). Thus, BN-Dewar benzene 3a is a chemi-
cally and likely kinetically competent intermediate for BN-
benzvalene formation. Next, we conducted a deuterium labeling 
study to identify the bond connectivity over the course of the reac-
tion. We synthesized C6- and C3-deuterated 1,2-azaborine ana-
logues 5a and 7a, respectively. These substrates, when subjected 
to the standard photoisomerization conditions, furnish labeled 
BN-benzvalene products 6a and 8a. Formation of 6a (Scheme 4, 
eq 2) is consistent with N-C6 bond remaining connected through-
out the reaction. To our surprise, the deuterium in 8a switched its  
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Scheme 4. Mechanistic Studies 
 

  
 
location to the bridgehead C-H position, indicating that B-C3 
bond is cleaved during the formation of the BN-benzvalene prod-
uct. By shortening the residence time, we were able to monitor the 
formation of the deuterium-labeled BN-Dewar benzenes 9a and 
10a. Consistent with the previously reported mechanism for BN-
Dewar benzene formation,33 no N-C6 and B-C3 bond cleavage 
was observed (eqs 4 and 5). The findings illustrated in Scheme 4 
indicate that the B-C3 bond must be cleaved during the transfor-
mation from BN-Dewar benzene to BN-benzvalene.  
Scheme 5 illustrates our proposed mechanism that is consistent 
with our deuterium labeling and reaction intermediate analysis. 
First, the starting 1,2-azaborine undergoes a photoinduced formal 
4π disrotatory electrocyclization to generate the BN-Dewar ben-
zene intermediate.33 Then, the styrene chromophore in the BN-
Dewar benzene is excited by UV-light to generate a biradical spe-
cies. The radical at the C4 position subsequently undergoes a 1,2-
boron shift,34 and producing a C3 radical via a C3-B bond cleavage. 
Finally, radical-radical recombination of the C3 and C5 radicals 
creates the central C-C bond of BN-benzvalene. The proposed re-
action mechanism is consistent with C5-aryl functional group fa-
cilitating the generation of BN-benzvalene by providing extra con-
jugation in the BN-Dewar intermediate for the photoinitiated for-
mation of the biradical. The proposed 1,2-boron shift for BN-
benzvalene formation is distinct from mechanisms proposed in 
benzene 35 , 36  and phospha12- and sila14,15a-benzene analogues to 
yield their respective benzvalenes. 
 
Scheme 5. Proposed Mechanism for Formation of BN-
Benzvalene 
 

 
 
In conclusion, we presented the synthesis and crystallographic 
characterization of the first light-element hetero-benzvalene exem-
plified as the boron-nitrogen containing BN-benzvalene. Photoex-
citation of C5-aryl-substituted 1,2-azaborines under flow condi-
tions furnish BN-benzvalenes with a broad substrate scope, includ-
ing halogen functional groups and heteroaromatic rings. Mecha-
nistic studies support a distinct stepwise photoisomerization path-
way from 1,2-azaborine via a BN-Dewar benzene intermediate in-
volving a radical-induced 1,2-boron shift. BN-benzvalene reacts 
with thiophenol in the presence of light to generate a BN-
bicyclo[2.1.1]hexane. Current efforts are directed toward explor-
ing novel modes of reactivity of BN-benzvalene derivatives.  
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