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Barrier-crossing rates of biophysical processes, ranging from simple conformational changes to
protein folding, often deviate from the Kramers prediction of an inverse viscosity dependence.
In many recent studies, this has been attributed to the presence of internal friction within the
system. In our previous work, we showed that memory-dependent friction arising from the non-
equilibrium solvation of a single particle can also cause such a deviation and be misinterpreted as
internal friction. Here, we show that, even in the absence of an explicit solvent, memory effects
can arise from within the molecule due to the coupling of the reaction coordinate motion with
frictionally orthogonal degrees of freedom. Further, we find that the strength of the coupling
determines the extent of the deviation from Kramers Theory. We show this for not only a simple
diatom model but also cis-trans isomerization rates of butane, establishing the generality of our
results.

I. INTRODUCTION

Several biophysical phenomena, be it a simple
conformational change in a small molecule like
butane or as complex as protein folding, can be
modeled as barrier-crossing processes along appro-
priate reaction coordinates. According to Transi-
tion State Theory (TST), the rates of such pro-
cesses depend solely on the barrier height, Eb, and
the frequency of the reactant well, ωr, such that
kTST = ωr

2π e
−Eb/kBT . However, it fails to account

for the recrossing at the barrier top as a result of
collisions with solvent molecules. Kramers’ theory
(KT) successfully accounts for these factors by in-
corporating a correction factor κ called the trans-
mission coefficient.1 In the overdamped limit, the
transmission coefficient is equal to ωb/ξ, where ωb

is the barrier frequency, and ξ is the solvent fric-
tion coefficient. Assuming the solvent friction to
be purely hydrodynamic, i.e., ξ = 6πηr and the
barrier curvature to be independent of the viscos-
ity, one would expect the rate to be inversely pro-
portional to the viscosity (η). However, as early
as the 1980s, Fleming and co-workers2 found that
the rates of photochemical isomerization of some
simple organic molecules do not show an inverse
viscosity dependence. Instead, these rates were
found to follow a power law characterized by a
fractional parameter α such that:

k ∝ 1

ηα
α < 1 (1)

In 1992, Ansari et al.3 found that the solvent vis-
cosity dependence of conformational change rates
in myoglobin could be explained by the empirical
relation:

k =
C

η + σ
(2)

The σ term in Ansari’s equation has since been
used as a convenient measure of the solvent-
independent dry friction or “internal friction”
present in biophysical systems. Numerous exper-
imental and theoretical studies have found that
internal friction plays a key role in governing the
rates of important biophysical processes, from the
chain dynamics of intrinsically disordered proteins
(IDPs)4,5 to the unfolded state dynamics4–6 and
protein folding pathways7–11. Clarke and cowork-
ers used internal friction (IF) to explain the differ-
ential folding rates of the R15, R16, and R17 do-
mains of α-Spectrin despite their similar structures
and thermodynamic stabilities.11–13 Proteins that
form α helices have been argued to have more IF,
thereby justifying their slower folding rates com-
pared to β hairpin forming peptides.14–16 This is
relevant in the context of neurodegenerative dis-
eases, which involve the formation of misfolded
beta sheets. However, the molecular origin of IF
is still unclear, with explanations ranging from the
formation of hydrogen bonds10, concerted dihedral
rotations17 to increased dispersion interactions18

and even landscape roughness11.

After Ansari’s equation, any deviation from
Kramers’ theory in barrier-crossing rates of bio-
physical processes has been attributed to internal
friction. But in 1980, Grote and Hynes19 showed
that a breakdown of Kramer’s theory can also re-
sult from friction on the reaction coordinate be-
ing non-Markovian. Grote-Hynes theory (GHT)
describes the motion of a reaction coordinate q
in a potential of mean force (PMF) of the form
G[q(t)] near the transition state using a General-
ized Langevin Equation (GLE) as

µq̈ = −∂G[q(t)]

∂t
−µ

∫ t

0

ξ(τ)q̇(t−τ)dτ+R(t), (3)

where ξ(t) (also called memory friction or memory
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kernel) is a time-dependent friction resulting from
the nonequilibrium solvation due to the rapid mo-
tion of the reaction coordinate across the barrier.
µ is the effective mass of the reaction coordinate
and R(t) is a random fluctuating force such that
⟨R(t)R(t + τ)⟩ = µkBTξ(t). The reaction coordi-
nate experiences an effective friction ξ(λr) that can
be smaller than the full solvent friction, leading to
higher barrier-crossing rates than expected from
KT. Bagchi and Oxtoby20 showed that incorporat-
ing memory-dependent friction could satisfactorily
explain the fractional viscosity dependence of the
rates observed by Fleming and co-workers2.
Recently, Hridya et al. have demonstrated an

example of such non-equilibrium solvent effects
when discussing the origin of internal friction.21

They have shown that a single particle that crosses
a one-dimensional barrier in the presence of an ex-
plicit solvent shows a deviation from KT with a
non-zero σ value (Eq. (2)) and, correspondingly,
a α value less than 1 (Eq. (1)). However, since
the particle has no “internal” coordinates, we real-
ize that the fractional viscosity dependence in this
case is purely a consequence of the breakdown of
the Markovian approximation of Kramers’ theory.
The study showed that the viscosity dependence
of the rate was in good agreement with the GHT,
which includes memory-dependent friction21.

Best and co-workers also argued that solvent
memory effects could be a source of internal
friction.9. Surely, such memory effects are not re-
stricted only to the solvent, and they can arise
from coupled motions within the system (be it a
protein or a simple molecular solute) as well. A
recent work by Netz et al.22 has shown the role of
memory effects (both solvent and internal) in gov-
erning the dihedral rotation of butane. Laage et al
have also demonstrated that non-Markovian fric-
tion (from both protein and solvent) plays a key
role in the loop opening and closing dynamics of
the PTP1B enzyme23.
In all of the previous studies, explicit solvent

was used to demonstrate the effect of memory
function while attributing the outcome (a devia-
tion from the Kramers equation) to internal fric-
tion. The reason for attributing the deviation of
the viscosity dependence of the rate from Kramers
to internal friction is purely in the context of
Ansari’s equation, where an explicit solvent is con-
sidered. In this work, we show, with the help
of simple models, that memory-dependent friction
can arise even in the absence of explicit solvent
solely from the coupling of internal motions. We
argue that the so-called “internal friction”, char-
acterized by a fractional viscosity dependence of
the rate, results from the friction becoming non-
Markovian or memory-dependent. Additionally,
our results demonstrate that the strength of the
coupling determines the degree of fractional vis-
cosity dependence and the extent of the deviation
from Kramers’ theory. Finally, we used this sim-

ple model to explain the memory effects present
in the Gauche-Anti interconversion of butane in
an implicit solvent.

II. A SIMPLE DIATOMIC MODEL

A. System Design

We construct a simple diatom model as shown
in Figure 1. The particle A moves under the influ-
ence of the solvent while connected by a harmonic
spring of frequency ωc to particle ‘B’, which moves
in the double-well potential V (q) as shown below.

V (q) =
Vo

b4

[(
q − a

2

)2

− b2
]

(4)

Here, V0 is the barrier height, a/2 is the location
of the barrier top or transition state, and 2b is
the separation between the two wells. For simplic-
ity, we restrict the motion of the particles to one
dimension only. The position of the second parti-
cle x2 is our reaction coordinate of interest in this
case. No other interaction exists between the par-
ticles except the harmonic spring that joins them.
This model, as shown below, is a minimal exten-
sion, with just one additional degree of freedom,
to the model used in the previous study of Hridya
et al.21, where one particle crosses a barrier along
one dimension.

FIG. 1: Schematic representation of the diatom
model in the double-well potential.

B. Non-Markovian (Memory) Friction

The particle ‘A’ experiences solvent friction, so
we can write a Langevin equation to model its time
evolution using mass-weighted coordinates. Since
the particle ‘A’ is not the one actively crossing
the potential energy barrier, we can think of its
mass-weighted coordinate m1x1 as a non-reactive
coordinate and denote it as qn.

q̈n(t) = −ω2
c (qn(t)− qr(t))− ξq̇n(t) +R(t), (5)
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where ξ is the solvent friction coefficient in ps−1,
and ωc is the coupling frequency. R(t) is a random
force that follows the Fluctuation Dissipation The-
orem such that ⟨R(t)R(t

′
)⟩ = 2ξkBTδ(t− t

′
).

For particle ‘B’, no such solvent friction is
present. Instead, it moves in the double well po-
tential V (q) defined in equation (4). So its equa-
tion of motion can be written in terms of a mass-
weighted reactive coordinate qr = m2x2 as:

q̈r(t) = ω2
c (qn(t)− qr(t))−∇V [qr(t)] (6)

Since the above two equations are coupled, we
can write an equivalent generalized Langevin equa-
tion (GLE) for only the reactive coordinate qr

24.
To do this, we must find qn(t) by solving the dif-
ferential equation (5) and substituting it into the
equation (6). We start by applying Laplace trans-
forms on both sides of equation (5):

L{q̈n(t)} = L{−ω2
cqn(t)+ω2

cqr(t)− ξq̇n(t)+R(t)}

which evaluates to:

s2q̂n(s)− sqn(0)− q̇n(0) =

− ω2
c (q̂n(s)− q̂r(s))− ξ[sq̂n(s)− qn(0)] + R̂(s),

where q̂n(s) and q̂r(s) are the Laplace transforms

of qn(t) and qr(t) respectively. Similarly, R̂(s) is
the Laplace transform of the random force. Rear-
ranging, we get

q̂n(s) = q̂r(s)−
s+ ξ

s2 + ω2
c + ξs

[sq̂r(s)− qr(0)]

+
(ξ + s)[qn(0)− qr(0)] + q̇n(0) + R̂(s)

s2 + ω2
c + ξs

Following the work of Gertner, Wilson, and
Hynes,25 we can define the third term on the right-
hand side as the Laplace transform of the effective
random force on the non-reactive mode R̂eff (s).
Together, we can write

q̂n(s) = q̂r(s)−F (s) [sq̂r(s)− qr(0)]+R̂eff (s), (7)

where

F (s) =
s+ ξ

s2 + ω2
c + ξs

Finally, the inverse Laplace Transform of equation
(7) provides qn(t).

qn(t) = qr(t)−L−1 {F (s) [sq̂r(s)− qr(0)]}+Reff (t)

Expressing the second term as a convolution,
this can be rewritten as:

qn(t) = qr(t)−f(t)∗L−1 {sq̂r(s)− qr(0)}+Reff (t),

where f(t) is the inverse Laplace Transform of

F (s) such that

f(t) = e−ξt/2

[
cos(γt) +

ξ

2γ
sin(γt)

]
(8)

with γ =
√
ω2
c − ξ2/4.

Now we realize that sq̂r(s)− qr(0) is simply the
Laplace transform of q̇r(t). Hence

qn(t) = qr(t)− f(t) ∗ q̇r(t) +Reff (t) (9)

Putting equation (9) in equation (6), we get

q̈r(t) = −∇V [qr(t)]− ω2
c [f(t) ∗ q̇r(t)] +Reff (t)

Finally, let us write out the convolution in terms
of an integral so that we have

q̈r(t) = −∇V [qr(t)]−ω2
c

∫ t

0

f(τ)q̇r(t−τ)dτ+Reff (t)

or

q̈r(t) = −∇V [qr(t)]−
∫ t

0

ξeff (τ)q̇r(t−τ)dτ+Reff (t)

(10)
This is the required GLE in the reactive mode co-
ordinate qr, where

ξeff (t) = ω2
cf(t)

= ω2
ce

−ξt/2

[
cos(γt) +

ξ

2γ
sin(γt)

]
(11)

Thus, coupling of the reactive coordinate mo-
tion to the nonreactive coordinate results in a non-
Markovian or memory-dependent effective friction
ξeff (t) on the reactive coordinate. Note that the
final expression for the memory-dependent friction
does not depend on the nature of the potential en-
ergy surface in which the reaction coordinate is
moving. Hence, we can extend this simple model
to any realistic system, where we consider the reac-
tion coordinate of interest to be coupled harmoni-
cally to one or more orthogonal degrees of freedom
when moving under the influence of the solvent.

III. METHODS

To complement our analytical approach and
validate the accuracy of our theoretical predic-
tions, we performed molecular dynamics (MD)
simulations of the diatomic model. The memory-
dependent friction is extracted from these simula-
tions, allowing for a direct comparison with the an-
alytically derived kernel ξeff (t). We examine the
effect of the memory-dependent friction ξeff (t) on
the barrier crossing rates of the particle ‘B’ in the
diatomic model and the solvent viscosity depen-
dence of these rates. In addition, to extend our
model to a realistic system, we calculate the cis-
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trans isomerization rates of butane and extract the
associated memory kernels from MD simulations
of butane in solvents of varying viscosity.

A. Simulation Details

We carried out implicit solvent Langevin dy-
namics simulations for the diatomic model us-
ing the LAMMPS molecular dynamics software26.
Since no explicit solvent is considered, the system
has no solvent-memory effect. For a single parti-
cle crossing the one-dimensional barrier for such
a system, the Kramers theory works as shown by
Hridya et al..21. The objective of the present study
is to show the origin of the memory effect from
the coupling of reactive and nonreactive degrees
of freedom, even in the absence of the solvent.
The viscosity of the medium was controlled by the
damping time 1/ξ of the Langevin thermostat27.
Here, ξ denotes the friction coefficient of the im-
plicit solvent or the Langevin bath in ps−1. All
simulations were performed at 300K. We set the
barrier height of the double-well potential V (q)
(see equation (4)) to 9 kJ mol−1 with the two wells
located at 1.5 Å and 3.0 Å. The barrier frequency
(ωb) is 23.1 ps−1.
To study the cis-trans isomerization of butane,

we performed simulations of a united atom bu-
tane model using GROMACS 21.428. We used the
GROMOS 58 force field29 for the butane molecule.
All bonds and angles were constrained using the
LINCS algorithm30. Here also, we performed
Langevin dynamics simulations using the Stochas-
tic Dynamics integrator at 300K. In GROMACS,
the viscosity of the implicit solvent can be modu-
lated using the coupling constant of the thermo-
stat.

B. Mean First Passage Time (MFPT)

MFPT measures the average time τ for the tran-
sition from reactant to product. Hence, it is a di-
rect method to calculate the barrier crossing rate.
For the diatomic model, we calculated the time re-
quired for the spatial diffusion of particle ‘B’ across
the barrier in the double-well potential V (q) from
multiple 5 ns long simulations. For butane, we
ran 20 ns long simulations to measure the time re-
quired for the dihedral rotation from the cis to the
trans isomer. We averaged the first passage times
over 1000 replicas of both systems. We performed
the MFPT calculations at different viscosities and
fit them to the following heuristic relation to find
α, which is a measure of the solvent viscosity de-
pendence of the rate.

τ

τ0
=

(
η

η0

)α

(12)

Here τ0 is the MFPT for the normal solvent vis-
cosity η0. Note that α is 1 for KT. A value of α
less than unity signifies a deviation from Kramers’
theory, often interpreted as internal friction. This
indicates that the barrier-crossing process is less
sensitive to the change in solvent viscosity than
that in KT.

C. Memory Kernels from MD Simulations

As mentioned in Section I, the dynamics of the
reaction coordinate (RC) can often be mapped to
a GLE as in Equation (3). If we clamp the system
at the Transition State (TS), then the first two
terms in (3) become zero, and the random force
R(t) becomes equal to the total force on the re-
action coordinate FRC(t). We can then evaluate
the memory kernel using the second Fluctuation
Dissipation theorem as,

ξTS(τ) =
⟨FRC(t)FRC(t+ τ)⟩

µkBT
(13)

This was achieved for the diatomic model by re-
straining the particle B fixed at the barrier-top
at x = 2.25 Å. The forces acting along the RC
were recorded every 0.1 fs for 1 ps long simula-
tions. The effective mass of the reaction coordi-
nate µ was evaluated from the mean square ve-
locity of the RC in the transition state using the
equipartition theorem31:

1

2
µ⟨v2RC,TS⟩ =

1

2
kBT (14)

Alternatively, we could extract the memory ker-
nel without constraining the reaction coordinate at
the transition state by employing a method orig-
inally outlined by Berne and Harp32 and recently
modified by Netz et al.22 Multiplying the GLE in
equation (3) by q̇(0) and taking ensemble average
yields:

µ⟨q̇(0)q̈(t)⟩ = −⟨q̇(0)∇G[q(t)]⟩

− µ

∫ t

0

ξeff (τ)⟨q̇(0)q̇(t− τ)⟩dτ. (15)

This is a Volterra integral equation, where we have
utilized the fact that ⟨q̇(0)R(t)⟩ = 0. Discretiz-
ing this equation and replacing the integral with a
summation using the trapezoidal rule, we find the
following.

ξi = − 1

µC q̇q̇
0 ∆tωi,i

(µ

i−1∑
j=0

ωi,jξjC
q̇q̇
i−j∆t

+ µC q̇q̈
i + C q̇∇G

i ) (16)

Here, ∆t is the discrete timestep, and ξi is the
value of the friction kernel at the ith timestep.

https://doi.org/10.26434/chemrxiv-2024-qrq5r ORCID: https://orcid.org/0000-0001-5691-6120 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qrq5r
https://orcid.org/0000-0001-5691-6120
https://creativecommons.org/licenses/by-nc-nd/4.0/


5

We define the correlation functions as, C q̇q̇
i =

⟨q̇(0)q̇(i∆t)⟩, C q̇q̈
i = ⟨q̇(0)q̈(i∆t)⟩, C q̇∇G

i =
⟨q̇(0)∇G[q(i∆t)]⟩. ωi,j is the integration weight
of the trapezoidal rule. The initial value friction
kernel, ξ0, for the iteration can be calculated as

ξ0 =
−C∇Uq̈

0 + µC q̈q̈
0

µC q̇q̇
0

(17)

We calculate the memory kernels for Butane using
this method since it does not require us to con-
strain the reaction coordinate (in this case, the
dihedral angle ϕ) at the transition state. We eval-
uated the PMF G[ϕ(t)] from the equilibrium prob-
ability density of the dihedral angle as G[ϕ] =
−kBT log p(ϕ).

D. Transmission Coefficients (TC)

The TST rate does not depend on the solvent
viscosity since it is derived from static energy
landscape33. Since the actual rate is k = κkTST ,
the transmission coefficient (κ) is the one that de-
pends on the viscosity. Hence, we calculated κ
at different solvent viscosities using two different
methods: Grote-Hynes Theory (GHT) and re-
active flux formalism (RF) and fitted it to the
following heuristic relation to find α.

κ

κ0
=

(
η

η0

)−α

(18)

1. Grote-Hynes Theory (GHT)

GHT expresses the transmission coefficient as
the ratio of the reactive frequency (λr) to the bar-
rier frequency (ωb)

19.

κGH =
λr

ωb
(19)

The reactive frequency is the measure of the ac-
tual rate of passage across the barrier and can be
obtained by solving the self-consistent equation:

λ2
r − ω2

b + λr ξ̂(λr) = 0, (20)

where ξ̂(λr) is the effective friction experienced by
the reaction coordinate and can be expressed as,

ξ̂(λr) =

∫ ∞

0

e−λrtξ(t)dt (21)

The barrier frequency ωb can be calculated from
the curvature of the potential, using the double
derivative with respect to the reaction coordinate

q at the Transition State (TS):

ωb =

√
1

µ

∣∣∣∣∂2V

∂q2

∣∣∣∣
TS

(22)

In the high friction overdamped limit, the effec-
tive friction in equation (20) is replaced by the
zero-frequency friction ξ, which reduces the GHT
transmission coefficient to the KT expression:

κKr =
ωb

ξ
(23)

2. Reactive Flux Formalism (RF)

For systems with very high barrier heights, that
is, Eb >> kBT , the barrier-crossing process be-
comes a rare event. In such cases, it becomes im-
practical and computationally expensive to follow
the system from the reactant well to the product
well. Hence, calculating MFPT in such cases is not
an option. For this reason, Chandler and cowork-
ers devised the RF formalism34, where we place
the system in the transition state and propagate
trajectories both forward and backward in time.
If the trajectories end up in the reactant well in
backward time and in the product well in forward
time, they are labeled as RP trajectories. Simi-
larly, if they ended up in the product well in back-
ward time and the reactant well in forward time,
they are labeled as PR trajectories. However, the
trajectories that ended up in the same well in both
forward and backward time are the recrossed tra-
jectories. They are labeled as RR or PP depending
on their initial and final basins.

Once we have labeled the trajectories, we can
calculate the Reactive Flux transmission coeffi-
cient κRF , which is the ratio of the actual rate
(where both positive and negative flux contribute)
to the TST rate (where only the positive flux
contributes)35.

κRF =

∑N
i,+ ωi|vi|Qi −

∑N
i,− ωi|vi|Qi∑N

i,± ωi|vi|Qi

(24)

Here, “+” represents trajectories that have initial
positive flux, and “−” represents trajectories with
initial negative flux. vi is the velocity of the reac-
tion coordinate at the TS for the i-th trajectory.
ωi is the probability of the trajectory to have the

ith initial configuration i.e., e−V (q0i )/kBT (where q0i
is the zero-time value of the reaction coordinate).
Qi is assigned as:

Qi =


+1 if R −→ P

0 if R −→ R or P −→ P

−1 if P −→ R

(25)

The barrier is relatively low (∼ 3kBT ) for both
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our systems, which allows us to calculate the
MFPT quite easily. Nevertheless, we use the Reac-
tive Flux method to obtain an additional numer-
ical estimate of barrier-crossing rates. We then
compare these numerical estimates with results
from GHT, which provides an analytical estimate
of the rate based on a non-Markovian description
of the RC motion.

IV. RESULTS AND DISCUSSIONS

FIG. 2: Memory kernels ξeff(t) from the diatom
model for different scaled viscosity values η/η0.

FIG. 3: Variation of Transmission Coefficients κ
extracted using MFPT, GHT, and RF with
scaled viscosity η/η0.

A. Model Diatomic System

We showcase the memory kernels for the di-
atomic model for different relative viscosities η/η0
in Figure 2. The excellent agreement between the
kernels extracted from the MD simulations (dot-
ted lines) and the analytical kernels ξeff (t) (solid
lines) derived in Equation (11) confirms the pres-
ence of memory effects in our system.

FIG. 4: Variation of MFPT values with scaled
viscosity η/η0 for the Free and Constrained
diatom model.

We compute the GHT transmission coefficients
(κGH) using the memory kernels extracted from
the MD simulations. We then compared these co-
efficients with both the RF and the MFPT trans-
mission coefficients. The MFPT TCs were deter-
mined as

κMFPT =
k

kTST
=

1

τkTST
, (26)

where k is the rate, kTST represents the Transition
State Theory rate, and τ denotes the MFPT. Fig-
ure 3 shows the values of α obtained by fitting the
TCs to Equation (18). We find that the α values
are less than one for all three methods, which sug-
gests a fractional viscosity dependence and, hence,
a deviation from Kramers’ theory. Both of these
behaviors are usually considered to indicate the
presence of an Internal Friction. However, we
must remember that GHT is a non-Markovian rate
theory that accounts for memory effects, whereas
RF and MFPT provide direct numerical estimates.
The close alignment of the GHT α values with
those from RF and MFPT implies that the ob-
served fractional viscosity dependence likely stems
from the inherent memory effects in our model.

Figure 4 shows the MFPT values at differ-
ent viscosities for the diatom model. We com-
pare two scenarios: a Markovian limit (marked as
Constrained) and a non-Markovian limit (marked
as Free). We constrain the motion of the re-
action coordinate (RC) to reach the Markovian
limit by slowing its diffusion timescale τD (where
τD = L2ξ/kBT ) following the work of Kappler and
Daldrop36. For the diatom model, we slow down
the diffusion of the particle ‘B’ by increasing the
mass of the free particle ‘A’. The purpose of this
exercise is to show that when the reaction coordi-
nate diffuses much slower than the memory time
τΓ ( where τΓ = 1/ξ), the memory effects do not
come into play, and the system experiences largely
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(a) (b)

(c) (d)

FIG. 5: Variation of (a) power-law exponent α and (b) Ansari’s fit parameter σ with relative coupling
strength (ωc /ωb). Variation of (c) Transmission Coefficients κ and (d) Friction with relative coupling
strength (ωc /ωb) at a fixed viscosity of 1 cP.

a Markovian friction. As expected, we see in Fig-
ure 4 that for the constrained system, the relative
MFPT values τ/τo scale almost linearly with the
relative viscosity η/η0. The α value from fitting
to the equation (12) is found to be close to unity,
demonstrating a close adherence to Kramer’s the-
ory. The free system, on the other hand, deviates
strongly from Kramers’ theory, with an α value
much lower than unity. This is in line with ex-
isting observations in the literature that memory
effects only become prominent when the RC mo-
tion is very fast.

Note how the MFPT values in Figure 4 are
much lower for the free system than the corre-
sponding values for the constrained system. Since
the rate is the inverse of the MFPT, it suggests
that the free system crosses the barrier faster than
the constrained system. This is a frequently over-
looked aspect in the literature on Internal Fric-
tion that the rates, while lowered from the TST

estimate, are still greater than those expected
from Kramer’s Theory (Constrained model), i.e.,
kKr < k < kTST .

Previously we had observed a fractional viscos-
ity dependence of rates for a single particle cross-
ing a one-dimensional barrier in the presence of ex-
plicit solvent molecules21. We also showed that the
same model adhered closely to KT (with α ≃ 1)
in absence of explicit solvent molecules, thereby
proving that the memory effects arising from cor-
related solute-solvent motion were responsible for
the deviations from KT. In contrast, the diatom
model considered presently lacks any explicit sol-
vent molecules while having an additional internal
coordinate. So we cannot attribute the fractional
viscosity dependence indicated by both MFPT and
TC results to solvent memory effects. Instead, the
memory friction that arises from the coupling of
the RC to an orthogonal degree of freedom is re-
sponsible for the fractional viscosity dependence.
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This shows that memory effects need not arise
from coupled solute-solvent motion from outside
the molecule; they can also emerge from within
the system.

B. Barrier Curvature and Coupling Strength
Dependence

We can see from the definition of the transmis-
sion coefficient from GHT that it explicitly de-
pends on the barrier curvature through ωb. On
the other hand, the reactive frequency λr de-
pends on the memory kernel ξeff (t), which in this
case is characterized by two parameters: coupling
strength ωc and static solvent friction ξ. We show
in figure S2 in the supplementary material how
λr increasingly diverges from the barrier frequency
ωb with increasing ωc. Hence, we expect that the
fractional viscosity dependence of the rate of the
diatom model will also depend on these factors.
In this subsection, we explore the variation of the
fractional viscosity dependence (characterized by
α and σ) with ωb and ωc. However, the number of
simulations required would be too large and com-
putationally expensive. So, we use the analyti-
cal kernel in equation (11) to calculate TC from
GHT. For each pair of ωc, ωb values, we calculate
the GHT TC over a range of viscosity values and
fit them to both the power law κ/κ0 = (η0/η)

α and

Ansari’s equation κ = C
′
/(η+σ) to extract the fit

parameters α and σ respectively. We summarize
the results in Figure 5.

Both Figures 5a and 5b ( or Figures S1a and
S1b in the supplementary material) indicate that
the fractional viscosity dependence becomes more
prominent at higher barrier curvatures and lower
coupling strengths. A fractional viscosity depen-
dence means that the reaction coordinate is either
not experiencing the full solvent friction or is ex-
periencing additional friction on top of the solvent
friction. This is evident from Figure 5c. Initially,
for weak coupling (ωc < ωb), the GHT TC is
larger than the Kramers Theory estimate, suggest-
ing that the RC does not experience the full sol-
vent friction ξ. Instead, it experiences, according
to GHT, an effective frequency-dependent friction

ξ̂(λr) that is defined as ξ̂(λr) =
∫∞
0

e−λrtξeff (t)dt.
We show in Figure 5d that this effective friction
is smaller than the solvent friction ξ because the
RC crosses the barrier much faster than the slow
oscillations in ξeff (t). Conversely, for stronger
coupling(ωc > ωb), the oscillations slightly in-
crease effective friction beyond solvent friction ξ so
that the GHT TC falls below the Kramers Theory
estimate.

We would like to highlight that this is consistent
with our previous findings for a single particle21,
where α was found to increase and σ to decrease
with the solute-solvent coupling parameter ϵ/ϵ0.

It is clear that we cannot attribute the enhanced
fractional viscosity dependence to any static fric-
tion arising from the interior of the molecule in this
model. If that were indeed the case, α and σ would
have remained unchanged with the coupling. Also
note how Ansari’s fit parameter σ is abnormally
large for low coupling strength where the solvent
friction is suppressed, making its interpretation as
an additional internal friction questionable.

C. Butane Dihedral Rotation

FIG. 6: One-dimensional Free Energy surface of
Butane dihedral rotation.

FIG. 7: Memory Kernels ξeff(t) extracted from
MD simulation trajectories of butane for different
scaled viscosities η/η0.

Butane isomerizes from a less stable gauche to a
more stable anti-conformer. This conformational
change can be entirely characterized by a change in
the dihedral angle ϕ, as shown by the free energy
surface of the butane dihedral rotation in Figure
6. The memory kernels extracted from the bu-
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(a)

H-
dna

(b)

FIG. 8: (a) MFPT values τ and (b) GHT Transmission Coefficient κ against scaled viscosities η/η0 for
Butane.

tane simulations at different viscosities are shown
in Figure 7 after interpolation.

Like with the diatom model, we calculated the
MFPT for the dihedral rotation of butane from
the Gauche conformer to the anti-conformer. Fig-
ure 8a shows that the MFPT values do not vary
linearly with viscosity. We find the fractional vis-
cosity dependence α by fitting the MFPT values
to Eq. (12) to be equal to 0.62, suggesting a
deviation from Kramers’ behavior. A similar α
value of 0.69 is also obtained by fitting the Grote-
Hynes transmission coefficients at different viscosi-
ties, as shown in Figure 8b. This suggests that the
fractional viscosity dependence and deviation from
Kramers’ behavior in a realistic system like Butane
can also be attributed to the presence of memory
effects.

The dihedral angle in butane is coupled to six
orthogonal degrees of freedom: three translational
and three orientational22. So, we can use our sim-
ple diatomic model to explain the memory effects
in butane dihedral rotation. For this purpose, we
fit the butane memory kernels to our analytical
expression in (11) and optimize the adjustable pa-
rameters ω and ξ. However, we find that the fit
is quite poor (see Figure S3a in the supplemen-
tary material). Therefore, we fitted it using three
adjustable parameters ω, ξ, and γ to find a much
better fit (see Figure S3b in the supplementary
material). Since γ serves as an effective oscillation
frequency in our model emerging from an interplay
between the coupling frequency ω and the friction
coefficient ξ, it might seem odd to use it as an
adjustable parameter. But for a complex reaction
coordinate such as the dihedral angle, γ may not
have such a simple definition since we are approx-
imating the six orthogonal degrees of freedom as a
single effective orthogonal coordinate. The fitted
kernel yields a GHT TC value of 0.44, which is
quite close to the GHT TC value of 0.41 that we

FIG. 9: Variation of GHT TC with scaled
viscosity η/η0 for different bond-angle force
constants kθ

obtained from the memory kernel extracted from
MD simulations.

We altered the coupling of the dihedral angle
to the orthogonal degrees of freedom by modu-
lating the fluctuations of the bond angle using a
harmonic potential V (θ) as given below.

V (θ) =
1

2
kθ(θ − θ0)

2 (27)

Here kθ is the force constant, and θ0 is the equi-
librium value of the bond angle. We make the
bond angle more flexible by lowering kθ from 530
kJ mol−1 rad −2 to 100 kJ mol−1 rad −2. En-
hanced fluctuations in the bond angle led to a
weaker coupling of the atomic motions with the
dihedral angle. We confirmed this by fitting the
memory kernels extracted from MD simulations.
The fitted coupling frequency ωc decreases from
72.92 ps−1 to 71.16 ps−1(see Figures S4a and S4b
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in the supplementary material). As expected from
our analytical model, we found in Figure 9 that
a weaker coupling resulted in a lower α value, in-
dicating a greater fractional viscosity dependence.
The carbon atoms experience the solvent friction
directly but are unable to relay it to the dihedral
angle to its full extent. We validated this by calcu-

lating the effective friction ξ̂(λr) which drops from
47.6 ps−1 to 45.1 ps−1. With weaker coupling,
the solvent friction contribution decreases. This
qualitatively shows that the discussions from the
previous section apply to butane dihedral rotation
as well.

V. CONCLUSION

Non-Markovian friction has attracted significant
attention in recent times to explain the anomalous
rates of biophysical barrier-crossing processes37,38.
In the present work, we have illustrated with a di-
atom model and butane how such memory effects
can arise in the simplest of molecules due to the
coupling of motions between a reactive mode and
orthogonal non-reactive modes. We confirmed this
by calculating transmission coefficients using mul-
tiple methods along with the direct rate calcula-
tion using MFPT.

In particular, we show that the barrier curva-
ture (ωb) and the coupling strength (ωc) play a
critical role in modulating the nature of memory
effects. For the single-particle model we previously
considered21, the solvent friction was suppressed
due to non-equilibrium solvation by explicit sol-
vent molecules. However, for the diatom model
considered here, we find that the memory effects
switch from suppressing the solvent friction to sup-
plementing it, depending on the coupling strength
relative to the barrier frequency. The suppression
of solvent friction in the low-coupling limit can be
thought of as the solvent friction being transmitted
partially to the reaction coordinate by the orthog-
onal degrees of freedom.

Although the above insights were inferred for a
simple model system, we show that they can be ex-
tended to realistic systems like butane as well. By
fitting memory kernels extracted from MD simu-
lations to our analytically derived kernel, we could
determine the frequency ωc with which the reac-
tion coordinate was coupled to orthogonal non-
reactive modes. This allowed us to predict the
extent of fractional viscosity dependence expected
from barrier-crossing rates in such systems. We
suspect that the experimentally observed factors
usually responsible for internal friction, such as
concerted dihedral rotations5,17, non-native hydro-
gen bonding10, increased dispersion interactions18,
etc., might be operating through a combination of
solvent and internal memory effects in complex bi-
ological systems like proteins. In such cases, the

decoupling of the two effects and the accurate iden-
tification of the source of the fractional viscosity
dependence remain a difficult challenge, which we
hope to address in the future.

SUPPLEMENTARY MATERIAL

The Supplementary Material contains 3D plots
describing the variation of α and σ with the cou-
pling strength and barrier frequency, a plot of the
reactive frequency against ωc/ωb and the fitting
of the memory kernels extracted from MD simula-
tions of Butane.
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Activation and friction in enzymatic loop opening and
closing dynamics. Nature Communications, 15(1):2490,
Mar 2024.

24G. van der Zwan and James T. Hynes. Reactive paths
in the diffusion limit. The Journal of Chemical Physics,
77(3):1295–1301, 1982.

25Bradley J. Gertner, Kent R. Wilson, and James T. Hynes.
Nonequilibrium solvation effects on reaction rates for
model sn2 reactions in water. The Journal of Chemi-
cal Physics, 90(7):3537–3558, 1989.

26A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolin-
tineanu, W. M. Brown, P. S. Crozier, P. J. in ’t Veld,
A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan,
M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton.
LAMMPS - a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum
scales. Comp. Phys. Comm., 271:108171, 2022.

27T. Schneider and E. Stoll. Molecular-dynamics study of
a three-dimensional one-component model for distortive
phase transitions. Phys. Rev. B, 17:1302–1322, Feb 1978.

28Berk Hess, Carsten Kutzner, David van der Spoel, and
Erik Lindahl. Gromacs 4: algorithms for highly efficient,
load-balanced, and scalable molecular simulation. Jour-
nal of Chemical Theory and Computation, 4(3):435–447,
2008. PMID: 26620784.

29Maria M. Reif, Moritz Winger, and Chris Oostenbrink.
Testing of the gromos force-field parameter set 54a8:
Structural properties of electrolyte solutions, lipid bilay-
ers, and proteins. Journal of Chemical Theory and Com-
putation, 9(2):1247–1264, 2013. PMID: 23418406.

30Berk Hess, Henk Bekker, Herman J. C. Berendsen, and
Johannes G. E. M. Fraaije. Lincs: A linear constraint
solver for molecular simulations. Journal of Computa-
tional Chemistry, 18(12):1463–1472, 1997.

31V. M. Hridya, James T. Hynes, and Arnab Mukher-
jee. Dynamical recrossing in the intercalation process
of the anticancer agent proflavine into dna. The Jour-
nal of Physical Chemistry B, 123(51):10904–10914, 2019.
PMID: 31671261.

32B. J. Berne and G. D. Harp. On the Calculation of Time
Correlation Functions, pages 63–227. John Wiley Sons,
Ltd, 1970.

33Peter Hänggi, Peter Talkner, and Michal Borkovec.
Reaction-rate theory: fifty years after kramers. Rev.
Mod. Phys., 62:251–341, Apr 1990.

34David Chandler. Statistical mechanics of isomerization
dynamics in liquids and the transition state approxima-
tion. The Journal of Chemical Physics, 68(6):2959–2970,
1978.

https://doi.org/10.26434/chemrxiv-2024-qrq5r ORCID: https://orcid.org/0000-0001-5691-6120 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qrq5r
https://orcid.org/0000-0001-5691-6120
https://creativecommons.org/licenses/by-nc-nd/4.0/


12

35Scott H. Northrup and James T. Hynes. The stable states
picture of chemical reactions. i. formulation for rate con-
stants and initial condition effects. The Journal of Chem-
ical Physics, 73(6):2700–2714, 1980.

36Julian Kappler, Jan O. Daldrop, Florian N. Brünig,
Moritz D. Boehle, and Roland R. Netz. Memory-induced
acceleration and slowdown of barrier crossing. The Jour-
nal of Chemical Physics, 148(1):014903, 01 2018.

37Cihan Ayaz, Lucas Tepper, Florian N. Brünig, Julian
Kappler, Jan O. Daldrop, and Roland R. Netz. Non-

markovian modeling of protein folding. Proceedings of
the National Academy of Sciences, 118(31):e2023856118,
2021.

38Benjamin A. Dalton, Cihan Ayaz, Henrik Kiefer, An-
ton Klimek, Lucas Tepper, and Roland R. Netz. Fast
protein folding is governed by memory-dependent fric-
tion. Proceedings of the National Academy of Sciences,
120(31):e2220068120, 2023.

https://doi.org/10.26434/chemrxiv-2024-qrq5r ORCID: https://orcid.org/0000-0001-5691-6120 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qrq5r
https://orcid.org/0000-0001-5691-6120
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Memory Effects Explain the Fractional Viscosity Dependence of Rates associated with Internal Friction: Simple Models and Applications to Butane Dihedral Rotation
	Abstract
	Introduction
	A Simple Diatomic Model
	System Design
	Non-Markovian (Memory) Friction

	Methods
	Simulation Details
	Mean First Passage Time (MFPT)
	Memory Kernels from MD Simulations
	Transmission Coefficients (TC)
	Grote-Hynes Theory (GHT)
	Reactive Flux Formalism (RF)


	Results and Discussions
	Model Diatomic System
	Barrier Curvature and Coupling Strength Dependence
	Butane Dihedral Rotation

	Conclusion
	Supplementary Material
	Acknowledgements
	Author Declarations
	Conflict of Interest
	Author Contributions

	Data Availability
	References


