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Abstract:  13 

Asymmetric decarboxylative cross-couplings of carboxylic acids represent a powerful tool for synthesizing 14 

chiral building blocks for medicinal chemistry and material science. However, the synthesis of versatile 15 

chiral alkylboron derivatives via asymmetric decarboxylative C(sp3)-C(sp3) cross-coupling from readily 16 

available primary aliphatic acids and mild organometallic reagents is still challenging. In this study, we 17 

report a visible-light-induced, Ni-catalyzed enantioconvergent C(sp3)-C(sp3) cross-coupling of unactivated 18 

primary aliphatic acids with gem-borazirconocene alkanes, furnishing a diverse array of valuable chiral 19 

alkylboron building blocks. The broad substrate scope, high functional group tolerance, and the late-stage 20 

modification of complex drug molecules and natural products with high enantioselectivity demonstrate the 21 

synthetic potential of the method. Mechanistic investigations suggest an enantioconvergent radical-radical 22 

cross-coupling pathway, wherein the primary radical from carboxylic acids is generated through single-23 

electron reduction with ZrIII species, representing an unprecedented example of enantioselective radical 24 

C(sp3)-C(sp3) cross coupling in the absence of photocatalysts. 25 

Introduction 26 

Benefiting from the widespread commercial availability, lower toxicity, and stability of aliphatic acids, 27 

the past decades have witnessed a wealth of transition-metal-catalyzed decarboxylative cross-coupling 28 

to forge new C-C and C-X bonds. The high levels of chemoselectivity and functional group tolerance 29 

exhibited by these reactions have enabled the late-stage C(sp3)-enriched functional group modification 30 

and spatial diversification of bioactive molecules and natural products1–11. A great progress has been 31 

made in efficiently constructing racemic C(sp3)-C(sp3) bonds via transition metal catalyzed 32 

decarboxylative cross-coupling of aliphatic acids. Various strategies have been developed by groups led 33 

by  MacMillan12–15, Baran 11,16–19, Fu 20, Weix 21, and Cernak 22 etc., encompassing diverse cross-34 

coupling partners such as alkyl halides, alkenes, alcohols, amines, and even carboxylic acids. Despite 35 

these advancements, achieving asymmetric decarboxylative couplings with C(sp³) partners remains a 36 

formidable challenge1,5–7,23. 37 

In 2023, the Baran’s group developed a Ni-electrocatalytic enantioselective doubly decarboxylative 38 

cross coupling (dDCC), radicals that are derived from malonate half amide and aliphatic acid were 39 

generated via single electron-transfer (SET) from Ni(I) to redox-active aliphatic acid NHPI (N-40 

hydroxyphthalimide) esters (Figure 1A, 1)24. Recently, the Yang’s group disclosed a cooperative 41 

photoredox/Fe/chiral primary amine triple catalysis protocol to construct quaternary stereocenters by 42 

decarboxylative cross-coupling of 1,3-dicarbonyl compounds with primary alkyl radical, which was 43 

generated from the reduction of aliphatic acid NHPI esters (Figure 1A, 2) by an iridium photocatalyst 25. 44 
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Both cases demonstrate the feasibility of enantioconvergent decarboxylative C(sp3)-C(sp3) cross-coupling 45 

using reactive primary radical species. The Fu’s group realized the asymmetric decarboxylative Negishi 46 

cross-coupling reaction of α-amino acid-derived NHPI esters26 (Figure 1A, 3). Subsequently, the Baran’s 47 

group further demonstrated asymmetric decarboxylative Negishi-type alkylation of α-oxy carboxylic 48 

acids27 (Figure 1A, 4). These two methodologies showcase the potent combination of decarboxylation of 49 

α-heteroatom-substituted carboxylic acids with organometallic reagents in an enantioselective pathway.   50 

Compared to α-heteroatom and α-carbonyl stabilized radicals, the enantioconvergent C(sp3)-C(sp3) 51 

cross-coupling of primary radicals via decarboxylation of unactivated primary aliphatic acids remains 52 

underexploited7,25. Additionally, the selection of organometallic partners in asymmetric decarboxylative 53 

cross-coupling is largely confined to alkylzinc reagents, which typically involve tedious synthesis 54 

procedures such as oxidative insertion into alkyl halides by zinc or transmetalation using zinc salts. These 55 

methods suffer from harsh conditions, and a limited substrate scope, restricting their practical utility28,29. 56 

Hence, the application of easily prepared and mild organometallic reagents in asymmetric decarboxylative 57 

C(sp3)-C(sp3) cross-coupling is highly desirable. 58 

We inquire whether the asymmetric decarboxylative C(sp3)-C(sp3) cross-coupling reactions could 59 

employ moderate organometallic reagents to install versatile chiral alkylboron derivatives，which possess 60 

a diverse reactivity profile crucial for drug discovery and material sciences30–33. Considerable effort has 61 

been devoted to exploring synthetic methodologies for the preparation of these scaffolds34–38. Among 62 

them, asymmetric transformations of abundant and easily accessible feedstock chemicals offer an 63 

appealing synthetic platform toward chiral alkylboron derivatives but remain elusive. Pioneering works by 64 

Li39, Baran40, Aggarwal41 and substantial progress42–52 on decarboxylative borylation of aliphatic acids 65 

underscore the reliability of decarboxylative reactions in synthesizing alkylboron derivatives. Nevertheless, 66 

methods for constructing chiral alkylboron derivatives via asymmetric decarboxylative cross-coupling 67 

reactions53 of unactivated primary aliphatic acids have yet to be reported. 68 

The deployment of alkylzirconocenes has emerged as a powerful platform for the construction of 69 

valuable C(sp3)-C(sp3) bonds54–59. This versatile organometallic specie demonstrates exceptional 70 

functional group tolerance, unique photochemical reactivity, and the capacity to facilitate remote C-H 71 

functionalization through their intriguing "chain-walking" ability. Notably, alkylzirconocenes can be readily 72 

prepared from abundant and readily available feedstock chemicals, such as alkenes60–62. The confluence 73 

of these desirable reactivity features and their synthetic accessibility renders alkylzirconocenes highly 74 

attractive synthetic intermediates for the efficient assembly of complex molecular architectures. The 75 

ongoing exploration of the photoreactivity exhibited by alkylzirconocenes has opened up new avenues for 76 

the development of asymmetric photoredox methodologies63–67. Recognizing the advantages of both 77 

aliphatic acids and alkylzirconocenes, we have developed a visible-light-induced, Ni-catalyzed 78 

enantioconvergent C(sp3)-C(sp3) cross-coupling of unactivated primary aliphatic acid NHPI esters with 79 

gem-borazirconocene alkanes, yielding a diverse range of chiral alkylboron derivatives (Figure 1B). 80 

Mechanistic investigations point to an enantioconvergent radical-radical cross-coupling mechanism, 81 

wherein the primary radical from carboxylic acid is generated through single-electron reduction by ZrIII 82 

species. 83 

Results  84 

We initiated our investigation into asymmetric C(sp3)-C(sp3) cross-coupling using ethyl gem-85 

borazirconocene with NHPI ester 1a under blue light-emitting diodes (LEDs) irradiation. After extensive 86 

screening of Ni catalysts, chiral ligands, additives, and solvents (for detailed optimization studies, see 87 

Supplementary Table 2-6), the best result was obtained affording 3a in 76.0% isolated yield and 91.0% 88 
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enantiomeric excess (ee). However, the use of long-chained gem-borazirconocene alkanes led to 89 

diminished enantioselectivity. Recognizing the critical role of ancillary ligand in modulating reaction cross-90 

selectivity, and enantioselectivity, we focused on ligand optimization for octyl gem-borazirconocene with 91 

NHPI ester 1a. A series of diamine ligands were examined, and the desired C(sp3)-C(sp3) cross-coupling 92 

was successfully achieved in the presence of Ni(BF4)·6H2O (10 mol%), chiral ligand L6 (12 mol%), 93 

tetrahydrofuran (THF, 0.1 M) under 0.5 W blue LEDs irradiation at 4ºC, yielding chiral alkylboron product 94 

4b in 82.0% isolated yield and 91.6% ee (Table 1, entry 1 and Supplementary Table 7). Control 95 

experiments confirmed the necessity of the Ni catalyst, visible light, and gem-borazirconocene alkanes 96 

for optimal reaction performance (Table 1, entries 2-4 and Supplementary Figure 1). Ligands with 97 

different substitutions at nitrogen atoms (L1, L2, L3) or different aryl groups (L4, L5, L7) were found to be 98 

less effective than L6 (Table 1, entries 4-10).  99 

With the optimal conditions established, we explored the generality of this transformation by 100 

investigating a wide range of aliphatic acids (Figure 2). The NHPI esters containing a variety of aryl 101 

halides (3b, 3g, 3i, 3l) were well tolerated and a trifluoromethyl group (3c) was also proved suitable for 102 

the reaction. Electron-rich methyl substitutions at the para- (3d), meta- (3k) and ortho- position (3h) of the 103 

aryl ring, as well as di-substituted methoxyl substrates (3j), yielded products with excellent enantiomeric 104 

excess and yield. Ester (3e), sulfonamide (3f), and imide (3q) were also compatible with the reaction 105 

conditions. Notably, a bulky naphthalene-substituted NHPI ester exhibited slightly reduced reactivity and 106 

enantioselectivity (3m). Besides aryl groups, biologically relevant heterocycles such as thiophene (3n), 107 

furan (3o), and indole (3p) were amenable. Long-chained alkyl sulfonamide (3r) substrate was 108 

accommodated with good yield and enantioselectivity. It was noteworthy that unprotected indole substrate 109 

afforded modest yield and good enantiomeric excess (3p) under this condition. The remarkable functional 110 

group tolerance of the method suggests its potential to modify complex bioactive molecules. A range of 111 

pharmaceutical agents were successfully functionalized, including the direct modification of 112 

immunosuppressant agent mycophenolic acid (3s), chemotherapy drug chlorambucil (3t), and bile acids 113 

such as chenodeoxycholic acid (3u) and dehydrocholic acid (3v), highlighting the potential utility of this 114 

protocol for late-stage functionalization of complex molecules.  115 

Next, the scope of gem-borazirconocene alkanes was evaluated (Figure 2). The asymmetric 116 

catalysis exhibited insensitivity to the chain length of gem-borazirconocene alkanes (3a, 4b-c). A wide 117 

range of functional groups such as alkyl chloro (4d), silane (4g), ether (4k), sulfonamide (4i), and indole 118 

(4j) were well-tolerated. The reactivity and enantioselectivity of the reaction were influenced by the steric 119 

hindrance of gem-borazirconocene alkanes. The bulky substrates (4e, 4f, 4g, 4l) gave lower yields and 120 

enantioselectivity, as evidenced by the comparison between 4h and 4l. The protocol could also be applied 121 

to several bioactive molecules including glucose (4m), cholesterol (4o), and DL-alpha-Tocopherol (4n), 122 

highlighting the high functional-group tolerance of the method. By harnessing the Bpin directed “chain-123 

walking” effect, the general terminal or internal alkenes can be converted into gem-borazirconocene 124 

alkanes to realize remote C-H functionalization67. The terminal alkene substrates (4p, 4q) were 125 

successfully transformed into gem-borazirconocene alkanes and performed excellently in the 126 

decarboxylative cross-coupling with high enantioselectivity, further demonstrating the broad substrate 127 

scope of this method. 128 

Chiral alkylboron derivatives are versatile building blocks for asymmetric synthesis, they can be 129 

stereospecifically transformed into a range of functional groups, providing access to diverse molecules 130 

with high enantioselectivity68. To further show the synthetic potential of this asymmetric decarboxylative 131 

reaction, a 1.5 mmol scale experiment was conducted, yielding 3a in comparable yield although using a 132 
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lower equivalent ethyl gem-borazirconocene (2.5 equiv. versus 3.7 equiv.) (Figure 3A). The C(sp3)-B bond 133 

of the resulting chiral product was subsequently transformed to a new C(sp2)-C(sp3) bond through 134 

stereospecific 1,2-boryl migration69 (Figure 3B, 5a). Additionally, it can be converted into a series of 135 

carbon-heteroatom bonds. The oxidation of 3a afforded secondary alcohol 5b. Amination with the H2N-136 

DABCO reagent forged a new C-N70 bond (5c). The stereospecific bromination of 3a produced alkyl 137 

bromide product 5d, which could readily undergo further functional group interconversions71.  138 

Discussion 139 

A series of experiments were conducted to gain insight into the mechanism. Radical clock probes 6 140 

and 7 were subjected to the standard conditions, yielding the cyclopropane ring-opening/coupling product 141 

4k-2 and hept-6-enoic acid decarboxylative cyclization/coupling product 4k-3 (Figure 4A). These 142 

outcomes suggested the involvement of an open-shell alkyl radical generated from NHPI esters. Previous 143 

research demonstrated that racemic gem-borazirconecene alkane reagents generated the alkyl radicals 144 

under blue LEDs irradiation in a stereoconvergent manner64. The combined results strongly support the 145 

hypothesis that the decarboxylative cross-coupling occurs through a radical-radical cross-coupling 146 

mechanism. Control experiments revealed that the decarboxylation could not be triggered without visible 147 

light and gem-borazirconecene alkane (Figure 4B and Supplementary Figure 1). The decarboxylative 148 

byproduct 3ab was detected without Ni-ligand complex. Light on/off experiment showed that the reactions 149 

were shut down when the blue LEDs was turn off (Supplementary Figure 10 and 11), ruling out the 150 

radical chain mechanism.  151 

As Cp2ZrIIICl species was proven to be a strong single-electron reductant63,64,66, it has the potential 152 

to reduce the NHPI esters instead of low-valent Ni72. To determine the actual reductant, the initial-rate 153 

method was employed to determine the kinetics of 1a, ethyl gem-borazirconecene and Ni catalyst under 154 

standard conditions. Zero-order rate dependences on NHPI ester 1a and the Ni catalyst (Supplementary 155 

Figure 13, 17), and a first order dependence on gem-borazirconocene (Supplementary Figure 15) were 156 

observed. To further elucidate the mechanistic details of the radical decarboxylative process, the 157 

conversion rate of NHPI ester 1a was monitored under varying loading of the Ni catalyst and the ethyl 158 

gem-borazirconocene reagent73. The results showed that the conversion of 1a was independent of Ni 159 

catalyst loading (Supplementary Figure 3). A positive correlation between the consuming rate of 1a and 160 

borazirconocene alkanes concentration was observed (Supplementary Figure 5). According to the 161 

kinetics results, we proposed that the reduction of NHPI esters was independent of the Ni catalyst, 162 

suggesting the Cp2ZrIIICl mediated reduction might be a major pathway. 163 

The study of the effect of ligand enantiopurity on the product enantioselectivity revealed a linear 164 

relationship (Figure 4C), suggesting the involvement of a single chelating ligand L6 in the 165 

enantiodetermining step. The absolute configuration of product 3a generated under the Ni/((R,R)-L6) 166 

reaction conditions was determined to be the R configuration, as confirmed by the X-ray crystallographic 167 

analysis of derivative 5b-1 (CCDC number: 2347391). Based on the accumulated experimental evidence, 168 

two possible mechanistic pathways can be proposed for this asymmetric decarboxylative C(sp3)-C(sp3) 169 

cross-coupling reaction: “Transmetallation (TM) First” pathway or the “Single-electron oxidative addition 170 

(SOA) First” pathway. In the SOA first pathway (Figure 4D), a chiral NiII species (I) was first reduced to 171 

the reactive NiI intermediate (II) by the ZrIII species, which was generated from the homolysis of gem-172 

borzirconocene alkane (d) under blue LEDs irradiation. The primary radical (b) derived from NHPI esters 173 

was captured by the NiI (II) intermediate to furnish complex III, which can intercept with the resulting 174 

alkylboron radical (c) to give complex IV. This NiIII species underwent reductive elimination to deliver the 175 

enantioenriched alkylboron product (e).  176 
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To elucidate the proposed mechanism and gain a deeper understanding of the enantioselectivity-177 

determining step, density functional theory (DFT) calculations were performed. The radical-type 178 

organozirconocene-based C(sp³)-C(sp³) cross-coupling mechanism has been previously elucidated in our 179 

previous studies63,64. In the present decarboxylative cross-coupling system, Ni(BF4)2·6H2O was identified 180 

as the optimal nickel source. Compared to previous reaction conditions, this system did not involve any 181 

halide anion. We compared three possible NiI complexes with different counter ions and found that the 182 

phthalimide anion (1-3, 0.0 kcal/mol) was thermodynamically more stable compared to THF (1-2, 25.0 183 

kcal/mol) or BF4 (1-1, 25.9 kcal/mol) (Supplementary Figure 63). 184 

Based on the Phthalimide-Nickel model, we conducted DFT computations on the two proposed 185 

pathways: the “TM First” pathway and the “SOA First” pathway. In the "TM First" pathway (Figure 5A), 186 

the alkylboron radical was initially added to the NiI species, resulting in the formation of two diastereomeric 187 

intermediates, 2-1 and 2-2, via two closely related transition states (2-1_TS 2.4 kcal/mol and 2-2_TS 2.4 188 

kcal/mol). The subsequent alkyl radical addition to the NiII intermediates exhibited low energy barriers (3-189 

1_TS2 3.0 kcal/mol, 3-2_TS2 5.0 kcal/mol). Finally, intermediate 3-1 and 3-2 underwent reductive 190 

elimination to generate products through irreversible exothermic processes. In this pathway, the 191 

alkylboron radical addition step dominated the reaction's enantioselectivity; however, the negligible 192 

difference between the two transition states was inconsistent with the experimental observations. 193 

In the “SOA First” pathway (Figure 5B), the alkyl radical was added to the NiI species first, via a low 194 

energy barrier (2-3_TS 3.6 kcal/mol), forming the alkyl-Nphth-NiII intermediate 2-3. Subsequently, the 195 

alkylboron radical was added to 2-3 on different faces, resulting in the formation of diastereomeric 196 

intermediates 3-1 and 3-2. The following reductive elimination processes were identical to the third step 197 

in the “TM First” pathway. In the “SOA First” pathway, the enantio-determining step was also the alkylboron 198 

radical addition. The barrier for the S-configuration is 6.1 kcal/mol (3-1_TS), while it was 3.4 kcal/mol for 199 

the R-configuration (3-2_TS). The ΔΔG between the two transition states was 2.7 kcal/mol, indicating 200 

approximately 98% ee at room temperature, which was consistent with the experimental results. 201 

Compared to the “TM First” pathway, the “SOA First” pathway is more plausible.  202 

 To elucidate how the ligand controlled the enantioselectivity, we performed IGMH analysis74,75 to 203 

visualize the weak interactions76 in the two key transition states, 3-1_TS and 3-2_TS. The transition states 204 

were divided into three parts: the alkylboron radical, the alkyl nickel complex, and the phthalimide anion. 205 

The weak interaction isosurfaces are depicted in Figure 5C. The analysis clearly showed that the 206 

phthalimide anion bound to the nickel center through both an N-Ni coordinate bond and a hydrogen bond 207 

with the diamine ligand in both transition states. In 3-2_TS, the pinacol moiety of the alkylboron radical 208 

formed a hydrogen bond with the chiral diamine ligand, with the methyl group of the alkylboron radical 209 

positioned in a manner to avoid steric hindrance from the bromine atom. Conversely, in 3-1_TS, to mitigate 210 

the steric hindrance from the chiral ligand, the alkylboron radical adopted a different conformation, 211 

resulting in the loss of the hydrogen bond between the pinacol part and chiral diamine ligand. We 212 

hypothesized that the hydrogen bond predominantly governed the observed enantioselectivity. 213 

To further rationalize the Cp2ZrIIICl mediated reduction of NHPI esters, the DFT computations of this 214 

process was conducted. The results showed that the NHPI ester initially bound to the Cp2ZrIIICl complex, 215 

forming a stable intermediate RG_cpx (Figure 5D). The spin density plot revealed that the unpaired 216 

electron was primarily distributed to the phthalimide ring in RG_cpx intermediate. Subsequently, the 217 

homolytic cleavage of the N-O bond in RG_cpx occurred with a low energy barrier of 15.1 kcal/mol and a 218 

ΔG of -13.4 kcal/mol, indicating both thermodynamic and kinetic favorability. The computational analysis 219 

of the Zr-promoted NHPI ester reduction process supported our proposal and offered novel insights into 220 
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the generation of decarboxylation-derived radicals. 221 

In conclusion, we have developed an asymmetric decarboxylative C(sp3)-C(sp3) cross-coupling 222 

reaction between primary aliphatic acids and gem-borazirconocene alkanes, providing a practical access 223 

to a broad range of valuable chiral alkylboron products using readily available primary aliphatic acids 224 

feedstocks. The high functional group tolerance allowed for late-stage modification of bioactive molecules 225 

and natural products with excellent enantioselectivity, highlighting the potential utility of this protocol. The 226 

intrinsic photoreactivity of alkylzirconocene reagents and their potential for enantioconvergent radical 227 

cross-coupling are harnessed in the asymmetric decarboxylative C(sp3)-C(sp3) cross-coupling reaction, 228 

offering a synthetically valuable strategy for photoredox chemistry.  229 

 230 

A

 231 

Figure 1: Decarboxylative C(sp3)-C(sp3) cross coupling of alkyl carboxylic acids. A: Previous 232 

asymmetric decarboxylative C(sp3)-C(sp3) cross-coupling. B: This work, Ni-catalyzed asymmetric 233 

decarboxylative C(sp3)-C(sp3) cross-coupling of gem-borazirconocene alkanes. 234 

 235 
Table 1: Reaction development and optimization. All reactions were performed with Ni(BF4)·6H2O (10 236 

mol %), L6 (12 mol%), gem-borazirconocene alkanes (0.25 mmol), NHPI ester (0.1 mmol), and THF (1 237 
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mL), at 4°C with 0.5 W blue LEDs for 24 h. [a] Unless otherwise mentioned, all optimization reactions were 238 

carried out on a 0.1 mmol scale. The yields were determined by GC-MS analysis of the crude samples 239 

using dodecane as the internal standard. [b] The yield is the isolated yield (0.2 mmol scale). The ee value 240 

was detected by HPLC. N.D.: not detected. 241 

Figure 2: Scope of aliphatic acids and gem-borazirconocene alkanes. Unless otherwise mentioned, 242 

yields were isolated yields after purification by silica column chromatography, enantiomeric excess (ee) 243 

values were determined by HPLC analysis. All reactions were performed with Ni(BF4)·6H2O (20 mol %), 244 

L6 (24 mol%), gem-borazirconocene alkanes (0.5 mmol), NHPI ester (0.2 mmol), and THF (2 mL), at 4°C 245 

with 0.5 W blue LEDs for 24 h. [a]: 3.7 equiv. gem-borazirconocene alkane was used. [b]: Isolated yields 246 

of the corresponding alcohol after oxidation. [c]: The isolated yields were total yields of two 247 
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diastereoisomers. [d]: 30% of starting material 2a was recovered. [e]: 3.5 equiv. Cp2ZrHCl was used. 248 

 249 

Figure 3: Gram-scale experiments and synthetic application. A: 1.5 mmol scale experiment. B: 250 

Synthetic applications of the chiral alkylboron products. 251 

 252 

Figure 4: Mechanism studies. A: Radical clock experiment. B: Controlled experiments. C: Study of non-253 
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linear effect. D: The proposed mechanism. N.D.: not detected. 254 

 255 

Figure 5. DFT study in reaction mechanism investigation. A: Reaction coordinate for “TM First” 256 

pathway, blue or red refer to absolute configuration of alkyl boron ester. (Blue for S, red for R) B: Reaction 257 

coordinate for “SOA First” pathway, blue or red refer to absolute configuration of alkyl boron ester. (Blue 258 

for S, red for R) C: Ball & stick model for 3-1_TS and 3-2_TS (color: red, O; gray, C; green, Cl; blue, N; 259 

white, H; ice blue, Ni; brown, Br; pink, B), with IGMH isosurface colored by sign (λ2) (colorbar: -0.05 a.u. 260 

to 0.05 a.u., blue to red) D: Reaction coordinate for ZrIII-mediated NHPI ester reduction (left), and spin 261 

density of ester-ZrIII complex (right, color: cyan, Zr; red, O; gray, C; green, Cl; blue, N; white, H).  262 

Methods 263 

General procedure for Ni-catalyzed asymmetric cross-coupling reaction 264 

In an argon-filled glovebox, a flame-dried 4 mL sealing tube equipped with a Teflon septum and magnetic 265 

stir bar was charged with Cp2ZrHCl (139.3 mg, 0.5 mmol, 2.7 equiv), the reaction vial was sealed tightly 266 

and removed from the glovebox, anhydrous THF (1.0 mL), alkenyl boronates (0.5 mmol, 2.5 equiv.) were 267 

added by a syringe under an argon atmosphere. The mixture was stirred at 50 oC for 1 h until a clear 268 

yellow solution was obtained. Another flame-dried 4 mL vial equipped with a Teflon septum and magnetic 269 

stir bar was charged with Ni(BF4)·6H2O (6.8 mg, 0.02 mmol, 20 mol%), L6 (10.0 mg, 0.024 mmol, 24 270 

mol%). The vial was sealed, and then evacuated and back-filled with argon (3 times). Then anhydrous 271 

THF (1.0 mL) was added under argon. Then the mixture was stirred for 1h at room temperature. Another 272 

flame-dried 4 mL sealing tube equipped with a Teflon septum and magnetic stir bar was charged with 273 

NHPI ester (0.2 mmol, 1.0 equiv.), the tube was sealed, and then evacuated and back-filled with argon (3 274 

times). The previous clear alkyl zirconium boronates reagent and the nickel catalyst were successively 275 

transferred via syringe over 1 min to this reaction vial under an argon atmosphere. The reaction mixture 276 

was then stirred and irradiated with 0.5 W blue LEDs in the photoreactor at 4oC. After 24 h, the reaction 277 

mixture was concentrated in vacuum. Purification of the crude product by flash chromatography on silica 278 

gel afforded the desired product. 279 

Data availability 280 
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The X-ray crystallographic coordinates for structures reported in this study have been deposited at the 281 

Cambridge Crystallographic Data Centre (CCDC), under deposition number 2347391 (5b-1) 282 

(https://dx.doi.org/10.5517/ccdc.csd.cc2jsn99). Copies of the data can be obtained free of charge via 283 

https://www.ccdc. cam.ac.uk/structures/. All other data supporting the findings of this study, including 284 

experimental procedures and compound characterization, NMR, and HPLC, computational information 285 

are available within the Article and its Supplementary Information or from the corresponding author upon 286 

request.  287 
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