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ABSTRACT 22 

Machine learning (ML) models play a crucial role in predicting properties essential to drug 23 

development, such as a drug’s logscale acid-dissociation constant (pKa). Despite recent 24 

architectural advances, these models often generalize poorly to novel compounds due to a 25 

scarcity of ground-truth data. Further, these models lack interpretability, in part due to a 26 

dependence on explicit encodings of input molecules’ molecular substructures. To this end, 27 

atomic-resolution information is accessible in chemical structures by observing model response 28 

to atomic perturbations of an input molecule; however, no methods exist that systematically 29 

utilize this information for model and molecular analysis. Here, we present BCL-XpKa, a 30 

substructure-independent, deep neural network (DNN)-based pKa predictor that generalizes well 31 

to novel small molecules. BCL-XpKa discretizes pKa prediction from a regression problem into 32 

a multitask-classification problem, which accumulates data for prediction at biologically relevant 33 

pH values and records the model’s uncertainty in its prediction as a discrete distribution for each 34 
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pKa prediction. BCL-XpKa outperforms modern ML pKa predictors and accurately models the 35 

effects of common molecular modifications on a molecule’s ionizability. We then leverage BCL-36 

XpKa’s substructure independence to introduce atomic sensitivity analysis (ASA), which quickly 37 

decomposes a molecule’s predicted pKa value into its respective atomic contributions without 38 

model retraining. When paired with BCL-XpKa, ASA informs that BCL-XpKa has implicitly 39 

learned high-resolution information about molecular substructures. We further demonstrate 40 

ASA’s utility in structure preparation for protein-ligand docking by identifying ionization sites in 41 

97.8% and 83.4% of complex small molecule acids and bases. We then apply ASA with BCL-42 

XpKa to understand the physicochemical liabilities and guide optimization of a recently 43 

published KRAS-degrading PROTAC. 44 

 45 

INTRODUCTION 46 

Predicting a drug’s behavior in the body is a key challenge in computational drug development. 47 

For example, accurate prediction of compounds’ bioavailability could support early modification 48 

or termination of nonviable lead molecules, thereby saving years of time and millions of dollars 49 

on research and development. The demand for fast and accurate predictions of a drug’s 50 

quantitative structure-activity and structure-property relationships (QSAR, QSPR) has 51 

skyrocketed as our access to synthesizable chemical space approaches one trillion molecules1. 52 

While advances in machine learning have improved prediction accuracy, the small amount of 53 

publicly available, high-quality experimental data for training often leads to overfitting and 54 

prevents generalizability2-4. Further, QSPR model interpretability is often poor despite the 55 

relatively more intuitive input (chemical structures) than in other fields of computational biology 56 

(e.g., transcriptomics data). As such, additional explorations into architectures that can efficiently 57 

train on chemical data, as well as general methods to interpret these models’ outputs, are 58 

warranted. 59 

One of the most critical properties to a drug’s downstream efficacy is its ionizability at 60 

physiologic pH values, which depends on the drug’s logscale acid-dissociation constant (pKa 61 

value)4,5. Quantum mechanical (QM) methods now calculate pKa with experimental accuracy 62 

and are extremely valuable to late-stage drug development. However, small-molecule drug 63 

development often begins with virtual high-throughput screening (vHTS) of billions of 64 

compounds, and QM methods are too computationally expensive to assist meaningfully in vHTS. 65 

As such, scientists have made tremendous investment in ML-based QSAR/QSPR predictors for 66 

faster – though potentially less accurate – prediction of physicochemical properties like pKa. 67 

These ML methods generally embed molecules using molecular fingerprints, which are two-68 

dimensional (2D)- or 3D chemical substructures centered around each atom in the molecule. 69 

Recently, groups have realized significant gains in prediction accuracy with graph neural 70 

networks (GNNs), which embed molecules as a graph in addition to standard chemical 71 

descriptors6-8. Improvements in molecular featurization strategies and network architecture have 72 

driven state-of-the-art pKa prediction accuracy to within 0.75-1.00 pKa units of experimental 73 

values. 74 
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Despite these advances, several limitations persist in ML-based pKa prediction and QSPR 75 

prediction generally. First, all ML-based pKa predictors to date use regression. While regression 76 

is the natural setting for predicting continuous values, small training set sizes restrict the 77 

accuracy of regression outputs, particularly at extreme – but still physically relevant – values. 78 

Second, many of these models directly encode common molecular substructures in their feature 79 

set9. This strategy may limit generalizability by preventing complete consideration of each 80 

atom’s local context in a molecule. For example, amide Nitrogen atoms are generally not 81 

ionizable at physiologic pH values, but their acidity can be greatly increased by appending 82 

neighboring electron-withdrawing groups (e.g., diacetamide). Therefore, encoding atom-specific 83 

local environments may increase generalizability.  84 

Finally, model explainability and interpretability in computational chemistry largely focus on 85 

feature-set-level analysis, encompassing step-wise10,11, feature-masking12, feature-set-86 

perturbation13, feature-attribution14, and response-randomization15 methods. However, feature-87 

set-level analysis is often slow and unintuitive, as feature sets are often large and complex. 88 

Recently, ML frameworks have been developed that utilize direct chemical representations (as 89 

SMILES strings) to identify important substructures for transformer predictions16, but no group 90 

to date has leveraged perturbations to the input chemical structure itself to gain insights into 91 

model learning and output. Indeed, chemical structures are unique in computational biology in 92 

that they can be perturbed in consistent, physical meaningful ways. With an appropriately 93 

constructed feature set, measuring a model’s response to these perturbations would provide 94 

granular details into both model learning and molecular hotspots for prediction in real time, 95 

without the need for model retraining. For example, replacing a molecule’s acidic carboxylic 96 

acid functional group with an inert ketone increases the pKa from ~4 to ~20, thereby 97 

demonstrating the carboxylic acid’s importance to acidity. As a counterexample, increasing or 98 

decreasing the expression of a gene in a transcriptomics-based predictor of cellular activity may 99 

not be physically meaningful, as gene expression is highly dependent on the network of 100 

expressed genes in a cell/tissue. This presents an underutilized opportunity for computational 101 

chemists to gain valuable insights into model learning, performance, and molecular structure. 102 

To address these limitations, we present BCL-XpKa, a substructure-independent multitask 103 

classifier for rapid and accurate pKa prediction built in the Biology and Chemistry Library 104 

(BCL), an open-source cheminformatics platform developed and maintained by our lab. We use 105 

pKa prediction to illustrate that discretizing continuous problems in chemical biology into 106 

multitask classification problems can increase prediction accuracy without meaningful 107 

information loss, thereby circumventing many of the problems associated with regression 108 

models. We couple BCL-pKa with a novel method of atomic sensitivity analysis (ASA), which 109 

provides unprecedented, atomic-level insights into which regions of a molecule are most 110 

important for the model’s final prediction. We demonstrate ASA’s utility in probing model 111 

learning, as well as its direct applicability to introducing targeted modifications in molecules that 112 

reduce ionizability. Importantly, ASA is relevant to all forms of QSAR/QSPR prediction and can 113 

be easily implemented to existing algorithms. 114 
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BCL-XpKa is a multi-layer perceptron (MLP) that embeds molecules using 2D chemical 115 

descriptors features that only encode information about each atom’s local environment (up to 1 116 

bond away) in the molecule17. This scheme is substructure independent and enables increased 117 

sensitivity to atom-level perturbations, which is particularly important for hit-to-lead and lead 118 

optimization in late-stage drug development. Small molecule drugs often have both basic and 119 

acidic regions that vary greatly in pKa values (e.g., amino acids have both an acidic carboxylic 120 

acid and a basic free amine group). To account for this, we trained two models: one to predict a 121 

molecule’s most acidic pKa value (BCL-XpKaAcid), and one to predict its most basic pKa value 122 

(BCL-XpKaBase). This is a common practice in modern pKa prediction. We trained BCL-XpKa 123 

on datasets of both predicted and experimental pKa values, and we evaluate our models on an 124 

external test set of challenging acids and bases with experimental pKa values. We find that our 125 

model has competitive accuracy and reduced substructure dependence than state-of-the-art pKa 126 

predictors, including GNN-based models. 127 

Overall, the work presented here has the following significant contributions to the field: 128 

- We developed a novel, substructure-independent framework for QSPR prediction that 129 

uses local atomic environment embeddings and replaces regression with multitask 130 

classification, using pKa prediction to illustrate competitive performance with modern 131 

ML models. 132 

- We developed a method that rapidly assesses QSPR model learning and provides atomic-133 

level insights to molecular ionizability without requiring model retraining 134 

- We integrate these two tools in a workflow for lead optimization and apply it to optimize 135 

a pan-KRAS degrading Proteolysis Targeting Chimera (PROTAC). 136 

 137 

RESULTS 138 

Multitask Classification is competitive with Regression for small-molecule pKa prediction 139 

Regression models naturally dominate machine-learning (ML) approaches to QSPR prediction. 140 

However, regression models require large, high-quality datasets to train properly, and 141 

understanding the model’s uncertainty in its prediction is challenging. Here, we construct BCL-142 

XpKa, a multilayer perceptron (MLP)-based pKa prediction tool that transforms a continuous 143 

prediction problem into a multitask classification problem. Rather than predict pKa values on a 144 

continuous range, BCL-XpKa predicts the probability that a molecule’s pKa lies within a certain 145 

range (Figure 1A-B). The expected value of this probability distribution corresponds to BCL-146 

XpKa’s predicted pKa for a molecule, and the variance of this distribution directly informs its 147 

confidence in that prediction. 148 

To train BCL-XpKa, pKa values in the training set were converted into vectors in ℤ2
𝑛, where n is 149 

the number of bins the continuous interval has been divided into, and a 1 at position i indicates 150 

the molecule’s pKa lies in bin i (Figure 1B). BCL-XpKa models were trained to predict the most 151 

acidic and most basic pKa values of a molecule using training data from ChEMBL augmented 152 

with negative data (i.e., nonionizable molecules). 153 
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Binning training data in this way necessarily leads to some information loss. Using an external 154 

test set, we demonstrate that mean absolute error (MAE) increases as the number of bins 155 

increases, as increasing the number of bins reduces the amount of data in each bin for training 156 

(Figure 1C). A bin size of 1 pKa unit yielded the lowest MAE on this test set and is used in the 157 

BCL-XpKa production model. For both acids and bases, BCL-XpKa marginally outperforms the 158 

best-performing regression models trained on the same data (0.79 vs 0.83 for acids, 0.86 vs 0.92 159 

for bases, Figure 1D). Additional model details, including an evaluation of model 160 

hyperparameters, can be found in Supplemental Figure 1. 161 

 162 

Figure 1 BCL-XpKa model description and internal performance (A-B) Overview of the 163 

regression and MTC architectures for pKa prediction. BCL-XpKa utilizes the MTC architecture 164 

with bin size of 1 pKa unit. (C) MTC model performance by pKa bin size on acids (red) and 165 
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bases (blue). (D) Model performance comparison between best performing MTC (BCL-XpKa) 166 

and regression architectures on acids (red) and bases (blue).  167 

 168 

BCL-XpKa accurately captures complex trends in ionizability for druglike small molecules 169 

We then compared BCL-XpKa’s performance head-to-head against several state-of-the-art pKa 170 

predictors of varying architecture using a challenging test set external to BCL-XpKa’s training 171 

data7,18-21. Despite its relatively simple architecture, BCL-XpKa achieves competitive 172 

performance to the best machine-learning (MolGpKa, graph-convolutional neural network) and 173 

rule-based pKa predictors on both acids and bases, with BCL-XpKaAcid and BCL-XpKaBase 174 

achieving mean absolute error (MAE) of 0.79 and 0.86, respectively (Figure 2A). 175 

Beyond accurate pKa prediction, correctly predicting the effect of small perturbations to a lead 176 

molecule’s ionizability is of key importance in drug development22. To assess BCL-XpKa’s 177 

sensitivity to such changes, we identified 71 pairs of molecules in our test set that vary by a 178 

slight modification, such as the replacement of an amide with an ester. BCL-XpKa correctly 179 

predicts the direction of pKa change in 81.7% of these pairs (Figure 2B). To illustrate this effect, 180 

BCL-XpKa correctly predicts the inductive effect of electron-withdrawing groups on acidity 181 

using a series of phenol derivatives (Figure 2C). Here, fluorination at the ortho position increases 182 

acidity more than fluorination at the para position (8.74 vs 9.28), and substitution with multiple 183 

fluorine atoms has a greater effect than monosubstitution (7.36). While phenol was in our 184 

training data, the remaining molecules were not. For bases, BCL-XpKa correctly predicts the 185 

complex impact of aromaticity on nitrogen basicity in a series of piperidine derivatives relevant 186 

to drug development. Introducing a neighboring phenyl group reduces predicted pKa from 10.45 187 

(true pKa 11.2) to 4.80 (5.00). Similarly, aromatization of piperidine to pyridine decreases 188 

predicted pKa to 5.45 (5.20), and appending the same phenyl group to produce quinoline reduces 189 

pKa to 4.54 (4.92) (Figure 2D). 190 

Finally, substructure independence is critical to QSPR model generalizability to novel 191 

compounds. As described above, BCL-XpKa embeds molecules solely using the 1-bond-length 192 

neighborhoods of each atom to limit substructure dependence. To investigate this strategy’s 193 

impact, we subset BCL-XpKa’s training set according to 30 ionizable functional groups. We 194 

iteratively retrained BCL-XpKa leaving each substructural class out, then tested each model on 195 

its withheld substructural class (Figure 2E). BCL-XpKa demonstrates robust performance on this 196 

leave-class-out (LCO) test, with an average MAE of 1.1 pKa units across all LCO models. 197 

Training on MACCS descriptors rather than Mol2D yielded systematically worse results and an 198 

average MAE of 1.46 pKa units (Figure 2F).  199 

 200 
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 201 

Figure 2: BCL-XpKa external performance and molecular series (A) Performance of various 202 

pKa predictors on an external test set of acids (red) and bases (blue). (B) BCL-XpKa prediction 203 

vs experimental pKa value for families of related druglike molecules. Green denotes correct 204 

change in predicted pKa due to chemical modification, and red denotes incorrect change in 205 

predicted pKa. (C-D) Example molecular families from (B). Predicted and experimental pKa 206 

values provided. (E) Schematic for LCO testing. Testi and Traini denote the subsets of the 207 

training set that contain or do not contain, respectively, substructure i. Modeli was trained with 208 

Traini and evaluated on Testi to give MAELCO-i. (F) LCO performance of BCL-XpKa (blue) vs an 209 

equivalent model trained with a MACCS-based descriptor set (orange).  210 

 211 

Atomic sensitivity analysis provides actionable, atomic-resolution information on model 212 

predictions 213 

Computational chemistry currently lacks rapid, reliable tools for interpreting ML model 214 

predictions23. Such atom-, substructure-, or pharmacophore-level information could accelerate 215 

computer-aided drug development on multiple fronts, from assisting in model training, to 216 

preparing and filtering molecules in virtual high-throughput screens, to guiding lead compound 217 

modification in lead optimization. To address this deficit, we developed atomic sensitivity 218 

analysis (ASA, Figure 3A), and we demonstrate its utility in decomposing BCL-XpKa’s 219 

predictions to assess model learning, identify ionization sites in complex small molecules, and 220 

guide lead optimization efforts by reducing molecular ionizability. 221 

ASA compares an ML model’s prediction on a parent molecule before and after some 222 

perturbation. Here, we sequentially replace heteroatoms in the parent molecule with correctly 223 

hybridized carbons, then generate probability distributions for each with BCL-XpKa. The final 224 

ASA score is a scaled version of the KL-Divergence between these parent and perturbed pKa 225 

distributions (see Methods). Importantly, we anticipate that, with careful feature-set selection, 226 
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this replace-rescore-compare scheme will generalize well to substructure- and pharmacophore-227 

level perturbations (Figure 3A).  228 

We benchmarked ASA on BCL-XpKa on all test-set molecules with nontrivial ionization sites. 229 

We first hypothesized that perturbing an acid’s most acidic hydroxyl group or a base’s most 230 

basic Nitrogen atom would have the most significant impact on the predicted pKa, and therefore 231 

the largest ASA scores. We tested this hypothesis by performing ASA on the Oxygen atoms in 232 

the acid set and the Nitrogen atoms in the base set and considering only the atom with the 233 

maximum ASA score in each molecule. This strategy correctly identifies 97.8% of the most 234 

acidic Oxygen atoms in the acid set and 83.4% of the most basic Nitrogen atoms in the base set, 235 

thereby demonstrating ASA’s potential utility in high-throughput structure preparation (Figure 236 

3B). 237 

This benchmark revealed surprisingly consistent ASA scores for each atom in the substructures 238 

that recurred throughout the test set. For example, free amines are the most basic group in 33.9% 239 

of our experimentally characterized bases, and in each of these molecules the amine Nitrogen 240 

atom dominates the molecule’s ASA scores (33.1 +/- 16.0). These scores were significantly 241 

higher than average scores for Nitrogen atoms in amide (0.225 +/- 0.332), indole (0.261 +/- 242 

0.444), and nitrile groups (0.180 +/- 0.357) (p < 0.001), functional groups which are not 243 

traditionally ionizable at physiologic pH and which dominated 0% of the test-set ASA scores 244 

(Figure 3C). Further, molecules where the dominant ionizable group is less basic than typical 245 

amines also demonstrated consistent ASA scores, and this ASA dominance was reliably ablated 246 

by the introduction of an amine functional group (Figure 3D-E). 247 

 248 

Figure 3: Atomic sensitivity for molecular analysis (A) Schematic of the ASA protocol. Parent 249 

and Perturbed distributions refer to the localPPV distributions output by BCL-XpKa. (B) ASA 250 

accuracy at detecting the most acidic Oxygen atom and most basic Nitrogen atom in all non-251 

trivial test-set molecules. (C) ASA scores of positive- and negative-control substructures for 252 

BCL-XpKaBase decomposition. Blue denotes the positive control, red denotes the negative 253 

controls. (D-E) Modulation of pyridine Nitrogen ASA score by addition of an amine group. 254 

 255 

https://doi.org/10.26434/chemrxiv-2024-hr692 ORCID: https://orcid.org/0000-0002-0131-6176 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-hr692
https://orcid.org/0000-0002-0131-6176
https://creativecommons.org/licenses/by-nc/4.0/


ASA reveals BCL-XpKa implicitly learns substructural information despite substructure-256 

free embeddings 257 

To investigate ASA scoring consistency further, we performed ASA on Nitrogen atoms in the 258 

most frequently occurring substructures in the basic test set, beyond the controls discussed 259 

above. All subgroups examined demonstrated statistically significant loss of ASA signal when a 260 

more dominant subgroup (i.e., more relevant to the molecule’s basicity) was present (Figure 4A-261 

D), indicating that retaining the most dominant ASA atom also preserves BCL-XpKa’s predicted 262 

pKa distribution for the molecule. 263 

Filtering out these non-dominant molecules reveals that most substructures have consistent, 264 

substructure-specific trends in ASA scores (Figure 4E). This substructure-specificity even 265 

persists when separate substructures have Nitrogen atoms with identical local atomic 266 

environments. For example, indole and imidazole both have a Nitrogen bound to a Hydrogen and 267 

two sp2 Carbon atoms, but only imidazole is ionizable at physiologic pH values24,25. While ASA 268 

correctly distinguishes that imidazole’s other Nitrogen (which has a lone pair of electrons) is the 269 

most basic Nitrogen in imidazole, it also scores the N-H Nitrogen significantly higher than the 270 

identical motif in indole (Figure 3C), suggesting that this Nitrogen is critical to imidazole’s 271 

observed basicity. 272 

Some of these structures have surprisingly high variance in ASA scores, particularly the pyridine 273 

and aniline substructures. From manual inspection, we hypothesized a portion of this variance is 274 

attributable to the impact of neighboring electron-donating and -withdrawing groups (EDGs, 275 

EWGs), which respectively increase and decrease basicity of neighboring Nitrogen atoms. We 276 

tested this hypothesis by scoring manually created sets of pyridine derivatives with various EDG 277 

and EWG substituents, which confirmed as suspected that neighboring EDGs tend to increase 278 

ASA scores, and neighboring EWGs tend to decrease ASA scores (Figure 4F). Interestingly, 279 

symmetric substructures also contributed to this variance, as the symmetric substructure masks 280 

the effect of the removed atom during ASA scoring (Figure 4G). 281 

Together, these ASA findings suggest that BCL-XpKa has learned impressive substructural 282 

insights that are adaptable to molecular context without directly encoding these substructures in 283 

the feature set. 284 
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 285 

Figure 4: Atomic sensitivity analysis of substructures (A-D) Violin plots of ASA scores for 286 

commonly occurring substructures when these substructures are the dominant site of a 287 

molecule’s ionization vs when a more dominant substructure was present. (E) Violin plots of 288 

ASA scores for commonly occurring substructures when these substructures were the dominant 289 

site of ionization. Notably, all test-set bases containing 2-Aminopyridine and Imidazole featured 290 

them as their dominant ionization site. (F) Change in pyridine Nitrogen’s ASA Score by 291 

neighboring EWG or EDG groups. (F) Masking effect of molecular symmetry on ASA score. 292 

ASA = Atomic Sensitivity Analysis; EWG = electron-withdrawing group; EDG = electron-293 

donating group.  294 

 295 

Atomic sensitivity analysis can inform lead compound optimization in drug development 296 

Atomic sensitivity analysis also has promising utility in prospective drug design. Significant 297 

interest has developed in the past two decades in targeted protein degradation via small-molecule 298 

Proteolysis Targeting Chimeras (PROTACs). PROTACs consist of two small molecules joined 299 

by a linker and form flexible ternary complexes with the target and an E3 Ligase, which allows 300 

for target ubiquitination and subsequent degradation by the 26S proteasome (Figure 5A, PDB: 301 

8QU8). PROTACs degrade targets catalytically, making them an attractive strategy for 302 

challenging targets that have evaded small-molecule inhibition; however, PROTAC size and 303 

complexity plagues design efforts with poor bioavailability and cell permeability26. These 304 

properties are generally optimized through modification of the PROTAC linker, as the Ligase- 305 

and target-binding domains make specific contacts with their respective proteins. Here, we 306 

demonstrate how atomic sensitivities can guide rational changes to the PROTAC linker to 307 

minimize PROTAC ionizability. 308 
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KRAS is a challenging target in oncology because it lacks a deep, well-defined pocket for small-309 

molecule inhibition27. Recently, Popow et al. created a KRAS-degrading PROTAC using the 310 

VHL E3 Ligase (Figure 5A-B)28. Our model predicts this PROTAC has a pKa of 6.51 (P-1, 311 

Figure 4B) , suggesting protonatability at physiologic pH values. Atomic sensitivity analysis of 312 

the linker reveals one of two tertiary amines in P-1 drives this prediction (Figure 5C). The crystal 313 

structure of the P-1 ternary complex demonstrates this amine forms a salt bridge with KRAS 314 

Q62 when protonated. While salt-bridge interactions promote strong drug binding, PROTACs 315 

only need to bind their targets transiently, and a protonatable amine is a liability for permeability. 316 

Based on this analysis, we evaluated several P-1 bioisosteric modifications at this amine that 317 

reduce predicted pKa (Figure 5D). 318 

We evaluated each modification’s performance computationally using a well-benchmarked 319 

ternary complex (TC) generation algorithm, which produces a TC ensemble and “double 320 

clusters” this ensemble by structural similarity of both the Ligase-Target interactions and 321 

PROTAC conformation29. Per the algorithm authors’ benchmark, the largest structural double 322 

cluster often yields the most crystal-structure-like poses and filters out false positives from the 323 

full ensemble. Each modification produced comparable TC ensembles and double clusters to P-1 324 

(Figure 5E).  325 

Emerging experimental evidence suggests that a PROTAC’s degradation efficiency depends on 326 

its ability to place the target protein in proximity to ubiquitin (<60Å) in the complete E3 Ligase 327 

complex30. As such, we also evaluated the modifications’ ability to place KRAS in proximity to 328 

ubiquitin by superposing each TC ensemble member into the full E3 Ligase complex. Here, we 329 

find that the amide modification in P-2 provides KRAS similar ubiquitin access to P-1 and 330 

superior access to all other modifications tested (Figure 5F). Furthermore, docking P-2 into the 331 

VHL-KRAS pose identified in the 8QU8 crystal structure demonstrates that P-2 can recapitulate 332 

the binding pose of P-1 (heavy atom RMSD <2.5Å), including the key hydrogen bond with 333 

KRAS Q62 that P-1 utilizes using the tertiary amine (Figure 5G). 334 

Together, these results demonstrate a computationally validated use of atomic sensitivities to 335 

guide lead-molecule optimization. 336 
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 337 

 338 

Figure 5: Atomic sensitivity for drug design (A) Crystal structure (PDB: 8QU8) of pan-KRAS 339 

degrading PROTAC P-1 in ternary complex with VHL and KRAS. (B) PROTAC P-1 colored 340 

according to 5A, with pKa calculated by BCL-XpKa. (C) ASA scores for P-1 Nitrogen atoms. 341 

VHL- and KRAS-binders omitted for space. (D) Proposed bioisosteric P-1 linker modifications 342 

with pKa values predicted by BCL-XpKa. (E) Ternary-complex ensemble size and size of largest 343 

Protein-PROTAC conformational double cluster for each linker modification in 5D. (F) 344 

Cumulative number of ternary complexes near Ubiquitin at increasing distances from Ubiquitin 345 

in the closed conformation of the CUL2 E3 Ligase complex. Red line at 60Å denotes an 346 

empirically estimated distance beyond which target ubiquitination is improbable. (G) 347 

Representative images of the 8QU8 crystal structure and the Amide-based linker modification P-348 

2 supporting similar PROTAC conformations that preserve the hydrogen bond to KRAS Q62. P-349 

1 complex shown in brighter colors; P-2 complex shown in muted colors; P-2 linker modification 350 

highlighted in yellow. 351 
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DISCUSSION 352 

Here, we have presented BCL-XpKa, a deep-learning based pKa predictor that reframes QSPR 353 

prediction as a classification problem and avoids explicit substructural embeddings while 354 

maintaining competitiveness with contemporary machine learning pKa predictors. We found that 355 

this multitask classification approach directly informs the model’s uncertainty in its prediction, 356 

and that, beyond its absolute accuracy, BCL-XpKa reliably predicts the effects of common 357 

molecular modifications made to a hit/lead compound in a drug development program. We also 358 

showed that BCL-XpKa generalizes to foreign substructures better than equivalent models 359 

trained on MACCS-based descriptors via leave-substructural-class-out validation. 360 

We then used BCL-XpKa as a model system to introduce atomic sensitivity analysis (ASA), a 361 

first-in-class ML interpretability method we designed to provide actionable insights into QSPR 362 

model output by decomposing a molecule’s QSPR prediction into its atomic contributions 363 

through direct perturbation of the input chemical structure. When applied to BCL-XpKa, ASA 364 

identifies the most ionizable atoms in both acids and bases with remarkable accuracy. ASA also 365 

revealed surprisingly consistent results for how BCL-XpKa considers ionizable substructures at 366 

the atomic level. These substructural ASA scores were responsive to neighboring electron 367 

donating and withdrawing groups, demonstrating that BCL-XpKa learns context-dependent 368 

substructural information without explicit substructural embeddings. Finally, we showed that 369 

pairing a QSPR model’s molecule-level predictions with atomic-level contributions is a powerful 370 

tool for guiding lead optimization using a published KRAS-degrading PROTAC. Here, BCL-371 

XpKa and ASA directed linker modifications that reduced PROTAC ionizability while retaining 372 

critical PROTAC-KRAS contacts from the original crystal structure. 373 

Several limitations exist in our current framework. First, while regression models can predict 374 

arbitrarily extreme values given enough quality data, BCL-XpKa must place all extreme values 375 

in two catch-all bins, “pKa < 0” and “pKa > 12”, given its multitask classifier architecture. While 376 

this limits BCL-XpKa’s theoretical output range to -0.5 to 12.5, this is not consequential for 377 

biologically relevant pH scales and only marginally affects prediction accuracy. 378 

Further, ASA is currently limited to atomic-level model explainability. While this provides 379 

excellent resolution for atomic properties like pKa, there are many QSPR tasks where 380 

understanding the contribution of entire substructures or pharmacophores would be valuable. 381 

Generalizing ASA to higher order molecular substructures will further expand our understanding 382 

of QSPR ML model predictions and allow ASA to be tailored to specific tasks. 383 

BCL-XpKa and ASA have fundamental applications in computational chemistry generally, as 384 

well as early- and late-stage drug development. First, ASA is a generalizable strategy that can 385 

increase the explainability of any machine learning model that uses chemical structures as input 386 

data. As shown here, ASA scores can help scientists understand what their model has learned 387 

from their training set. This information can then guide training-set data augmentation or feature-388 

set modifications.  389 

Further, BCL-XpKa paired with ASA is positioned well to support high-quality small-molecule 390 

structure preparation for virtual high-throughput screening (vHTS). vHTS involves screening 391 
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ultra-large libraries (ULLs) of small molecules (currently nearing 1011 molecules) for their 392 

ability to bind to a protein target. vHTS has notoriously low hit rates, and improper protonation 393 

of ULL molecules can contribute to both false-positive and false-negative vHTS screens. BCL-394 

XpKa and ASA’s speed and accuracy at predicting pKa and ionization sites in multiprotic species 395 

make this tool a valuable asset for ULL structure preparation and downstream protein-ligand 396 

analysis in vHTS. 397 

Finally, as demonstrated here, BCL-XpKa paired with ASA can identify ionizable regions in a 398 

compound for modification in hit-to-lead or lead optimization. While ionization-site 399 

identification is relatively straightforward, this model-ASA strategy generalizes to any 400 

QSPR/QSAR model. Therefore, applying ASA to predictors of ADMET/DMPK may facilitate 401 

understanding of important but less readily interpretable liabilities in a hit or lead compound. 402 

 403 

METHODS 404 

Training Datasets 405 

ChEMBL27 is an open-source database contains over 2 million molecules with various 406 

physicochemical descriptors31. ACDlabs was used to calculate acidic pKa and basic pKa values 407 

(chembl_acid_pka and chembl_base_pka, respectively) for ChEMBL molecules, and molecules 408 

that were included in our test sets were excluded18. We also generated negative data (molecules 409 

with no ionization site) in the BCL and set chembl_acid_pka = 50, chembl_base_pka = 0. In 410 

sum, acidic pKa models were trained on 988,643 molecules, and basic pKa models on 812,918 411 

molecules. 412 

 413 

Molecule Preparation 414 

Molecular 3D structures were standardized using Corina for training and testing BCL-XpKa32. 415 

For external models, structure preparation followed the authors’ direction, and Corina was used 416 

if no structure preparation method was mentioned. This standardization was used exclusively for 417 

downstream usability, as BCL-XpKa solely uses 2D descriptors. All PROTAC modifications 418 

introduced in Figure 5 were minimized in the Molecular Operating Environment (MOE) prior to 419 

ternary complex ensemble generation.  420 

 421 

Molecular Features 422 

The Mol2D molecular descriptor set was used to encode molecules as described elsewhere17. 423 

Briefly, for each atom in a molecule, Mol2D encodes information about that atom, the bonds 424 

made to that atom, and the atoms one bond length away from that atom. 425 

To train a multitask classifier with N output labels, ChEMBL pKa values were encoded in an 426 

𝑁 x 1 result label 𝑅 ∈ ℤ2
𝑁, where the first entry corresponds to pKa <  0, the last entry to pKa ≥427 
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 12, and the 𝑖th entry to (12/𝑁)  ∗  (𝑖 –  1) ≤ pKa <  (12/𝑁)  ∗  𝑖. For regression models, the 428 

pKa in the ChEMBL set was used directly as the result label. 429 

 430 

Model Training and Validation 431 

Artificial neural networks were built in C++ for the Biology and Chemistry Library (BCL), an 432 

open-source cheminformatics platform created and maintained by our lab. Each model was 433 

trained for 250 iterations without early stopping, which our lab previously found to be 434 

unnecessary when dropout is used33. An upper-bound for model performance was calculated 435 

through random-split cross validation. A lower-bound for performance was calculated through 436 

leave-class-out cross validation (LCO-CV), in which the training set was divided into 30 subset 437 

{𝐶𝑖}𝑖=1
30  based on ionizable groups defined in literature34. 30 models were then trained in an 438 

iterative all-but-one scheme. Model internal performance was evaluated using the logarithmic 439 

receiver operating characteristic curve (logAUC) and AUC using the BCL 440 

model:ComputeStatistics application. 441 

 442 

Model Output and Evaluation 443 

MTCs with N output labels calculate N local positive predictive values (localPPV), where the ith 444 

localPPV denotes the probability that the pKa lies in the ith pKa interval (see Molecular Features 445 

above). For model evaluation, we report mean absolute error (MAE) for reader familiarity. In the 446 

supplement, we also provide a Brier score for each model, which is a proper scoring rule1 for 447 

more rigorous evaluation of classification model output. 448 

For each molecule 𝑚𝑖 ∈ 𝑌 in a test set 𝑌 with 𝑀 molecules, the pKa of 𝑚𝑖 was encoded with a 449 

binary result label 𝑅𝑖 ∈ ℤ2
𝑁 as described above. MTC scored each molecule, providing a discrete 450 

probability distribution 𝑃𝑖  describing the molecule’s likely pKa interval membership. From these 451 

distributions, MAE was calculated as: 452 

MAE(P, Y) =  
1

M
∑|yi − E[Pi]|

M

i=1

 453 

where 𝐸[𝑃𝑖] is the expected value of 𝑃𝑖. Similarly, for several models a Brier score was 454 

calculated as: 455 

 456 

BS(P, Y) =
1

M
∑ ∑(rij − pij)

2
N

j=1

M

i=1

 457 

 
1 “Proper scoring rule” is a term in statistics for a loss function that is minimized if the probability distribution 
output from the model is identical to the ground-truth probability distribution. When the bidirectional holds, the 
scoring rule is further labeled a strictly proper scoring rule. 
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Where 𝑟𝑖𝑗 ∈ 𝑅𝑖 is the jth result label for the ith molecule in the test set (i.e., whether its pKa value 458 

lies in the jth pKa interval), and 𝑝𝑖𝑗 is the localPPV that the ith molecule’s pKa value lies in the jth 459 

pKa interval. 460 

Throughout, MAE is used throughout to compare MTC to Regression and MTC to MTC models. 461 

Percent accuracy of categorization is not included, as it is an improper and discontinuous scoring 462 

metric.  463 

 464 

Atomic sensitivity analysis 465 

Atom replacement schemes were coded in C++ within the BCL. A parent molecule 𝑚 is scored 466 

by BCL-XpKa to produce P, a discrete probability distribution of potential pKa values. 467 

Heteroatom 𝑎 in the parent molecule is replaced with an appropriately hybridized carbon atom, 468 

and the perturbed molecule is rescored to produce P𝑎
′ . The dissimilarity between these 469 

distributions was calculated by their Kullback-Leibler (KL) divergence: 470 

DKL(Pa
′||P) = ∑ Pa,j

′N
j=1 ln (

P𝑎,j
′

Pj
), 471 

where Pj and P𝑎,j
′  are localPPVs as described in Model Output and Evaluation. Briefly, the KL 472 

divergence of these two probability distributions is best interpreted as the relative entropy 473 

between these distributions, where DKL(P′||P) = 0 denotes the distributions are identical (there 474 

would be no “surprises” if a given sample came from P vs P′), and higher values denote more 475 

dissimilarity. Finally, KL divergences were empirically denoised to generate ASA scores: 476 

ASA(𝑚, 𝑎) = e⌊5∗DKL(Pa
′ ||P)⌋ − 1 477 

 478 

PROTAC ternary complex ensemble generation 479 

Ternary complexes (TCs) were constructed according to Drummond et al (2020). Briefly, 480 

protein-protein interactions (PPIs) with the PROTAC binding pockets near each other, as well as 481 

a set of up to 10000 PROTAC conformations, were produced in the Molecular Operating 482 

Environment (MOE). PROTAC conformations were then docked into the PPIs and filtered 483 

according to the authors’ criteria. TCs were then clustered on both protein- and PROTAC-484 

conformations to produce “double clusters.” Protein-conformational clustering was done at CA-485 

RMSD < 10Å. PROTAC clustering was done at heavy-atom RMSD < 2.5Å. 486 

 487 

Hardware 488 

All models were trained with 18 Intel Xenon W-2295 CPU cores. PROTAC TC formation was 489 

performed using an Nvidia RTX A5000 GPU. 490 

 491 
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