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ABSTRACT 

Human gut microbial metabolites are currently undergoing much research due to their 

involvement in multiple biological processes important for health, including immunity, 

metabolism, nutrition, and the nervous system. Metabolites exert their effect through 

the interaction with host and bacterial proteins, suggesting the use of “metabolite-

mimetic” molecules as drugs and nutraceutics. In the present work, we retrieve and 

analyze the full set of published interactions of these compounds with human and 

microbiome-relevant proteins, and find patterns in their structure, chemical class, 

target class, and biological origins. In addition, we use virtual screening to expand (> 4-

fold) the interactions, validate them with retrospective analyses, and use bioinformatic 

tools to prioritize them based on biological relevance. In this way, we fill many of the 

chemobiological gaps observed in the published data. By providing these interactions 

we expect to speed up the full clarification of the chemobiological space of these 

compounds, by suggesting many reliable predictions for fast, focused experimental 

testing.  
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INTRODUCTION 

Research on microbial metabolites is currently having a large impetus, given the 

growing body of knowledge about their relevance in multiple biological processes, 

including immunity, metabolism, nutrition, and the nervous system, and therefore in 

human health.1–13 The human body hosts trillions of microbial cells,14 mainly 

concentrated in the gut, and this microbial community exert their influence in host 

biological processes through the establishment of a myriad of molecular interactions 

between metabolites and protein receptors.3,15–24 This, in addition to the fact that the 

gut microbiome exceeds by three orders of magnitude the human genome (> 22 

million vs 21000 human genes),25 has suggested the use of “metabolite-mimetic” 

molecules as drugs and nutraceutics that could modulate these interactions in 

pathological processes.10,26–36 As a matter of fact, this paradigm has spurred multiple 

drug discovery programs in the pharma industry that have reached clinical phases, and 

that include diseases such as inflammatory bowel disease (IBD), Crohn’s disease, 

autism, Parkinson disease, multiple sclerosis, thrombosis, and atherosclerosis.37   

In order to decode this interactome, multiple experimental approaches are being used 

and developed, including chemoproteomics,38,39 reverse screening of panels of 

proteins,17,40 and combinations of bioinformatic analyses and synthetic biology with 

screening.18 However, in this area the use of virtual screening tools could speed up the 

identification of interactions, as the predicted interactions could provide a set of 

hypothesis for fast, focused experimental tests, instead of blind and expensive all vs all 

screening. In this regard, we have recently provided a large set of virtual screening 

predictions to speed up the full characterization of the chemobiological space of food 
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compounds.41 These interactions were retrospectively validated, and right now many 

of these interactions are being confirmed experimentally.42  

In the present work we retrieve and analyze the full published set of interactions of gut 

metabolites with proteins, both human and gut microbial. A total of 2193 interactions 

are found, comprising 405 and 128 metabolites interacting with 451 human- and 56 

bacterial targets, respectively. Patterns in this chemobiological space are identified, in 

terms of structures and chemical class of the metabolites, and of target class and 

biological origin of the proteins. After applying ligand-based virtual screening 

techniques, this set is expanded up to 9711 interactions (> 4-fold increase), now 

comprising 422 and 330 compounds, interacting with 1047 human- and 180 microbial 

ones, respectively. The interactions are analyzed again, and retrospectively validated 

experimentally, showing confirmation for predictions even for rather extrapolated 

chemical spaces. Finally, bioinformatic tools are used to identify subsets of “high 

priority” proteins and interactions of high biological relevance, both host and 

microbial. We expect that by providing the results of this work in an open, 

collaborative fashion, the clarification of the full chemobiological space of gut 

microbial metabolites will be significantly accelerated. This work will complement 

another recent one where we have analyzed and developed predictive models for the 

same set of molecules from the point of view of their structures, physicochemical 

properties, and distribution.43  
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METHODS 

All data analysis was performed with Python 3.10, with RDKit 2022.03.2 as 

cheminformatic toolkit. Compound structures for metabolites were the same as in our 

previous work,43 that is, the subset of “detected and quantified” and “detected but not 

quantified” molecules from the gut compartment in the Human Metabolome Database 

(HMDB)44 plus some additions obtained from literature searches,15,16 resulting in a 

total of 6663 molecules. Metabolites were retrieved irrespective of their origin: host, 

microbial, both, xenobiotics, and unknown, since in this work we are interested in the 

bidirectional communication between the host and the microbiome, that could also 

involve human metabolites, with bacterial proteins. Some comparative analyses used a 

subset of the DrugBank45 (1410 molecules) that included the small molecules in 

approved, not-withdrawn, non-illicit status, and that were administered orally and 

acted systemically. A few shared compounds were manually assigned to the 

metabolite or drug set. Molecular structures were subject to the same pipeline as that 

described before41,43,46,47 for standardization.  

Biological interactions of these molecules with human or bacterial proteins were 

retrieved from both ChEMBL (release 33)48 and BindingDB,49 and were complemented 

with literature searches.15,16 Only data from well-defined protein or protein complexes, 

and obtained through dose-response analysis (standardized in the form of pCHEMBL or 

pCHEMBL-like values, that is -log10 (molar IC50, XC50, EC50, AC50, Ki, Kd or Potency)), 

were retrieved. In the case of bacterial proteins, only those of a set of 332 gut genera 

(collected in Table S1 in Supporting Information) present in typical microbiome data 

were retrieved. 
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For the predicted interactions we used the SEA (Similarity Ensemble Approach) 

method, available in https://sea.bkslab.org/. Only interactions with p-value <= 1e-16 

were retained, as they are considered by the program to be the most reliable ones.  

Compounds were classified into 17 chemical classes derived from the ClassyFire 

chemical hierarchy.50 Proteins were classified into a set of 24 target classes derived 

from the ChEMBL target hierarchy, after mapping each protein into a unique UniProt 

accession number (or set of numbers, in the case of protein complexes). Redundant 

entries obtained from different sources were removed, and multiple entries of each 

compound-protein pair were averaged to obtain a unique mean affinity value.   

Target analysis was performed with PHAROS (https://pharos.nih.gov/)51 in the case of 

human proteins. For bacterial proteins, essentiality was predicted using Geptop 2.0.52   

Post-hoc analysis of contingency tables were performed through a Fisher exact 

approach as described elsewhere,53 and p-values were adjusted by Benjamini-

Hochberg correction; significance level was 0.05.  
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RESULTS 

Figure 1 displays the distribution of the gut microbial metabolites used in this work 

across 17 chemical classes derived from the ClassyFire50 chemical taxonomy. These 

very different chemical classes reflects the wide chemical space spanned by the 

metabolites detected in the intestinal milieu.  

 

Figure 1. Distribution by chemical classes (based on the ClassyFire taxonomy) of the 

6663 gut metabolites used in this work.  

The distribution is overwhelmingly dominated by the “Glycerolipids” and 

“Glycerophospholipids” classes (~4000 and ~1000 compounds each, respectively) as 

expected, given the large number of different structures of these molecules in the diet. 

The following most populated classes are “Organoheterocyclic compounds” and 

“Organic acids and derivatives, both with ~600 compounds, and after them 
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“Benzenoids”, “Fatty Acyls” and “Organic oxygen compounds”  (> 200 compounds the 

three of them). The remaining classes have < 200 molecules each.  

Different types of well-known microbial metabolites map into the different chemical 

classes. For example, among the lipids, the “Steroids and steroid derivatives” class 

include the bile acids, sterol lipids, and cholesterol derivatives; short-chain fatty acids 

(SCFA) map into both the “Organic acids and derivatives” and “Fatty Acyls” (that 

include fatty acids) classes, depending on the size; fatty amides and long-chain fatty 

acids (LCFA) are both classified as “Fatty Acyls”; and glycerolipids, 

glycerophospholipids, and sphingolipids are classified in the same-name classes. As 

regarding non-lipidic molecules, both trimethylamine-N-oxide (TMAO) and polyamines 

map into the “Organic nitrogen compounds”, while indole derivatives are classified in 

the “Organoheterocyclic compounds”, and branched-chain amino acids and derivatives 

are assigned to the “Organic acids and derivatives” class, etc.  

Analysis of the published bioactivities of gut microbial metabolites   

As described in Materials and Methods, the interactions of this set of metabolites with 

proteins of Homo sapiens and bacterial species belonging to a set of genuses typical in 

intestinal microbiome samples were retrieved from ChEMBL, BindingDB, and literature 

searches. A total of 2139 interactions were identified, comprising 507 targets and 426 

metabolites. This results in ratios of 0.32 interactions per metabolite, 0.076 targets per 

metabolite, and 6.4% of metabolites with at least one interaction described (of all the 

6663 metabolites). There are almost 10-fold interactions more with human proteins 

than with bacterial ones (1942 vs 197, respectively), corresponding to 451 human 

targets vs 56 bacterial ones, and 405 vs 128 metabolites interacting with human vs 
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bacterial proteins (note 451 + 128 > 426 as some compounds interact with both 

human and bacterial proteins). The distributions of compounds per target and targets 

per compound display typical long right tails. The target with the largest number of 

compounds (80) is aldehyde dehydrogenase 1A1, an oxidoreductase displaying a wide 

range of chemotypes as ligands, followed by the thyrotropin receptor (60), and 

prelamin-A/C (52 compounds). The compound with the largest number of interacting 

proteins (89) is luteolin, a flavonoid, followed by apigenin (86), another flavonoid. In 

both cases these compounds interact with a wide range of protein classes, including 

kinases, oxidoreductases, and proteases.  

Figure 2 shows the distribution of unique protein targets of the metabolites among 25 

target classes derived from the ChEMBL target hierarchy (orange bars). For comparison 

purposes, the same distribution is shown for a set of oral drugs with systemic action 

(blue bars). We can see that the set of drugs has many more interacting targets than 

the metabolites, reflecting that the former set has been much more tested, as well as 

the scarce known target space of the later. As a matter of fact, 78.2% of the drug 

compounds have one or more interacting target, in stark contrast with the 6.4% 

mentioned before for the metabolites.  
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Figure 2. Distribution of unique targets among target classes for interactions 

published for gut metabolites (green bars). The same distribution is shown for a set 

of oral systemic drugs (magenta bars).   

There is a significant correlation between these two distributions (Spearman rank 

correlation = 0.89), as well as some clear discrepancies: “Kinase” is, by far, the most 

populated class in drugs, followed by “7TM1”, but in metabolites the first class is the 

later, while “Kinase” is the third one; another large difference is “Hydrolases”, the 4th 

most populated target class in drugs but the 9th in metabolites; and “Epigenetic 

regulator”, the 4h class in metabolites (together with “Oxidoreductase”), but the 10th in 

drugs. From the counts of shared vs not shared targets between the two compound 

sets (Table S2 in Supporting Information) it is possible to see that the target class 

having the largest counts of targets only interacted with metabolites is “Other” (24), 

followed by “Transferase” (23), “7TM1” (18) and “Epigenetic regulator” (17).  

On the other hand, Figure 3 displays the distribution of metabolite targets by their 

target classes and biological group: human (blue bars) vs bacterial (orange bars).  
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Figure 3. Distribution of unique targets among target classes for interactions 

published for gut metabolites. Both human (blue bars) and bacterial targets (orange 

bars) are shown.  

It is observed that the majority of the targets interacting with metabolites in the 

literature are human, as above described. The two distributions are very different. As 

expected, bacterial targets are missing from typical eukaryotic target classes: “7TM1-

3”, “Nuclear receptor”, “Epigenetic regulator”, “VGIC”, “LGIC”. Other target classes are 

missing in this dataset as far as bacterial proteins are concerned: “Electrochemical 

transporter”, “Phosphodiesterase”, “Phosphatase”, “Secreted protein”, “Primary 

active transporter” and “Membrane receptor other”. There is one bacterial kinase, 

streptokinase A, and one cytochrome P450-like protein, the steroid C26-

monooxygenase. While the human proteins have “7TM1” as the most frequent target 

class (76 proteins), followed by “Kinase” (45) > “Epigenetic regulator” = “Other” (39) > 

“Oxidoreductase” (34), bacterial proteins have “Hydrolase” as the largest target class 
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(12 proteins) followed by “Transferase” = “Other” (9) > “Lyase” (6) and 

“Oxidoreductase” (5).  

Figure 4 shows the distribution of unique compounds targeting the different human or 

bacterial proteins (blue vs orange bars, respectively), across the 25 target classes.  

 

Figure 4. Distribution of unique compounds among target classes for interactions 

published for gut metabolites. Both human (blue bars) and bacterial targets (orange 

bars) are shown.  

Here we find that the target class share of metabolites interacting with human 

proteins does not follow strictly the number of unique targets in each class, and goes 

in the following decreasing order: “7TM1” (155 compounds) > “Oxidoreductase” (122) 

> “Other” (105); between 10 and 100 compounds we have “Enzyme other” (78) > 

“Cytochrome P450” (69) > “Epigenetic regulator” (68) > “Electrochemical transporter” 

(52) > “Protease” (51) > “Kinase” (47) > “Nuclear receptor” (45) > “Hydrolase” (46) > 

“Other cytosolic protein” (39) > “Phosphodiesterase” (37) > “Lyase” (33) > “Secreted 
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Protein” (17) >“Phosphatase” (16) > “Primary active transporter” (15) > “VGIC” (14). 

The rest of the target classes have less than 10 compounds.  

As regarding the metabolites interacting with bacterial targets, these are restricted to 

“Transferase” (53 molecules) > “Hydrolase” (41) > “Protease” (34) > “Other” (13) > 

“Lyase” (10); the rest of the classes have less than 10 compounds.  

It is also possible to analyze the interactions in terms of both chemical and target 

classes. Figure 5 depicts the count distribution of the interactions for human proteins 

and published data, while Figure 6 displays the same distribution but with bacterial 

proteins.  

 

Figure 5. Distribution of unique interactions among chemical and target classes for 

gut metabolites and human proteins present in published data. Counts correspond 

to unique InChi + UniProt accession combinations. Cells in bright blue or bright red 
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with starred counts correspond to statistically significant combinations (blue 

overrepresented and blue underrepresented, respectively) in a post-hoc test after 

Benjamini-Hochberg p-value correction. Numbers within parenthesis after each label 

correspond to marginal counts.  

 

 

Figure 6. Distribution of unique interactions among chemical and target classes for 

gut metabolites and bacterial proteins present in published data. Counts correspond 

to unique InChi + UniProt accession combinations. No significant cells after 

Benjamini-Hochberg p-value correction are obtained. Numbers within parenthesis 

after each label correspond to marginal counts.  

In the case of human proteins, we see that, of the 17 chemical classes, 

“Phenylpropanoids and polyketides” is the one with the largest number of interactions 
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(509), followed by “Benzenoids” (313), “Organoheterocyclic compounds” (281), 

“Organic acids and derivatives” (192), and “Fatty Acyls” (173). These five classes 

together comprise ~75% of the published interactions with human proteins. In terms 

of target classes, the marginal distribution is wider, where “7TM1” has the largest 

share of interactions (270), followed by “Oxidoreductase” (229), “Lyase” (190), “Other” 

(181), and “Cytochrome P450” (148). Together they comprise ~52% of the interactions. 

Statistically overrepresented combinations are: “Organoheterocyclic compounds” vs 

“7TM1”, “LGIC”, and “Epigenetic regulator”; “Glycerolipids” vs “Kinase”; “Benzenoids” 

vs “Lyase”; “Organic acids and derivatives” vs “7TM1” vs “Electrochemical 

transporter”; “Organic oxygen compounds” vs “Hydrolase”; “Steroid and steroid 

derivatives” vs “Nuclear receptor” and “Primary active transporter”; 

“Phenylpropanoids and polyketides” vs “Kinase” and “Cytochrome P450”; “Prenol 

lipids” vs “Phosphatase”; “Organic nitrogen compounds” vs “Lyase”; and 

“Sphingolipids” vs “7TM1”. Statistically underrepresented combinations are: 

“Organoheterocyclic compounds” vs “Nuclear receptor”; “Benzenoids” vs “Nuclear 

receptor”; “Organic acids and derivatives” vs “Lyase”; “Steroids and steroid 

derivatives” vs “Lyase”; “Fatty Acyls” vs “Lyase”; and “Phenylpropanoids and 

polyketides” vs “7TM1” and “Electrochemical transporter”.  

As regarding the heatmap of interactions with bacterial proteins, the top-5 chemical 

classes are now “Organoheterocyclic compounds” (40), “Organic acids and derivatives” 

(34), “Phenylpropanoids and polyketides” (32), “Benzenoids” (30), and “Organic 

nitrogen compounds” (15). The sum of these interactions corresponds ~77% of all 

ones. In terms of target classes, now the distribution is even more concentrated in a 

few of them: “Transferase” (58), “Hydrolase” (51), and “Protease” (34) alone comprise 
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~72% of the interactions. Although in this dataset no significance is obtained from any 

of the chemical class vs target class combinations in the post hoc analysis of the 

contingency table represented in Figure 6, the four most populated combinations are 

the following ones: “Organoheterocyclic compounds” vs “Transferase” (16 

interactions) and “Hydrolase” (13), “Organic acids and derivatives” vs “Transferase” 

(11); and 9 interactions are observed for “Phenylpropanoids and polyketides” vs both 

“Hydrolase” and “Lyase”, as well as “Organic acids and derivatives” vs “Protease”.  

The full set of published interactions can be found in Table S3 in the Supporting 

Information. 

Structural analysis of the metabolites interacting with the different target classes 

The structures of the metabolites interacting with the different target classes show 

specific patterns worth mentioning. In Figure 7 the number of unique Bemis-Murcko 

scaffolds54,55  for the metabolites interacting with each target class are shown as bars, 

together with the percentage of molecules devoid of scaffolds (molecules with no 

rings), as dot-connected lines.  
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Figure 7. Distribution of unique scaffolds by target class for gut metabolites (blue 

bars) and percentage of these molecules without scaffold (orange dot-connected 

line) 

The largest scaffold diversities are observed in the “Other”, “7TM1”, “Oxidoreductase” 

and “Hydrolase” target classes. These are target classes that bind multiple 

chemotypes. In the case of “7TM1”, they are known to interact with 

organoheterocyclic metabolites like indole derivatives, plus short- and long-chain fatty 

acids, fatty amides, hydroxycarboxylic acids, bile acids, benzenoids, etc.15–17,24 On the 

other hand, the “Other” class is by definition quite variable as it contains multiple 

protein families, so as expected it has the highest scaffold diversity. In turn, 

“Oxidoreductase” contains proteins quite different like cyclooxygenases, monoamine 

oxidases, lipoxygenases, etc., and these are targeted by diverse chemical families such 

as prenol lipids, flavonoids, etc.; while the “Hydrolase” target class include a wide 

range of inhibitors and substrates as well (e.g. flavonoids, xanthine derivatives, etc.) 
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that interact with very different redox enzymes: cholinesterases, phospholipases, 

endonucleases, etc.      

This is in contrast with other target classes, where the number of unique scaffolds is 

much more reduced: e.g. in “Nuclear receptor” proteins are targeted mainly by 

molecules in the “Steroids and steroid derivatives”; or that have just few compounds 

in the gut metabolite set: “VGIC”, “LGIC”, “7TM2”, “7TM3”, “Ligase”, etc.  

On the other hand, and focusing on the target classes with large numbers of 

compounds, the ones with the largest percentages of molecules without scaffolds are 

“7TM1” (49%), “Oxidoreductase” (40%), and “Electrochemical transporter” (38%). We 

have seen before the large number of fatty acids and derivatives (“Fatty Acyls” and 

“Organic acids and derivatives”) targeting the “7TM1” class, and this applies also the 

two other classes.  

To complete the scaffold-based structural analysis, in Figure 8 the fraction of scaffolds 

shared between target classes is depicted, which is also a measure of the structural 

similarity shared between the metabolites of the different target classes.  
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Figure 8. Distribution of the fraction of unique scaffolds shared between pairs of 

target classes. For each pair of targets, the cell value is obtained as the number of 

shared scaffolds (intersection) divided by the total number of unique scaffolds 

(union) in both target classes. The absence of scaffold is counted as another 

scaffold. The vertical axes labels include the marginal sum of fractions. 

Scaffolds are shared the most between “Cytochrome P450” and “Enzyme other” 

(0.57); “Cytochrome P450” and “Kinase” (0.56); and “Hydrolase” and “Oxidoreductase” 

(0.55). Also between “Epigenetic regulator” and “Transferase” (0.533), and the former 

and “Other” (0.52). The target classes with the highest marginal sum of fractions of 

shared scaffolds are “Cytochrome P450”, followed by “Kinase”, and “Enzyme other”. 
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On the other side are “7TM2”, “7TM3”, “Ligase”, “LGIC”, and “Isomerase”, all of them 

with few compounds, but also there are well populated target classes like “Nuclear 

receptor” and “Primary active transporter” with small values, a signature of being 

targeted by more specific chemotypes associated to these classes.  

Analysis of predicted bioactivities of gut microbial metabolites   

It is possible to expand the set of published interactions by using well-established 

target prediction methods. In this regard, we have used the SEA method (Similarity 

Ensemble Approach),56,57 which is based on testing the difference in the distribution of 

similarities of the query compound to the set of ligands of a target, when compared to 

the distribution of similarities to all the targets. This method has been successfully 

used in the past to, among others, identify the mechanism-of-action targets, predict 

bioactivities in large databases like ZINC, and identify bioactivities in inactive 

ingredients of drugs.56,58,59 In this regard, after applying this method to our dataset we 

were able to obtain a total of 8185 interactions, comprising 376 compounds and 1029 

targets. Making the union of these predicted interactions with the published ones, we 

obtain a total of 9711 interactions (a bigger than four-fold increase); 7572 of these are 

strictly new interactions, which in turn split into 6343 interactions with human 

proteins and 2139 with bacterial targets. The  merged set of published + predicted 

interactions now correspond to 426 compounds and 1227 proteins. Thus, although the 

percentage of compounds with at least one interaction remains in 6.4%, the number of 

targets has more than doubled and now we have 0.184 targets per metabolite, and 

1.46 interactions per metabolite. In terms of biological origin, in the merged set the 

number of human vs bacterial proteins is 1047 vs 180, respectively (to be compared to 
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the 451 vs 56 ones in the published data). Although the total number of compounds 

with at least one target annotation remains the same, the counts per biological group 

increase significantly as well, especially in the case of metabolites with bacterial 

targets: 422 vs 330, respectively for human and bacterial targets (they were 405 vs 128 

metabolites, see above). Now the protein with the largest number of ligands (83) is 

peptidyl-glycine alpha-amidating monooxygenase, followed by aldehyde 

dehydrogenase 1A1 (the same 80 interactions as before), while the compound with 

the largest number of targets (137) is vanillic acid, a benzenoid, followed by luteolin 

(now with 107 interactions).  

Figure 9A displays the distribution of metabolite targets by biological group of the 

target after including the predicted interactions (human proteins as blue bars vs 

bacterial proteins as orange bars), while Figure 9B displays the distribution of unique 

compounds targeting the different human or bacterial proteins (blue vs orange bars, 

respectively).  
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Figure 9. (A) Distribution of unique targets among target classes for interactions 

published + predicted for gut metabolites. Both human (blue bars) and bacterial 

targets (orange bars) are shown. (B) Distribution of compounds among target 

classes for interactions published + predicted for gut metabolites. Both human (blue 

bars) and bacterial targets (orange bars) are shown.  

Looking at Figure 9A, after the incorporation of the predicted interactions, it can be 

seen a large boost in the number of unique human oxidoreductases (from 34 to 120), 
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which now are the most populated target class, followed by 7TM1, that increases from 

76 to 131 targets. Another class that has experimented a notable growth is human 

“Protease”, which was before the 9th most populated target class and now is the third 

one (from 51 to 99 proteins). In the case of bacterial proteins, the largest boost is in 

“Enzyme other” (from 4 to 33 proteins and now the most populated target class). 

Regarding target classes missing bacterial proteins in the published data, now we see 

the appearance of one bacterial phosphodiesterase, (phospholipase C), two 

phosphodiesterase’s (tyrosine-protein phosphatase YopH and low molecular weight 

protein-tyrosine phosphatase A), and two primary active transporters (multidrug 

resistance protein MdtK and protein translocase subunit SecA 1). Typical eukaryotic 

target classes (“7TM1-3”, “Nuclear receptor”, “Epigenetic regulator”, “VGIC”, “LGIC”) 

plus “Electrochemical transporter”, “Secreted protein”, and “Membrane receptor 

other” remain unpopulated in bacteria, while the rest of the classes have an increase 

of the number of proteins. The later also happens with all the target classes of human 

proteins, with the only exception of 7TM2.  

As a result, the distribution of unique compounds per target class vary accordingly 

(Figure 9B). Here, in terms of human proteins, “Oxidoreductase” surpasses now 

“7TM1” as the most populated human target class (270 vs 155 compounds before); the 

largest boost in unique compounds is experimented by “Transferase” (193 molecules 

now vs 23 molecules before, from the 15th to the 6th position), followed by “Other” 

(257 compounds now vs 105 molecules before, from the 10th to the 5th position). 

Regarding compounds targeting bacterial proteins, the target classes having the largest 

boosts are “Enzyme other” (from 5 to 178 compounds) and “Other” (from 13 to 134 

compounds), and now they are the most- and second-most populated target classes.  
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By analyzing these interactions in terms of both chemical class and target class, we 

obtain the plots in Figures 10 and 11, respectively for human and bacterial targets. 

  

Figure 10. Distribution of unique interactions among chemical and target classes for 

gut metabolites and human proteins present in published or predicted data. Counts 

correspond to unique InChi + UniProt accession combinations. Cells in bright blue or 

bright red with starred counts correspond to statistically significant combinations 

(blue overrepresented and blue underrepresented, respectively) in a post-hoc test 

after Benjamini-Hochberg p-value correction. Numbers within parenthesis after each 

label correspond to marginal counts.  

In both cases, we observe a large increase in the number of interactions in many cells. 

In particular, in the case of human proteins (Figure 10), 75 previously empty cells have 

now one or more interactions, and the interaction counts have increased in 230 cells. 

The filling of previously empty cells have been most effective in the target classes 
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“Membrane receptor other” and “Transferases”, as well in the chemical classes 

“Glycerophospholipids” and “Glycerolipids”, while the numbers of cells with increased 

counts have been largest in “7TM1”, “Hydrolase”, “Enzyme other”, and “Other” target 

classes, and in the “Organoheterocyclic compounds” and “Benzenoids” chemical 

classes. The target classes with the largest increases in total counts of interactions 

correspond to “7TM1” again and “Oxidoreductase”, while “Fatty Acyls”, “Organic acids 

and derivatives” and “Benzenoids” are the chemical classes with largest increases in 

total counts.  

By considering the bacterial targets (Figure 11), 50 previously empty cells have now 

been filled with one or more interactions, and 96 cells have increased their counts. The 

target classes with the most effective filling of empty cells are “Enzyme other”, 

“Phosphodiesterase”, and “Other”, while the chemical classes are 

“Glycerophospholipids”, “Benzenoids”, and “Organic oxygen compounds”. The target 

classes with largest numbers of cells with increased counts are “Enzyme other”, 

“Other”, and “Protease”, while the chemical classes are “Benzenoids” and 

“Phenylpropanoids and polyketides”. Finally, the largest increments in total counts 

have occurred in the “Enzyme other” and “Other” target classes, and in the “Organic 

acids and derivatives”, “Fatty Acyls”, and “Benzenoids” chemical classes.  
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Figure 11. Distribution of interactions among compound and target classes for gut 

metabolites and bacterial proteins present in published or predicted data. Counts 

correspond to unique InChi + UniProt accession combinations. Cells in bright blue or 

bright red with starred counts correspond to statistically significant combinations 

(blue overrepresented and blue underrepresented, respectively) in a post-hoc test 

after Benjamini-Hochberg p-value correction. Numbers within parenthesis after each 

label correspond to marginal counts.  

The full set of published interactions is available in Table S3 in the Supporting 

Information.  

Experimental validation of predicted interactions 

The provided predictions comprise a large number (7572) of hypotheses for fast 

focused testing. By sharing them openly in this work we expect to accelerate the full 

identification of the target space of gut microbial metabolites. In order to have an idea 
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of the experimental validity of these predictions, we took the advantage of the fact 

that SEA predictions are based on a ChEMBL release, namely 27, previous to the 

release we have used to identify published interactions (ChEMBL 33); in addition, for 

the published interactions we have also included BindingDB data, not present in 

ChEMBL and therefore not used by SEA to base its predictions. The same happens with 

the literature data. Therefore, we sought for SEA predicted interactions that were also 

present in our dataset of published interactions. As a matter of fact, a total of 613 

interactions were shared between the published and predicted datasets. However, it is 

possible that some predicted interactions are using data already present in the SEA 

“training” dataset (and therefore, also present in ChEMBL27). These correspond to the 

entries with maximum Tanimoto coefficients of 1, meaning that the predicted 

interaction is already present in the SEA “training” set (a prediction of an interaction is 

being made of an based on a set of published interactions, of which one is with exactly 

the predicted compound). Therefore, bona fide predictions would correspond to those 

with maximum Tanimoto coefficient < 1, meaning that the prediction was based on 

non-identical compounds interacting with the target. In this way, we found a total of 

127 true predictions (maximum Tanimoto coefficient < 1) that were later confirmed in 

our ChEMBL33/BindingDB/Literature set of published interactions. Of them, 115 were 

interactions with human targets, and 12 with bacterial proteins.  

We can analyze the Tanimoto coefficients of these 127 compounds to see how “trivial” 

were the predictions, that is, if the predictions were based on very close analogs of the 

compound or, on the other hand, they were based on compounds rather dissimilar. 

Figure 12 shows the distribution of Tanimoto coefficients across these 127 confirmed 
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predictions, for both human (blue histogram) and bacterial (orange histogram) 

proteins. 

 

Figure 12. Distribution of maximum Tanimoto coefficients in SEA predictions 

confirmed in later published interactions for both human (blue) and bacterial 

(orange) targets.  

It is possible to see that the distributions of Tanimoto coefficients for both human and 

bacterial proteins are rather uniform, and going as low as 0.28. This indicates that the 

experimentally confirmed predictions are not necessarily based on close analogs, but 

on the contrary they are based in many times on rather dissimilar parts of the chemical 

space. The fact that SEA uses ensembles of compounds instead of the nearest analog 

in the training set, makes it more capable of successful extrapolation to non-trivial 

predictions of bioactivities, and provides further interest to the set of hypotheses 

shared in this work.  

Target analysis and prioritization 
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In order to gain more information about the targets identified as interacting with the 

gut microbial metabolites, we used the PHAROS tool51 for the case of human proteins. 

PHAROS is a user interface to the so-called Knowledge Management Center of the 

Illuminating the Druggable Genome (IDG) initiative, which aims to explore the properties and 

biological functions of the whole potentially druggable human proteome. In this way, a 

total of 1019 proteins (out of the 1047 human proteins above described) were found 

with annotations in this system. PHAROS classifies proteins in four groups as regarding 

their drug development level: “Tclin”, which are proteins with at least one approved 

drug, and therefore well validated as therapeutic targets; “Tchem”, which are proteins 

with at least one known modulating small molecule; “Tbio”, proteins characterized to 

some extent biologically but with not known modulating small molecule; and “Tdark”, 

which are proteins about which little knowledge is available, in terms of biological 

function, structure, and involvement in disease. In our list of 1019 human proteins, 

60% are in the “Tchem” group, 31% in the “Tclin”, and 9% in the “Tbio” groups. Figure 

13 displays the distribution of these three target development groups across the 

different target classes. 
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Figure 13. Distribution of target development levels in PHAROS for the human 

proteins interacting with microbial metabolites across the different target classes. 

It is possible to see that, within the “Tclin” group, “7TM1” and “Oxidoreductase” are 

the most abundant ones. As regarding the “Tchem” group, the classes with the largest 

numbers of proteins are “Protease”, “”7TM1”, “Other”, and “Enzyme other”. Finally, 

the “Tbio” group has “Other”, “Transferase”, and “Enzyme other” as the most 

populated target classes.   

In order to obtain a “high priority” subset of targets in the gut where to focus 

experimentation first, we searched for the anatomically defined group of ailments 

called “intestinal diseases”, considering that, while gut metabolites can cross the gut 

wall and are known to interact with proteins located in other organs, the vast majority 

of interactions of these metabolites are expected to occur with intestinal targets. In 

turn, the subset of proteins known to be associated with intestinal diseases is expected 

to be involved in signaling pathways and interactions in the gut and therefore to be of 

high biological relevance. In this way, a total of 454 of the metabolite-interacting 

targets (~43% of the total human proteins) are associated to at least one of these 

diseases. Interestingly, gut metabolites display a highly significant trend to interact 

with targets associated with intestinal diseases (p-value = 2e-33 in Fisher exact test, by 

considering 20412 total proteins and 5587 intestinal disease associated proteins). Also, 

57 of the 191 intestinal diseases are associated to a gut-metabolite interacting protein. 

The associated diseases include ulcerative colitis, Crohn disease, multiple benign and 

malign tumors, Lynch and Hirschsprung disease, and several additional inflammatory 

and metabolic diseases. As a matter of fact, the associated disease most significantly 
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overrepresented in this subset of 454 targets in a Fisher exact test, among all set of all 

associated diseases in PHAROS, is “ulcerative colitis” (Benjamini-Hochberg adjusted p-

value = 2e-78), followed by “malignant colon neoplasm” (adjusted p-value = 6e-54) , 

“cancer” (adjusted p-value = 9e-47), and “colorectal cancer” (adjusted p-value = 2e-

35). By including some additional targets recently identified to be of biological 

relevance in the microbial-host communication, although yet to be associated with 

intestinal diseases,1,15,16,18,19,26,27,60,61 this results in a set of 467 “high-priority” proteins 

where to focus experimental efforts. These interact with a total of 392 metabolites.   

Figure 14 displays the distribution of the 392 metabolites across chemical classes, as 

well as the 467 targets among target classes.  
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Figure 14. (A) Distribution of chemical classes (based on the ClassyFire taxonomy) of 

the 392 gut metabolites interacting with “high priority” human targets. (B) 

Distribution of the 467 “high priority” targets among target classes, from both 

published and predicted interactions. 

The largest share of metabolites in this “high priority” set correspond to “Organic acids 

and derivatives”, followed by “Benzenoids”, “Fatty Acyls”, and “Organoheterocyclic 

compounds”. In turn, the target classes most abundant in this set are “Other”, “7TM1”, 

“Protease”, “Oxidoreductase”, and “Enzyme other”.  
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Figure 15 displays the distribution of interactions across both chemical and target 

classes for the “high priority” human targets.  

 

 

Figure 15. Distribution of unique interactions among compound and target classes 

for gut metabolites and “high priority” human targets, present in published or 

predicted data. Counts correspond to unique InChi + UniProt accession 

combinations. Cells in bright blue or bright red with starred counts correspond to 

statistically significant combinations (blue overrepresented and blue 

underrepresented, respectively) in a post-hoc test after Benjamini-Hochberg p-value 

correction. Numbers within parenthesis after each label correspond to marginal 

counts.  

A total of 2804 predicted interactions are present in this “high priority” set, thus 

providing a large number of hypothesis to test through fast, focused in vitro assays. 
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The predicted interactions span 22 target classes, with “Other”, “7TM1”, and 

“Protease” as the most populated ones. Also they involve 16 chemical classes, where 

“Fatty Acyls”, “Steroids and steroid derivatives”, and “Benzenoids” are the most 

frequent among the interactions. All these interactions are provided as Supplementary 

Information.  

As regarding the bacterial proteins, since they are not contemplated in PHAROS, the 

Geptop 2.052 method was used to predict their essentiality as a way of prioritization. 

Geptop 2.0 is a method that identifies essential genes in bacteria, by comparing 

orthology and phylogeny of the query protein with essential gene datasets determined 

experimentally (from both DEG62 and OGEE63 databases of essential genes). In this 

way, a total of 63 proteins were assigned the essential class and therefore where 

deemed of “high priority” within the set of 180 bacterial targets. These “high priority” 

proteins interact with a total of 212 metabolites. Figure 16 displays the chemical class 

distribution of the 212 metabolites, plus the target class distribution of the 63 “high 

priority” bacterial proteins. The largest chemical class are “Organic acids and 

derivatives”, including mainly organic acids, amino acids, and dipeptides, while the 

largest class is “Transferase”, that collects transferases of a wide range of chemical 

groups, including phosphate, methyl, nucleotidyl, isoprenyl, etc.  
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Figure 16. (A) Distribution of chemical classes (based on the ClassyFire taxonomy) of 

the 212 gut metabolites interacting with “high priority” bacterial targets. (B) 

Distribution of the 63 “high priority” targets among target classes, from both 

published and predicted interactions. 

Figure 17 collects the counts of interactions by both chemical and target class. A total 

of 442 metabolite-high priority bacterial protein are observed, of which 374 are SEA 

predictions. This provides a lot of opportunities for fast focused test of putative 
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interactions of gut microbial metabolites with essential bacterial proteins of the 

metagenome.  

 

 

Figure 17. Distribution of unique interactions among compound and target classes 

for gut metabolites and “high priority” bacteirla targets, present in published or 

predicted data. Counts correspond to unique InChi + UniProt accession 

combinations. Cells in bright blue or bright red with starred counts correspond to 

statistically significant combinations (blue overrepresented and blue 

underrepresented, respectively) in a post-hoc test after Benjamini-Hochberg p-value 

correction. Numbers within parenthesis after each label correspond to marginal 

counts.  
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The set of both human and microbial “high priority” proteins are annotated in Table S3 

of Supporting Information.  
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DISCUSSION 

Human gut microbial metabolites are currently the subject of much interest. In a 

previous work, we have analyzed their structural, physicochemical, and distribution 

properties, and developed QSAR predictive models for their intestinal permanence.43 

Clarifying the full target space of these molecules could shed light to understand 

fundamental biological processes that result from the cross-signaling and regulatory 

pathways established between the microbiome and the host.1,1,2,6,8,15,16 In addition to 

the improvement in our comprehension of the role of the microbiome in human 

health, the knowledge gained can be used in the generation of a new drug and 

nutraceutic modality of “metabolite-mimetic” molecules.18,26,31,32,32,33,36 This new 

modality could benefit from new chemotypes, but additionally, from new targets as 

they could be directed to proteins encoded by the vast microbial metagenome. It is 

currently estimated that a total of ~900 proteins (~700 human and ~200 pathogen) are 

targeted by FDA-approved drugs, while ~3000 are considered druggable out of the 

21000 genes in the human genome.37,64 In turn, the human gut microbiome has been 

estimated to contain between 250-  to 1000-fold as many genes.65 As a matter of fact, 

several drug discovery programs in this area are focused on bacterial proteins as 

pathogenicity factors, like the E. coli fimbrial adhesin (FimH) for IBD, and the archaeal 

F420-dependent Mtd, a methane-producing enzyme for the same disease.37 This is the 

reason why, in our analysis, we have not focused on just human proteins interacted 

with bacterial metabolites, as most of the literature does, but we have also considered 

all possible host-microbe bidirectional communications by including bacterial proteins 

of typical gut microbiome genera in our dataset. By the same token, we have also 

taken into account metabolites from the host, xenobiotics, and metabolites from 
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bacteria but modified by host enzymes, or from the host/xenobiotics but modified by 

bacteria. The later could be useful for instance for drug discovery programs that aim to 

modulate drug metabolism by the microbiota to enhance already existing drugs,66 and 

again we find some examples in the development and use of inhibitors of microbial β-

glucuronidases and tyrosine decarboxylase to improve the effects of irinotecan and L-

dopa, respectively.37,67  

Our analysis of published interactions has identified 2193 interactions, involving 405 

and 128 metabolites, that bind to 451 human and 56 microbial proteins, respectively. 

In the case of human proteins, most of the interactions (~75%) involve only five 

chemical classes: “Phenylpropanoids and polyketides”, “Benzenoids”, 

“Organoheterocyclic compounds”, “Organic acids and derivatives”, and “Fatty Acyls”; 

while in terms of target classes the distribution is more uniform, with “7TM1”, 

“Oxidoreductase”, “Lyase”, “Other”, and “Cytochrome P450” comprising only ~52% of 

the interactions. For the case of microbial targets, ~77% of the interactions are 

concentrated in the same previous five chemical classes, but now “Fatty Acyls” is 

replaced by “Organic nitrogen compounds”. However, in terms of target classes the 

distribution is quite nonuniform in this case, with ~72% of the interactions that involve 

just “Transferase”, “Hydrolase”, and “Protease”.  

The inclusion of SEA predictions expanded these interactions to 9711 ones (> 4-fold 

increase), now comprising 422 and 330 compounds, and for 1047 human and 180 

microbial proteins, respectively. This expansion resulted in the generation of new 

interaction hypothesis for 125 chemical class vs target class combinations with no 

previously published interactions. Within these  combinations, there a total of 1150 
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new hypothesis for fast, focused tests in uncharted chemobiological spaces. It is worth 

noting that most of the research in gut microbial metabolites is being focused in GPCRs 

and nuclear receptors, but here we provide lots of hypothesis for alternative, 

underexplored target classes like “Enzyme other”, “LGIC”, “Ligase”, “Transferase”, etc., 

in combination with well described or underexplored chemical classes (“Organic acids 

and derivatives”, “Nucleosides, nucleotides, and analogues”, “Benzenoids”, etc.) In 

addition, for other 116 combinations the interaction counts have increased, 

corresponding to  6422 additional new hypotheses for chemical class vs target class 

combinations with at least one published interaction.  

The fact that these interactions have been experimentally validated by retrospective 

analysis (127 of the non-identical predicted interactions were identified in a later 

ChEMBL release, BindingDB, or the literature) gives confidence in the reliability of the 

predictions. Moreover, we have seen that within the confirmed predictions the 

maximum Tanimoto coefficient with compounds in the SEA “training” set were as low 

as 0.28, demonstrating the capability of this method, that works through compound 

ensembles, to extrapolate to rather distant parts of the chemical space and find novel 

chemical diversity.  

The use of bioinformatic tools have also allowed to prioritize the targets to pursue in 

the short term, by spotting those in the host most associated with intestinal diseases 

on one hand, and in bacteria those that are essential on the other. This, in addition to 

the filled chemobiological gaps above described, provides additional criteria and guide 

for the prioritization of experimental tests.  

https://doi.org/10.26434/chemrxiv-2024-3ws9d ORCID: https://orcid.org/0000-0002-8249-4547 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-3ws9d
https://orcid.org/0000-0002-8249-4547
https://creativecommons.org/licenses/by/4.0/


41 
 

To sum up, we can conclude that the current work provides a comprehensive analysis 

of our current knowledge about the chemobiological space of gut microbial 

metabolites, and in addition openly provides a large set of novel validated predictions 

that will allow to fill in an efficient way many uncharted regions in this space. All the 

results of this analysis (published interactions, predicted interactions, target 

prioritizations) are provided in Table S3 in the Supporting Information. It will be useful 

to complete our knowledge about the mode of action of these highly important 

molecules in human health.  
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The results of all the analyses are collected in file SI.xlsx as Supporting Information. In 

that file, the following Tables can be found: 

Table S1: set of microbial genera typical in human microbial metagenomics analyses 

and used in this work. 

Table S2: distribution by target classes of target sharing between gut microbial 

metabolites and drugs (small molecule-, oral-, and with systemic action-type). 

Table S3: set of published and predicted metabolite-target interactions. For each 

interaction, the following data is provided: hmdb identifier (“hmdb_id”), inchi string, 

chemical class (“chem_cl”), compound set (“cset”: Metabolites vs Drugs); specific 
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compound set (“comp_set”: Drugs vs GutFL vs GutnoFL vs Gut/Serum); uniprot 

accession number of the target (“uniport_id”); target name (“tar_name”); target class 

(“tar_cl”); target biological group (“tar_biolgr”: “b” for bacterial, “h” for human); 

biological species (“organism”); source of data (“src”); pchembl-like affinity data 

(“pbind”); maximum Tanimoto coefficient for SEA prediction (“maxTc”); name of 

compound (“comp_name”); aggregated source of data (“src2”); even more aggregated 

source of data (“src3”); high priority target (“hpr”: empty vs “hum” for high-priority 

human vs “bac” for high-priority bacterial).  
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