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Abstract 

Targeted protein degradation (TPD) is emerging as a promising therapeutic approach for 

cancer and other diseases, with an increasing number of programs demonstrating its efficacy 

in human clinical trials. One notable method for TPD is Proteolysis Targeting Chimeras 

(PROTACs, or heterobifunctional degraders) that selectively degrade a protein of interest 

(POI) through E3-ligase induced ubiquitination followed by proteasomal degradation. 

PROTACs utilize a warhead-linker-ligand architecture to bring the POI (bound to the 

warhead) and the E3 ligase (bound to the ligand) into close proximity. The resulting non-

native protein-protein interactions (PPIs) formed between the POI and E3 ligase lead to the 

formation of a stable POI-degrader-ligase ternary complex, enhancing cooperativity for TPD. 

A significant challenge in PROTAC design is the time-consuming and resource-intensive 

screening of the degrader linkers to induce favorable non-native PPIs between POI and E3 

ligase. In this work, we present a physics-based computational protocol to systematically 

predict non-canonical and metastable PPI interfaces between an E3 ligase and a given POI, 

aiding in the design of linkers to stabilize the PROTAC ternary complex and enhance 

degradation. In our protocol, we build the non-Markovian dynamic model using the 

Integrative Generalized Master Equation (IGME) method from approximately 1.5 

millisecond all-atom molecular dynamics (MD) simulations of linker-less encounter complex, 

to systematically explore the inherent PPIs between the oncogene homologue (KRAS) 

protein and the von Hippel-Lindau (VHL) E3 ligase. Our IGME model successfully revealed 

six metastable states each containing a different PPI interface. We selected three of these 

metastable states containing promising PPIs for linker design. Our selection criterion 

included the thermodynamic and kinetic stabilities of these PPIs and the accessibility of the 

linker to the solvent-exposed sites on the warheads and the E3 ligand. One of our selected 

PPIs closely matches a recent co-crystal PPI interface structure induced by an experimentally 

designed PROTAC with potent degradation efficacy. We anticipate that our IGME approach 
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has significant potential for widespread application in predicting metastable POI-ligase 

encounter complex interfaces that can enable subsequent rational design of novel PROTACs. 

1. Introduction 

Small molecule heterobifunctional degraders, exemplified by proteolysis targeting chimeras 

(PROTACs), have the potential to transform drug discovery and therapeutic interventions by 

degrading proteins instead of inhibiting them.1-4 Unlike the traditional small-molecule 

inhibitors that block the protein function through occupying the active or allosteric site of the 

protein of interest (POI), PROTACs can employ functional or non-functional binders to target 

the POI, inducing its degradation through a catalytic mechanism.5, 6 This approach provides 

opportunities to target many undruggable POIs that lack well-defined small molecule binding 

sites for functional blockade. A PROTAC comprises three distinct components: warhead, 

linker, and E3 ligand. With the warhead binding to the POI and E3 ligand binding to the E3 

ligase, PROTAC facilitates the proximity between the POI and the E3 ubiquitin ligase, 

leading to the formation of a ternary complex. This complex could then trigger the 

ubiquitination of the POI, marking it for degradation by the cellular proteasome machinery. 

Over the past two decades, significant effort has been dedicated to investigating and 

designing PROTACs.7, 8 However, the development of most PROTACs remains highly 

empirical, involving the time-consuming synthesis and screening of libraries with various 

linkers between the warhead and the E3 ligase ligand. This process aims to induce favorable 

non-native protein-protein interactions (PPIs) between the POI and E3 ligase. 

Throughout the PROTAC-induced targeted protein degradation (TPD), establishing specific 

PPI between the POI and E3 ligase is critical.9-12 Many degraders function by leveraging the 

stabilization of pre-existing but weak PPIs between POIs and E3 ligases.11-13 Additionally, 

both experiments and computational simulations reveal that PPIs of highly productive ternary 

complexes exhibit noticeable dynamical conformational heterogeneities, distinct from the 

static contacts found in crystal structures.11, 14-17 Previous biophysical and structural studies 

have also demonstrated that different PROTACs, even with the same warhead and E3 ligand 

but different linkers, can induce distinct PPIs in ternary complexes, leading to significant 

differences in degradation efficiency.9, 16-24 Therefore, investigating the complex and dynamic 

non-native PPIs between the POIs and E3 ligases is critical for understanding TPD 

mechanisms and guiding the rational design of novel PROTACs. An effective approach to 

explore all possible inherent PPIs between the POI and E3 ligase is to study the POI-E3 

ligase encounter complex without the linker. The subsequent introduction of the linker to this 

encounter complex is akin to adding an additional geometric constraint10. 

All-atom MD simulation offers a promising approach to reveal metastable and dynamical 

PPIs between the POI and E3 ligase.10, 11 However, simulating the formation of PPIs presents 

significant challenges due to the various ways in which the POI and E3 ligase can approach 

each other, as well as the conformational changes induced upon the formation of the 
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encounter complex. The formation and conformational changes of encounter complex PPI 

interfaces often occur on milliseconds timescales, which exceed accessible length of the 

straightforward MD simulations for a system at the size of approximately 150,000 atoms. 

Adding to the complexity, there is a lack of dominant PPI, and all PPIs may potentially serve 

as functional ones for PROTAC design.10 Therefore, obtaining a comprehensive 

understanding of the conformational space of the encounter complex and identifying 

representative PPI interfaces, along with their equilibrium populations and transition rates 

between them, are challenging.  

Markov State Models (MSMs) built from extensive MD simulations offer a potentially useful 

technique to address these challenges25-36. MSMs model dynamics through a series of 

Markovian jumps among conformational states at discrete lag times. MSMs also provide a 

rigorous pipeline to coarse-grain MD conformations into a few comprehensible states 

according to their dynamic metastability, facilitating the prediction of thermodynamic and 

kinetic properties associated with them. However, for MSMs to have predictive power, they 

must be constructed with a sufficiently long lag time to ensure that inter-state transitions 

become Markovian, posing a major challenge as the lag time is constrained by the length of 

short MD simulations.34, 35, 37 To address this challenge, we recently developed an approach 

based on the Generalized Master Equation (GME), called the Integrative Generalized Master 

Equation (IGME) method.34 IGME captures non-Markovian dynamics by incorporating time-

integrations of memory kernel functions, offering a promising approach to study PPIs in 

encounter complexes based on relatively limited MD simulation data. 

In this study, we constructed an IGME model from 2,492 MD trajectories, with an average 

length of 605 ns (~1.51 milliseconds in total), to elucidate potential non-native PPIs between 

the oncogene homologue (KRAS) protein38-41 and the von Hippel-Lindau (VHL) E3 ligase42, 

43. KRAS is the oncogene most frequently mutated in cancer38, and PROTAC-induced TPD is 

considered as a promising approach for treating KRAS-induced cancer.39, 41 We here 

simulated the formations and conformational changes of the encounter complex in the 

absence of the linker, but with KRAS bound to two different warheads and VHL bound to 

one ligand (Figure 1a-d). Our IGME model revealed six metastable states characterized by 

distinct conformations of PPI interfaces and provided the corresponding thermodynamic and 

kinetic properties for each state. Based on the IGME model, we further evaluated additional 

structural properties of conformations within each state, such as the spatial proximity of the 

warhead and E3 ligand and the solvent-exposed sites of both. Consequently, we identified 

three metastable states that exhibit promising PPI interfaces for future linker design. 

Conformations from one of our predicted metastable states agree well with a recent ternary 

crystal structure40 (with an average interface-RMSD of 5.42 ± 3.67Å) involving a degrader 

of promising degradation efficiency. Our IGME model offers a systematic and efficient 

approach to exploring metastable PPIs in protein pairs, thereby facilitating rational PROTAC 

design. 
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2. Results and Discussions 

Elucidating the dynamics of KRAS-VHL encounter complex formation: IGME 

outperforms MSM.  

 

Figure 1. The KRAS-VHL encounter complex system (a-d) and the workflow of the construction 

of the non-Markovian IGME model (e-l). (a). The structure of the encounter complex from rigid 

protein docking, involving VHL (cyan) and KRAS (orange), along with the E3 ligand and two 

warheads. (b-d) Chemical structures of E3 ligand (green), warhead 1 (magenta) and warhead 2 (red). 

(e) Generate initial conformations for the encounter complex through rigid protein docking. (f) 

Perform extensive MD simulations using Folding@Home to explore the PPI interfaces of the 

encounter complex. (g-h) Utilize MoSAIC community detection and spectral-oASIS algorithms to 

extract essential pairwise distance features for representations of the PPI interfaces. (i) Identify the 

collective variables by tICA. (j) Cluster the projected MD conformations to microstates by K-Means 

algorithm. The hyperparameters for (i) and (j) are tuned through cross-validation based on the GMRQ 

score. (k) Lump the microstates to metastable macrostates by PCCA+ algorithm. (l) Model the 

transition dynamics between macrostates with IGME method. 

We construct our IGME model from MD trajectories totaling ~1.51 milliseconds for studying 
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the dynamics of the KRAS-VHL encounter complex formation (see Figure 1 panels e-l for 

our protocol). Specifically, to systematically explore the complete ensemble of PPI interface 

conformations, we employ rigid protein docking to search the preferable PPIs from various 

approaching orientations, and then initiate unbiased MD simulations from these docking 

poses (see Figure 1e-f and Methods 4.1 for details). To build the 100-microstate MSM, we 

initially characterize the conformations of the encounter complex using all 25,330 internal 

pairwise distances between KRAS and VHL residues, and then employ the Molecular 

Systems Automated Identification of Cooperativity (MoSAIC) algorithm44 and Spectral-

oASIS algorithm45 to identify 1,500 important distances as features for subsequent analysis 

(see Figure 1g-h and Figure S2). The implementation of these two algorithms ensures that the 

chosen distance features adequately represent various important collective motions around 

the PPI interfaces, while also capturing the slowest dynamics effectively (see Figure S2 and 

Methods 4.2 for details). Subsequently, we apply the time-lagged independent component 

analysis (tICA)28, 46 with kinetic mapping47 to project the encounter complex conformations 

onto five collective variables (CVs) (see Figure 1i) and then cluster them into 100 microstates 

via K-Means algorithm (see Figure 1j). More details about the construction and validation of 

microstate MSM are presented in Methods and Supporting Information (SI).  

To identify metastable PPIs of the KRAS-VHL encounter complex, we lump 100 microstates 

into six metastable macrostates using PCCA+48, 49 and build a 6-macrostate IGME model (see 

Figure 1k-l). Unlike Markovian MSMs, IGME utilizes the GME to evolve dynamics, 

considering the non-Markovian dynamics through time integrations of memory kernel 

functions. Given that the relaxation time of memory kernel functions is much shorter than the 

Markovian lag time for MSMs, IGME can model dynamics between a handful of metastable 

states with shorter segments of MD simulations compared to MSMs. As shown in Figure 2a, 

the integrations of memory kernels reach plateaus at around 50 𝑛𝑠, therefore accurate IGME 

models can be constructed at the memory kernel relaxation time 𝜏𝑘 > 50 𝑛𝑠. An example of 

such an IGME model, constructed from MD simulation segments, each with the length of 

150 𝑛𝑠 (𝜏𝑘 = 70𝑛𝑠 and an additional segment of 𝐿𝑓𝑖𝑡 = 80 𝑛𝑠 for fitting, see Methods 4.3 

for details), is shown in Figure S7c. In sharp contrast, the MSM constructed with a much 

longer lag time of  𝜏 = 250 𝑛𝑠  still predicts significantly faster state-relaxation dynamics 

compared to the original MD simulations (Figure S7c). Furthermore, the root mean squared 

error (RMSE) of the MSMs’ predicted dynamics is over an order of magnitude larger than 

that of the IGME models at different lag times (see Figure 2b and the Methods 4.3 for the 

details of the RMSE calculations). While IGME models consistently predict the slowest 

timescale and the mean first passage time (MFPT) across a wide range of lag times, MSMs 

always underestimate these values (see Figure 2c-d). We anticipate that to achieve 

comparable performance with IGME models, MSMs would require a significantly longer lag 

time, which is beyond the length of our MD simulations. As shown in Figure S7a, IGME 

models built with a wide range of hyperparameters: 𝜏𝑘  and  𝐿𝑓𝑖𝑡  robustly exhibit small 

RMSEs, i.e., below 0.1%. For the remaining sections, we choose the optimal IGME model as 
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the one with the smallest RMSE value (constructed with 𝜏𝑘 = 70𝑛𝑠  and 𝐿𝑓𝑖𝑡 = 80𝑛𝑠) to 

report the thermodynamic and kinetic properties of the PPI interfaces. 

 

Figure 2. Non-Markovian IGME models outperform MSMs in elucidating the dynamics of the 

KRAS-VHL encounter complex formation. (a) Mean Integral of memory kernels (MIK) with 

different 𝜏𝑘  for six-states model calculated from qMSM and IGME. (b) Root mean squared error 

(RMSE) of predicted transition probability matrices with respective to MD simulations, (c) Slowest 

implied timescale and (d) mean first passage time (MFPT) from State III to State IV, calculated from 

IGME models and MSMs constructed with various lag times. The error bars represent standard 

deviations estimated from fifty bootstraps of the data with replacement. 

Dynamic heterogeneity of the encounter complex associated with diverse metastable PPI 

formation. 

With the optimal IGME model, we observe the PPI interfaces of encounter complex consist 

of diverse non-native interaction patterns and exhibit significant dynamical heterogeneities. 

As shown in Figure 3a, the free energy landscape of PPI interfaces, projected onto the top 

two CVs identified by tICA, reveal multiple free energy basins. Each basin is associated with 

distinct metastable macrostate, indicating the inherent flexibility and diversity for the 

formation of the PPI interfaces between KRAS and VHL. Our IGME model also shows that 

State VI is highly populated (72.71%), while the equilibrium populations of the other five 

states are all below 10% (Figure 3b). Strikingly, we observe significant different PPI 

interfaces formed and stabilized by diverse chemical interactions between different domains 
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of KRAS and VHL in these six metastable states (see representative structures in Figure 3e). 

To characterize different PPIs, we first illustrate the PPI patterns using the residue contact 

maps between KRAS and VHL. As shown in Figure. S8, various PPIs display substantially 

different residue contact maps. Additional analysis of the contact frequency for each residue 

across PPI interfaces also indicates the heterogeneity of these PPIs (Figure S9). To further 

examine if there exists preference of specific non-bonded chemical interactions to stabilize 

these PPIs, we plotted the preferences of amino acid type and interactions for PPIs formed in 

different macrostates (see Figure S10 and S11). We observe that salt bridges and dipolar 

interactions are present in all PPIs, through the interactions between charged residues (e.g., 

Glu and Arg) and polar residues (e.g., Gln and His). Interestingly, PPIs in States I and IV 

exhibit additional hydrophobic interactions (e.g., via Leu and Val). These observations 

suggest that KRAS and VHL can form different non-native PPIs via diverse non-bonded 

interactions. These metastable non-native PPIs open new opportunities for PROTAC design. 

Previous experimental and computational results have demonstrated that it is inadequate to 

solely rely on the crystal structure of induced ternary complex to assess PROTAC 

performance. Instead, the dynamic behaviors of the ternary complex may exert a more 

influential role on degradation efficiency. 9, 16-24 As our simulations of the encounter complex 

do not include the degrader linker, the encounter complex exhibits much greater 

heterogeneity among multiple protein domains. We next examine the structural 

heterogeneities within each metastable macrostate. The visualizations of multiple encounter 

complex conformations for each macrostate illustrate the high consistency of PPI interfaces 

in State I-V and significant flexibilities of interfaces in state VI (see Figure S12). By further 

using the MD conformation located at the geometric center of each macrostate as the 

reference structure, we compute the interface-RMSD among all MD conformations within 

each of the six macrostates (Figure 3c). Except for the highest populated State VI, all other 5 

macrostates display moderate interface-RMSD values which are comparable to those 

observed in the dynamical simulations of other PROTAC-induced ternary complexes11. This 

observation suggests that even in the absence of the degrader linker, KRAS and VHL can 

develop dynamic cooperativity during the formation of the encounter complex, resulting in 

various well-defined PPIs suitable as a baseline for linker design. Additionally, we evaluate 

the stability of the PPIs for each macrostates. Previous studies have suggested a correlation 

between buried surface areas (BSA) and experimentally measured binding affinity of the 

PPIs.13 We quantify the BSAs of interfaces from different macrostates by subtracting the 

solvent-accessible surface area (SASA) of the two single proteins from the encounter 

complex. As shown in Figure 3d, our analysis shows that there are no noticeable differences 

in the BSA values of the six macrostates in our IGME model. This result is consistent with 

the equilibrium populations predicted by IGME, where States I-V exhibit comparable 

populations. Conversely, although State VI demonstrates significantly larger populations, its 

low kinetic stability and extensive heterogeneity in PPI interface structures suggest it is a 

high-entropy state and may not be able to form PPIs with high binding affinity for PROTACs. 
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Consequently, PPI interfaces from States I-V may serve as candidates for further PROTAC 

design. 

 

Figure 3. Interpretation of non-Markovian dynamics model. (a) The free energy landscape and 

distribution of states visualized on the top two tICA components. The free energy is estimated based 

on the density of the projected MD samples. Each point represents the center of a microstate, and its 

color corresponds to the macrostate label. (b) Stationary populations for macrostates predicted from 

the optimal IGME model. (c) The heterogeneity of each macrostate is visualized by calculating the 

interface-RMSD relative to the state center for all conformations within the state. (d) The buried area 

of PPI surfaces within each macrostate. (e) The representative conformations for each macrostate 

(selected from the microstates with the highest population). 

Shortlisting predicted PPIs meeting linker constraints.  

The rational design of PROTAC linkers has been limited due to the challenges associated 

with predicting the pre-existing PPIs between the POI and the E3 ligase. As our IGME model 

has identified and characterized the stabilities and kinetics of various metastable PPI 

interfaces, we next consider the geometries of interfaces and ligands within each macrostate 

to evaluate their potential for linker design. Throughout the MD simulations, we notice that 

the warheads and E3 ligand tightly bound to the protein pockets, with only ~3.2% of 

trajectories showing them diffusing away from the binding site. We further filter out these 

conformations from post-analysis. Since the encounter complex exhibits varying degrees of 

conformational changes during the formation of different PPIs, warheads and E3 ligand 

expose different atoms and adopt different relative orientations accordingly. To identify the 

exposed functional groups in the warheads and E3 ligand that could potentially be connected 

via a linker, we calculate the SASA for each of their atoms (Figure 4a-b). We identify 

exposed heavy atoms, defined as those with the top 50% SASA among all atoms, as having 

the linking potential. Furthermore, we measure the average pairwise distances between the 

exposed heavy atom pairs of the E3 ligand and the warheads to further assess the feasibility 

of linker design, as shown in Figure 4c and Figure S13. 
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Figure 4. Protein-protein interfaces selected for linker filtering. (a-b). Average Solvent Accessible 

Surface Area (SASA) depicted for (a) E3 ligand and (b) warhead 1 molecules across all conformations 

within six macrostates and their respective most populated microstate. (c) The average pairwise 

distances between the exposed heavy E3 ligand atoms and warhead 1 atoms (top 50% SASA) are 

calculated across all conformations within six macrostates and their respective most populated 

microstate. Error bars represent standard deviations. Fifty randomly selected overlapping 

conformations and one representative single conformation of the PPI interface are visualized for State 

II (d-e), State III (h-i), and State V (i-m). The relative positions of the E3 ligand-warhead 1 and their 

partial chemical structures are displayed for State II (f-g), State III (j-k), and State V (n-o). 

Figure 4a-b shows that the E3 ligand generally exhibits larger SASA compared to the 

warheads, primarily because of the shallow pocket of VHL50, 51. The E3 ligand conformations 

from States I and IV are considerably more exposed than those from other states. This 

suggests that conformations from these two states may have multiple potential sites to be 

linked. However, upon examining the interactive profiles between KRAS and VHL in these 
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two states (Figure 3e and Figure S9), we find that developing any linker based on the 

conformations from these two states is impractical, as the warheads and E3 ligand are too far 

away from each other (between 25Å  and 30Å  , see Figure 4c). Previous studies have 

highlighted that linker length is one of the most crucial factors influencing the effectiveness 

of PROTACs, and excessively long linkers often lead to a reduction in potency. Generally, 

PROTACs with linkers containing more than 20 atoms have comparatively low potency.18, 52, 

53 Therefore, designing linkers based on the PPI interfaces from States I and IV poses 

significant challenges. Moreover, after evaluating the conformations from all states, we 

observe that warhead 2 (see its chemical structure in Fig. 1d) consistently stays distant from 

the ligase ligand (Figure S13), suggesting challenges in developing a degrader using it.  

Consequently, by excluding State VI due to its kinetically unstable PPI, and eliminating State 

I, State IV, and warhead 2 due to inappropriate distances between warheads and E3 ligand, 

the PPI interfaces from the remaining three states (II, III, and V) have the potential for further 

linker development between E3 ligand and warhead 1. We further visualize the PPI 

conformations and the relative positions of ligands for these three states. As shown in Figure 

4d-o, the conformations within these three states maintain consistent interfaces while also 

exhibiting slight heterogeneities. In addition, the warhead and ligand approach each other at 

appropriate distances for adding the linker. As shown in Fig. 4f, j, & n, we highlight the 

ligand and warhead atoms with the top 50% largest SASA using dashed boxes in their 

chemical structures. In these chemical structures, we have identified potential linking sites, 

marking them with colored dots based on their synthetic ease and frequency of use 

documented in the literature. In particular, the red dots correspond to atomic sites that are 

commonly used in literature for attaching the linkers, while the green dots indicate sites that 

are less frequently used for this purpose. However, it is important to note that less frequently 

used attachment sites for VHL ligands may lead to highly effective degraders.54 We anticipate 

that these selected conformations may aid in designing linkers that could further stabilize the 

naturally favorable PPIs. 

Our predicted PPI interface (State III) agrees with the structure induced by an 

experimentally designed PROTAC 

A recent experimental study by Johannes et al. successfully designed and completed the pre-

clinical validation of a single small molecule degrader, targeting KRAS and related mutant 

cancer proteins with VHL E3 ligase.40 In this study, the authors reported a co-crystal structure 

of the degrader in complex with KRAS and VHL at a resolution of 2.2 Å (PDB: 8QVU), as 

shown in Figure 5a. We find that the PPI interface in this ternary co-crystal structure is 

structurally similar to the most populated microstate from our State III (Figure 5a-b and 

Figure S12). Upon further examination of the contact map of the crystal PPI interface, we 

observe a high degree of consistency with the contact map of the ensemble of interfaces 

within macrostate III (Figure 5c-d), where salt bridges and dipolar interactions stabilize the 

PPI. The interface-RMSDs between the crystal structure and the ensemble of interfaces from 
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macrostate III and its corresponding most populated microstate are as small as 5.42 ± 3.67Å 

and 3.76 ± 2.37Å, respectively. The interface with the smallest interface-RMSD, visualized 

in Figure 5a, has only a value of 0.68Å. Furthermore, the BSA of crystal structure is 1,556Å2, 

which is also consistent with State III (1,612 ± 367Å2) and its most populated microstate 

( 1,587 ± 206Å2 ). This agreement between the PPI interfaces in State III with the 

experimental crystal structure provides compelling validation of the predictions from our 

IGME model.  

 

Figure 5. Comparison between computationally predicted PPI interfaces and the interface 

induced by the experimentally designed PROTAC. (a) Structural alignment between the crystal 

structure (magenta, PDB ID: 8QVU) and one PPI interface from most populated microstate in State 

III (orange). The interface with the smallest interface-RMSD (0.68Å) is selected for visualization, and 

the alignment is based on the VHL protein. (b) Projection (blue star) of the crystal PPI interface of the 

ternary complex onto the top two CVs. (c) Pairwise distances between KRAS residues and VHL 

residues in the crystal structure of the ternary complex (PDB: 8QVU). (d) Averaged pairwise 

distances between KRAS residues and VHL residues across all conformations within macrostate III. 

Probing the dynamical interactions and identifying non-native PPIs between protein pairs 

without degrader poses significant challenges for various experimental methods. The weak 

binding affinity of the encounter complex makes it challenging for the structure biology 

approaches like X-ray crystallography.55-57 While NMR spectroscopy or hydrogen-deuterium 

exchange mass spectrometry can detect the interactions, their time-resolution is limited.11, 57 
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Recently, it has also been shown that data-driven machine-learning approaches such as 

AlphaFold and AlphaFold-Multimer face challenges in accurately predicting non-native PPIs, 

particularly when the interface area is limited.58, 59 Our results demonstrate that non-native 

PPIs in encounter complex could be systematically and accurately predicted in atomistic 

detail by integrating parallel short unbiased MD simulations with non-Markovian dynamics 

modeling (i.e., IGME). Our models provide advantages of revealing both non-native PPIs and 

their dynamic heterogeneities simultaneously, thereby offering ensembles of metastable PPI 

interfaces for subsequent high-throughput linker design. Therefore, we anticipate that IGME 

holds significant potential for generalization in future PROTAC discovery. 

3. Conclusions 

PROTAC-induced TPD is regarded as one of the most promising approaches for small 

molecule-based drug discovery. However, the rational design of PROTACs remains 

challenging due to factors such as the large size of the multi-protein system and the complex, 

dynamic protein interactions. In this study, we present a physics-based approach to identify 

the complete ensemble of intrinsic and dynamic PPI interfaces between KRAS and VHL 

proteins by investigating the linker-less encounter complex. Specifically, we demonstrate that 

our IGME model, a non-Markovian dynamics model, constructed from extensive MD 

simulations (~ 1.5 milliseconds), is able to elucidate the metastable states of PPI interfaces 

and accurately predict their associated thermodynamic and kinetic properties. We show that 

IGME models significantly outperform MSMs in predicting slow dynamics associated with 

the encounter complex formation between KRAS and VHL. Our IGME model identifies six 

metastable states representing distinct PPI interfaces of the encounter complex. Upon 

evaluating the stabilities and geometries of the PPI interfaces in each state, we narrowed 

down to three states (State II, III, and V) with promising PPI interfaces for future PROTAC 

linker design. The interfaces from the selected metastable states are primarily maintained by 

electrostatic interactions and display local dynamic heterogeneity, serving as a good basis for 

linker docking. We validate our theoretical predictions by showing that one of our selected 

PPI interfaces (State III) is highly consistent with a recent co-crystal structure containing the 

PPI induced by an experimentally validated PROTAC for the KRAS-VHL system. We 

anticipate that our predicted PPI interfaces for the KRAS-VHL system will provide valuable 

insights for future linker design. We believe that the rigorous foundations of this strategy, 

grounded in physical simulations and statistical thermodynamics, will lead to broad 

applicability across diverse systems, facilitating more efficient designs of efficacious 

PROTACs. 

4. Methods 

4.1 All-Atom MD Simulation Setup for KRAS-VHL Encounter Complex: 

The conformation of VHL protein (PDB ID: 1VCB)60 and KRAS protein (PDB ID: 7RPZ)61 
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are respectively derived from crystal structures identified through X-ray diffraction. We first 

utilize the PyRosetta docking package62 to generate sets of initial KRAS-VHL encounter 

complex structures. The rigid-body docking is performed while restraining the distance 

between the linker attachment atoms of warhead 1 and the E3 ligand as 20Å, ensuring the 

formation of interfaces appropriate for subsequent design. Subsequently, we categorize the 

docking structures into fifty poses based on their root-mean-square deviations, which serve as 

initial points for MD simulations. We then protonate and solvate the initial poses in cubic 

boxes with explicit TIP3P water63 and add counter ions to maintain the neutrality of the 

system. Next, we employ the OpenMM package64 to conduct all-atom simulations across 

Folding@Home65, with the in-house parameterized force field for the small molecules (i.e., 

ligand and warheads) and the AMBER ff14SB force field66 for the proteins. The final 

obtained dataset used for post-analysis consists of 2,492 trajectories, totaling 1.51 

milliseconds of aggregate simulation time, with an average trajectory length of 605 

nanoseconds. Please refer to SI Appendix Section 1 & 2 for more details of system setup and 

all-atom MD simulations. 

4.2 Construction and Validation for Microstate-MSM: Following our proposed pipeline in 

Figure 1, we construct the microstate-MSM to study the inherent PPIs between KRAS and 

VHL protein. The detailed procedures are described below: 

(1). Classify the collective motions at PPI interfaces via MoSAIC44: we initially construct 

representations for PPI interfaces by utilizing the internal pairwise distances between KRAS 

residues (170 residues) and VHL residues (149 residues), leading to 25,330 pairwise distance 

features (see Figure S2a). Subsequently, we apply the MoSAIC algorithm44 to cluster these 

features into 27 communities, with approximately 10% of the features filtered out as 

unimportant noise (see Figure S2b and more details in SI Appendix Section 3.1). Through 

visualization of the features within each community, we further exclude 11 communities 

associated with collective conformational changes unrelated to PPI interfaces (see Figure S3), 

resulting in 16 communities encompassing a total of 14,402 features (see Figure S4 and more 

details in SI Appendix Section 3.1).  

(2). Select the features capturing slow dynamics by Spectral-oASIS45: We apply the spectral-

oASIS algorithm45 for the second round of feature selection, through which 1,500 features are 

automatically identified. These features are shown to effectively capture the top three slowest 

dynamic modes. (see Figure S2c and more details in SI Appendix Section 3.2) 

(3). Reduce dimensionality by tICA28, 46: We employ tICA with kinetic mapping47 to linearly 

construct five collective variables (CVs) from 1,500 features. The MD conformations are 

projected on these CVs and further clustered into 100 microstates using the K-Means 

algorithm. The optimal hyper-parameters (i.e., number of CVs, tICA relaxation time and the 

number of microstates) are determined by cross-validations with the generalized matrix 

Rayleigh quotient (GMRQ) score67 (see Figure S5 and SI Appendix Section 4). 

(4). Validate the microstate MSM: Based on the 100 microstates model, we further conduct 
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Implied Time Scale (ITS) analysis and Chapman-Kolmogorov (CK) test and validate the 

Markovian lag time for microstates-MSM is 200ns (see Figure S6 and more details SI 

Appendix Section 4).  

4.3 IGME Modeling of Encounter Complex: To identify metastable states of the PPI 

interface,  facilitate the interpretation, and acquire the associated thermodynamic and kinetic 

properties, we employ our recently developed IGME method34 to construct a model 

comprising only six representative states. We first utilize the PCCA+ algorithm48, 49 to lump 

the 100 microstates into 6 macrostates, given the largest time scale gap is between the 5th and 

6th transition modes (see Figure S6a). Subsequently, the IGME is applied to accurately model 

the transition dynamics between macrostates, accounting for non-Markovian dynamics 

through the time-integration of memory kernel functions. Specifically, IGME precisely 

describes the evolution of the transition probabilities matrices (TPMs) with the lag time 

longer than memory relaxation time 𝜏𝑘  by 𝑻(𝑡 ≥ 𝜏𝑘) = 𝑨𝑻̂𝑡 , where matrices 𝑨 and 𝑻̂  are 

estimated from simulations (SI Appendix Section 5). 

To determine 𝜏𝑘 , we utilize two approaches: one employs our previous quasi-MSM 

technique37, which computes the memory kernel matrix at various times using the greedy 

algorithm with discretized GME, the other approach involves applying IGME to approximate 

the time-integrated memory kernel (see more details in SI Appendix Section 5). The mean 

integral memory kernel (MIK), defined as 𝑀𝐼𝐾(𝑡) =
1

𝑁
√∑ (∫ 𝐾𝑖𝑗(𝜏)𝑑𝜏

𝑡

0
)

2
𝑁
𝑖,𝑗=1 , computed 

from two approaches are well consistent and the memory relaxation time 𝜏𝑘 is decided as 

50𝑛𝑠 (Figure 2a).  

To build the optimal non-Markovian dynamics model, we employ multiple sets of TPMs with 

different lag time range {𝑻𝑀𝐷(𝜏𝑘 + 𝑛Δ𝑡)}
𝑛=0

𝐿𝑓𝑖𝑡
 to estimate the matrices 𝑨 and 𝑻̂ using least-

squares fitting with a Lagrangian approach.68 The optimal range, parameterized by 𝜏𝑘 and 

𝐿𝑓𝑖𝑡  are decided by time-averaged root mean squared error (RMSE) with respect to MD 

simulations. After a systematic scan, we ultimately identify the optimal fitting range: 𝜏𝑘 =

70𝑛𝑠  and 𝐿𝑓𝑖𝑡 = 80𝑛𝑠 (see Figure S7a and more details in SI Appendix Section 5).   
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