# Supporting Information for:

# Bartender: Martini 3 Bonded Terms via Quantum Mechanics-based Molecular Dynamics

Gilberto P. Pereira<sup>®</sup>, Riccardo Alessandri<sup>®</sup>, Moisés Domínguez<sup>®</sup>, Rocío Araya-Osorio<sup>®</sup>, Linus Grünewald<sup>®</sup>, Luís Borges-Araújo<sup>®</sup>, Sangwook Wu<sup>®</sup>, Siewert-Jan Marrink<sup>®</sup>, Paulo C. T. Souza<sup>\*®</sup>, Raul Mera-Adasme<sup>\*</sup>

Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France.

<sup>b</sup> Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France.

Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States

<sup>a</sup> Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, 9170022 Estacion Central, Chile.

Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapacá, Av. Gral. Velasquez 1775, Arica, Chile.

<sup>4</sup> Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands

PharmCADD, Busan, 48792, Republic of Korea.

Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea.

\* Paulo Cesar Telles de Souza - email: paulocts@gmail.com, and Raul Mera-Adasme - email: rmeraa@academicos.uta.cl.

### **Table of contents**

| 1. Scheme illustrating how to compute bonded-distribution overlap                                                               | 2  |
|---------------------------------------------------------------------------------------------------------------------------------|----|
| 2. Martini 3 small molecule dataset: extended data                                                                              | 3  |
| 3. Molecules used in the Flexible Molecules dataset                                                                             | 4  |
| Molecule 1                                                                                                                      | 4  |
| Molecule 2                                                                                                                      | 5  |
| Molecule 3                                                                                                                      | 6  |
| Molecule 4                                                                                                                      | 7  |
| Molecule 5                                                                                                                      | 8  |
| Molecule 6                                                                                                                      | 9  |
| Molecule 7 - PEF                                                                                                                | 10 |
| Molecule 8 - Pitolisant                                                                                                         | 11 |
| Molecule 9 - Pomalidomide                                                                                                       | 12 |
| Molecule 20 - Thyroxine                                                                                                         | 13 |
| 4. Table S1 - List of molecules from the Martini 3 small molecule dataset considered                                            | 14 |
| 5. Table S2 - List of molecules from the flexible drug-like molecule dataset                                                    | 17 |
| 6. Table S3 - Number of parameters used, modified and removed for the overlap analysis                                          | 18 |
| 7. Example of the format for Bartender's input file                                                                             | 18 |
| 8. Methods and detailed results for the cisoid-transoid interconversion barrier in thyroxine.                                   | 19 |
| 8. Table S4 Components of the transition state barrier ( $\Delta$ G‡). All values in kJ/mol, except for $\Delta$ S, in kJ/molK. | 20 |

#### 1. Scheme illustrating how to compute bonded-distribution overlap



**Figure S1** - Scheme illustrating how to compute bonded-distribution overlap. Angle 1 from Thyroxine is used to illustrate both suboptimal and optimal overlap calculations.

#### 2. Martini 3 small molecule dataset: extended data



**Figure S2. Bartender benchmark on the Martini 3 small molecule dataset bonded parameters: extended data.** Correlation of the experimental heat of vaporization and the computed heat of vaporization obtained with the models parameterized using (A) Bartender and (B) human experts.<sup>25</sup> (C) and (D) show the same data as (A) and (B), respectively, but now normalized by dividing for the heat of vaporization of water (43.98 kJ mol<sup>-1</sup> the experimental one, and 23.35 kJ mol<sup>-1</sup> the one of Martini 3 water), a comparison already used in Ref 25. In all plots, green triangles denote data points associated with aromatic compounds, while blue squares represent those related to aliphatic compounds. The number of compounds considered correspond to the one for which experimental data are available. Note that there are more data points than in Ref 25.

3. Molecules used in the Flexible Molecules dataset

#### **Molecule 1**

**Bonded network** 





SASA







#### Angles





60 120 180



#### **Dihedrals**





**Bonded network** 







#### Bonds









# **Dihedrals**



# No meaningful dihedrals required.











Bonded network



# **Dihedrals**





# Angles



0.1





# Bonded network

# **Bonds**

















# Angles







0.1

0.08

0.06

0.04

0.02

0

0

40

80

120

160



40 80

0

160



# **Dihedrals**







# **Dihedrals**



-180-120 -60 0 60 120 180











SASA



# Angles

0.02









# **Bonds**







Bonded network

SASA







# **Dihedrals**



# Angles







# **Bonds**





#### 4. Table S1 - List of molecules from the Martini 3 small molecule dataset considered

| ulD   | Name               | SMILES                     |
|-------|--------------------|----------------------------|
| 1MIMI | 1-METHYLIMIDAZOLE  | Cn1ccnc1                   |
| 2MPYR | 2-METHYL-PYRIDINE  | Cc1ccccn1                  |
| 2NIMX | 2-NITRO-m-XYLENE   | Cc1c(c(ccc1)C)[N+](=0)[0-] |
| 2NITL | 2-NITROTOLUENE     | Cc1ccccc1[N+](=0)[0-]      |
| 3HT   | 3-HEXYL-THIOPHENE  | CCCCCCc1ccsc1              |
| 3PT   | 3-PROPYL-THIOPHENE | CCCc1ccsc1                 |
| 4MIMI | 4-METHYLIMIDAZOLE  | [nH]1cc(nc1)C              |
| 4NIAN | 4-NITROANISOLE     | COc1ccc(cc1)[N+](=0)[0-]   |
| ACPH  | ACETOPHENONE       | CC(=0)c1ccccc1             |
| ANIL  | ANILINE            | Nc1cccc1                   |
| BEAL  | BENZALDEHYDE       | 0=Cc1ccccc1                |
| BENZ  | BENZENE            | c1ccccc1                   |
| BRA   | 4-BROMOANISOLE     | COc1ccc(cc1)Br             |
| BRBZ  | BROMOBENZENE       | c1ccc(cc1)Br               |
| BZDOL | 1,3-BENZENEDIOL    | 0c1cc(ccc1)0               |
| BZNI  | BENZONITRILE       | N#Cc1ccccc1                |
| BZQU  | para-BENZOQUINONE  | c1cc(=0)ccc1=0             |
| BZTF  | BENZOTRIFLUORIDE   | c1ccc(cc1)C(F)(F)F         |
| CHEX  | CYCLOHEXANE        | C1CCCCC1                   |
| CHEXE | CYCLOHEXENE        | C1CCccC1                   |
| CLBZ  | CHLOROBENZENE      | Clc1ccccc1                 |
| CLPR  | CHLORPROPHAM       | CC(C)OC(=O)Nc1cc(ccc1)Cl   |
| CLTL  | 2-CHLOROTOLUENE    | Cc1c(cccc1)Cl              |
| CUME  | CUMENE             | CC(C)c1ccccc1              |
| CYPE  | CYCLOPENTANE       | C1CCCC1                    |
| CYPO  | CYCLOPENTANONE     | C1CCC(=0)C1                |

| CYPOL | CYCLOPENTANOL                 | C1CCC(C1)0                 |
|-------|-------------------------------|----------------------------|
| DBRBZ | 1,2-DIBROMOBENZENE            | c1ccc(c(c1)Br)Br           |
| DCLBZ | 1,2-DICHLOROBENZENE           | Clc1cccc(Cl)c1             |
| DIOX  | 1,4-DIOXANE                   | 01CC0CC1                   |
| DMAN  | N,N-DIMETHYLANILINE           | CN(C)c1ccccc1              |
| DMBZQ | 2,5-DIMETHYL-1,4-BENZOQUINONE | Cc1cc(=0)c(cc1=0)C         |
| DXLA  | 1,3-DIOXOLANE                 | 01CC0C1                    |
| FURA  | FURAN                         | c1ccoc1                    |
| IMID  | IMIDAZOLE                     | c1cnc[nH]1                 |
| IOBZ  | IODOBENZENE                   | c1ccc(cc1)I                |
| IOPHE | 2-IODOPHENOL                  | c1ccc(c(c1)0)I             |
| MBZOA | METHYL-BENZOATE               | COC(=0)c1ccccc1            |
| MCYPE | METHYLCYCLOPENTANE            | CC1CCCC1                   |
| MESI  | MESITYLENE                    | Cc1cc(cc(c1)C)C            |
| MXYLE | m-XYLENE                      | Cc1cccc(c1)C               |
| NBAPH | N-BOC-2-AMINOPHENOL           | Oc1ccccc1NC(=0)OC(C)(C)(C) |
| NIBZ  | NITROBENZENE                  | c1ccc(cc1)[N+](=0)[0-]     |
| OMA   | ortho-METHYLANISOLE           | COc1ccccc1C                |
| OXYLE | o-XYLENE                      | Cc1c(C)cccc1               |
| PBZOA | PROPYL-BENZOATE               | CCCOC(=0)c1ccccc1          |
| PCRE  | para-CRESOL                   | Cc1ccc(0)cc1               |
| РСҮМ  | p-CYMENE                      | c1cc(ccc1C(C)C)C           |
| PHEN  | PHENOL                        | c1ccc(cc1)0                |
| PIPER | PIPERIDINE                    | C1CCNCC1                   |
| PXYLE | p-XYLENE                      | Cc1ccc(C)cc1               |
| PYAZ  | PYRIDAZINE                    | c1ccnnc1                   |
| PYLI  | PYRROLIDINE                   | C1CCNC1                    |
| PYMI  | PYRIMIDINE                    | c1cncnc1                   |

| PYRI  | PYRIDINE               | c1ccncc1                     |
|-------|------------------------|------------------------------|
| PYRR  | PYRROLE                | [nH]1cccc1                   |
| STYR  | STYRENE                | c1cccc1C=C                   |
| TCLBZ | 1,2,4-TRICHLOROBENZENE | Clc1ccc(Cl)c(Cl)c1           |
| THAZ  | THIAZOLE               | n1ccsc1                      |
| THF   | TETRAHYDROFURAN        | C1CC0C1                      |
| тню   | THIOPHENE              | c1ccsc1                      |
| THP   | TETRAHYDROPYRAN        | 01CCCCC1                     |
| ТНРН  | THIOPHENOL             | Sc1ccccc1                    |
| ТНТ   | TETRAHYDROTHIOPHENE    | S1CCCC1                      |
| TOLU  | TOLUENE                | Cc1ccccc1                    |
| XBZ   | METHOXYBENZENE         | COc1ccccc1                   |
| 2T    | 2,2'-BITHIOPHENE       | c1cc(sc1)c2cccs2             |
| ANTH  | ANTHRACENE             | c1ccc2cc3cccc3cc2c1          |
| BZIM  | BENZIMIDAZOLE          | c1ccc2c(c1)[nH]cn2           |
| BZTA  | BENZOTHIAZOLE          | n1c2cccc2sc1                 |
| BZTH  | BENZOTHIOPHENE         | c1c2cccc2sc1                 |
| CAFF  | CAFFEINE               | Cn1cnc2n(C)c(=0)n(C)c(=0)c12 |
| CNAP  | 1-CHLORO-NAPHTHALENE   | Clc2cccc1ccccc12             |
| ENAPH | 1-ETHYLNAPHTHALENE     | CCc1cccc2cccc21              |
| INDA  | INDAZOLE               | c2ccc1[nH]ncc1c2             |
| INDO  | INDOLE                 | c12c(ccn2)cccc1              |
| MIND  | 3-METHYL-1H-INDOLE     | c1cccc2c1c(c[nH]2)C          |
| MINDA | 1-METHYL-INDAZOLE      | Cn1c2cccc2cn1                |
| MNAP  | 1-METHYL-NAPHTHALENE   | Cc2cccc1ccccc12              |
| NAPH  | NAPHTHALENE            | c1ccc2cccc2c1                |
| NAPY  | 1,5-NAPHTHYRIDINE      | c1ccc2ncccc2n1               |
| QUIN  | QUINOLINE              | n1cccc2ccccc12               |

| TECE  | TETRACENE             | c34cc2cc1ccccc1cc2cc3cccc4 |
|-------|-----------------------|----------------------------|
| THPY  | THIENO[2,3-c]PYRIDINE | c1cncc2c1ccs2              |
| XNAPH | 1-METHOXYNAPHTHALENE  | C0c1cccc2cccc21            |

#### 5. Table S2 - List of molecules from the flexible drug-like molecule dataset

| Name          | SMILES                                             |
|---------------|----------------------------------------------------|
| Molecule 1    | 0/0=0/0=0/0=0/0=0/0=0/0                            |
| Molecule 2    | 0(0=)))))))))))))))))))))))))))))))))))            |
| Molecule 3    | CCCC/C=C/CCC/C=C/CCCC1CCCCC1                       |
| Molecule 4    | CCCC/C=C/CCC/C=C/CCCC1CCC(=0)CC1                   |
| Molecule 5    | C(C/C=C/Cc1ccccc1)C/C=C/c1ccccc1                   |
| PET (plastic) | OCCOC(=0)c1ccc(cc1)C(=0)OCCOC(=0)c1ccc(cc1)C(=0)0  |
| PEF (plastic) | 0CCOC(=0)c1ccc(o1)C(=0)0CCOC(=0)c1ccc(o1)C(=0)0CCO |
| Pitolisant    | Clc1ccc(CCCOCCCN2CCCCC2)cc1                        |
| Pomalidomide  | Nc1cccc2c1C(=0)N([C@@H]1CCC(=0)NC1=0)C2=0          |
| Thyroxine     | OC(=0)[C@H](N)Cc1cc(I)c(0c2cc(I)c(0)c(I)c2)c(I)c1  |

#### 6. Table S3 - Number of parameters used, modified and removed for the overlap analysis

| Parameter type     | Used directly | Adjusted before<br>analysis | Removed from analysis |
|--------------------|---------------|-----------------------------|-----------------------|
| Harmonic Bonds     | 37            | 6                           | 0                     |
| Constraints        | 44            | 1                           | 0                     |
| Angles             | 30            | 2                           | 10                    |
| Flexible Dihedrals | 12            | 0                           | 0                     |
| Improper Dihedrals | 17            | 2                           | 0                     |

#### 7. Example of the format for Bartender's input file

#Lines starting with "#" are comments. Only "full line" comments are allowed! #note that you can assign half (or less) of an atom to a bead. #Just divide it by the number you want. Note that all the #atom and bead numbers are 1-based BEADS 1 8,9,10,18,19,20,21 2 6/2,11,20 3 6/2,7,17 #you can add comment lines anywhere 4 16,5,22,1,12 5 15,4,3/2,14/2 6 13,2,3/2,14/2 #The virtual sites section is similar to the #BEADS section, except for the last field #which is the Gromacs function number. The way the #virtual site is defined will depend on the function

#number, and the number of atoms. #This section HAS to go #after the BEADS section VSTTES 7 1,2,3 1 #The next sections specify the bonded terms you #want parametrized, in terms of the corresponding beads. BONDS 1,2 1,3 1,4 4,5 4,6 ANGLES 1,4,5 1,4,6 1,2,4 2,4,5 5,4,2 4,2,1 DIHEDRALS 1,2,4,5 5,4,2,1 IMPROPERS

```
3,2,1,4
```

#### 8. Methods and detailed results for the cisoid-transoid interconversion barrier in thyroxine.

Note: All references are given in the main text.

A candidate transition state structure was generated by rotating one of the ether-oxygen -- ring-carbon bonds with the goChem library (www.gochem.org) until the steric clash between the iodines of one ring and the hydrogens of the other was maximized (see Figure S3). The structure was optimized with TURBOMOLE at the r2SCAN-3c level, employing the RI approximation while keeping the rings in position. Numerical frequencies were obtained from the optimized structure, which resulted in one imaginary frequency. The corresponding eigenvector was followed for the transition state optimization, performed at the same level. Numerical, central frequencies were again obtained for the resulting transition state, verifying that it corresponds, not only to a transition state, but to the correct reaction coordinate. Similarly, the minimum structure was obtained by geometry optimization at the

same level of theory with frequency calculations to ensure the minimum character. For both TS and minimum, the Hessian matrices obtained in the frequency calculations were employed for the thermal corrections. On the optimized geometries, SCS-MP2/def2-QZVPP energies were obtained with ORCA. The RI and chain-of-spheres approximations were used for the self-consistent part of the calculations (the chain-of-spheres method was not used in the DFT case), while the RI approximation was also employed in the MP2 part. The Cosmotherm program was employed to obtain solvation free energies for both geometries with the COSMO-RS method at the BP-TZVPD-FINE level.

As reported in the main text, the calculated barriers are 38.5 and 43.6 kJ/mol at 185 and 298 Kelvin, respectively. The result at 185 agrees very well with the reported value of 37 kJ/mol. The barriers calculated have a small entropic component of 0.04 kJ/K\*mol, which causes a slightly larger barrier at 298 K. (a very small increase considering the large increase in temperature) The contributions to the barrier are given in table S4.



Figure S3: a. Optimized geometry for the thyroxine molecule. b. Optimized transition state for the cisoid-transoid rotation.

| 8. Table S4 | Components of the transition state barrier ( $\Delta G^{\ddagger}$ ). All values in kJ/mol, except for $\Delta$ | S, in |
|-------------|-----------------------------------------------------------------------------------------------------------------|-------|
| kJ/molK.    |                                                                                                                 |       |

|                             | 298 K | 185 K |
|-----------------------------|-------|-------|
| $\Delta$ Electronic energy  | 37.0  | 37.0  |
| ΔS                          | -0.04 | -0.04 |
| $\Delta {f G}_{{ m therm}}$ | 10.3  | 5.4   |
| $\Delta {f G}_{ m solv}$    | -3.7  | -3.9  |
| $\Delta G^{\ddagger}$       | 38.5  | 43.6  |

# 9. Optimized geometries for the minimum and the transition state for the ring-ring rotation of Thyroxine, in XYZ format.

| Μ | in | imum |  |
|---|----|------|--|
|   |    |      |  |

| 0 | -1.6456854 | -0.7581681 | -1.3946582 |
|---|------------|------------|------------|
| С | -1.0190031 | -1.2333398 | -0.2924119 |
| 0 | -1.5160142 | -2.0497454 | 0.4452948  |
| С | 0.3791349  | -0.6600930 | -0.1400895 |
| Ν | 0.8838957  | -0.9970803 | 1.1827046  |
| С | 0.4037275  | 0.8723741  | -0.3563193 |
| С | 1.8115149  | 1.3943827  | -0.2564151 |
| С | 2.6229925  | 1.4407356  | -1.3913916 |
| С | 2.3441358  | 1.7681942  | 0.9788180  |
| С | 3.6718874  | 2.1638859  | 1.0737605  |
| С | 4.4925434  | 2.2047007  | -0.0547772 |
| С | 3.9475018  | 1.8445175  | -1.2879531 |
| I | 5.1588611  | 1.9165939  | -3.0101028 |
| I | 4.4682130  | 2.6927915  | 2.9510509  |
| 0 | 5.8270127  | 2.4997014  | 0.0552589  |
| С | 6.2215950  | 3.8237487  | -0.0089993 |
| С | 7.5782394  | 4.0524560  | 0.1792022  |
| С | 5.3432735  | 4.8723336  | -0.2482090 |
| С | 5.8408282  | 6.1676221  | -0.2945041 |
| С | 7.1984279  | 6.4478998  | -0.1100582 |
| С | 8.0436117  | 5.3552489  | 0.1247391  |
| 0 | 7.6174679  | 7.7312753  | -0.1664476 |
| I | 10.1100781 | 5.7189396  | 0.4122712  |
| I | 4.5088860  | 7.7592640  | -0.6516768 |
| Н | -2.5058507 | -1.2052216 | -1.4386918 |
| Н | 0.9570713  | -1.1157869 | -0.9701497 |
| Н | 1.8956802  | -1.0391262 | 1.1775380  |
| Н | 0.5268891  | -1.9035409 | 1.4654401  |
| н | -0.2273258 | 1.3348852  | 0.4101770  |

| Н | -0.0150300 | 1.1075694 | -1.3387315 |
|---|------------|-----------|------------|
| Н | 2.2197420  | 1.1596479 | -2.3597547 |
| Н | 1.7226034  | 1.7257661 | 1.8667027  |
| Н | 8.2416073  | 3.2161489 | 0.3652213  |
| Н | 4.2850707  | 4.6878709 | -0.3946630 |
| Н | 8.5766120  | 7.7584940 | -0.0179300 |

#### 

Transition state

| 0 | 0.5751359  | -1.2141321 | -4.0217114 |  |
|---|------------|------------|------------|--|
| С | 0.2295020  | -0.8103182 | -2.7743249 |  |
| 0 | -0.8314404 | -1.0813310 | -2.2682691 |  |
| С | 1.3042594  | 0.0650789  | -2.1486591 |  |
| Ν | 2.6390166  | -0.4584146 | -2.4433673 |  |
| С | 1.0865261  | 0.1557770  | -0.6307222 |  |
| С | 2.0381812  | 1.1401282  | -0.0091054 |  |
| С | 1.7108958  | 2.4935838  | 0.0562220  |  |
| С | 3.2626272  | 0.7264061  | 0.5117623  |  |
| С | 4.1686499  | 1.6582331  | 1.0056976  |  |
| С | 3.9056782  | 3.0331797  | 0.9611417  |  |
| С | 2.6205156  | 3.4172381  | 0.5542588  |  |
| I | 1.9075361  | 5.3836391  | 0.8614924  |  |
| I | 5.8682285  | 0.8915072  | 2.0042830  |  |
| 0 | 4.8275748  | 3.9598447  | 1.4061753  |  |
| С | 5.6967748  | 4.4857313  | 0.4353040  |  |
| С | 6.9216561  | 3.8728481  | 0.2034456  |  |
| С | 5.3681812  | 5.6656999  | -0.2221752 |  |
| С | 6.2542224  | 6.2093623  | -1.1390819 |  |
| С | 7.4872011  | 5.6086358  | -1.4192593 |  |
| С | 7.7908201  | 4.4367008  | -0.7171046 |  |
| 0 | 8.3049317  | 6.1823522  | -2.3236121 |  |

| I | 9.6596487  | 3.5015106  | -1.0723684 |
|---|------------|------------|------------|
| I | 5.7359246  | 7.9949751  | -2.1298669 |
| Н | -0.1674970 | -1.7379033 | -4.3620901 |
| Н | 1.1213763  | 1.0739691  | -2.5776691 |
| Н | 3.3353000  | 0.2104349  | -2.1292951 |
| Н | 2.7611401  | -0.5628708 | -3.4444441 |
| Н | 1.2300714  | -0.8417818 | -0.2025932 |
| н | 0.0510203  | 0.4539770  | -0.4441350 |
| Н | 0.7279285  | 2.8274185  | -0.2617436 |
| Н | 3.5039273  | -0.3312350 | 0.5422302  |
| Н | 7.1934349  | 2.9778190  | 0.7456754  |
| Н | 4.4310955  | 6.1614778  | -0.0098543 |
| н | 9.1169761  | 5.6540863  | -2.3984306 |
|   |            |            |            |