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Abstract

In this study, we developed a machine learning interatomic potential based on ar-

tificial neural networks (ANN) to model carbon-hydrogen (C-H) systems. The ANN

potential was trained on a dataset of C-H clusters obtained through density functional

theory (DFT) calculations. Through comprehensive evaluations against DFT results,

including predictions of geometries and formation energies across 0D-3D systems com-

prising C and C-H, as well as modeling various chemical processes, the ANN potential

demonstrated exceptional accuracy and transferability. Its capability to accurately

predict lattice dynamics, crucial for stability assessment in crystal structure prediction,

was also verified through phonon dispersion analysis. Notably, its accuracy and compu-

tational efficiency in calculating force constants facilitated the exploration of complex

energy landscapes, leading to the discovery of a novel C polymorph. These results un-

derscore the robustness and versatility of the ANN potential, highlighting its efficacy in

advancing computational materials science by conducting precise atomistic simulations

on a wide range of C-H materials.
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Introduction

Carbon (C), one of the most abundant elements in nature, displays various types of hy-

bridized bonds, contributing to a rich energy landscape and a diverse range of properties

across different structural phases.1–3 This inherent versatility, combined with boundless pos-

sibilities of its combination with hydrogen (H) leads to a plethora of structures and chemical

environments, ranging from simple hydrocarbons like CH4 to complex organic molecules like

carotenes (C40H56).4–9 The investigation of the hydrocarbons and other C-H systems at atom-

istic level is crucial for understanding chemical interactions and advancing materials design,

thereby, attracting significant attention from researchers. For instance, the advancements

in C-based materials have revolutionized fields like hydrogen storage10–15 and the capture of

polycyclic aromatic hydrocarbons pollutants.16–18

Recent advancements in theoretical and computational methodologies, particularly those

based on quantum mechanics (QM), such as density functional theory (DFT)19,20 have sig-

nificantly enhanced our ability to study and explore materials at the atomic scale. While

QM methods provide accurate understanding into material behavior, the computational cost

of them increases with the system size,21,22 hindering their applications for exploring exten-

sive energy landscapes or large-scale simulations. Therefore, we need a trade-off between

accuracy and computational cost in modeling materials at atomic scale. Machine learn-

ing interatomic potentials (MLIPs), as computationally efficient alternatives to QM-based

methods, have gained attention for their ability to capture complex atomic interactions and

predict material properties with remarkable precision, enabling the exploration of extensive

chemical spaces and previously inaccessible molecular dynamics (MD). There have been nu-

merous efforts to develop MLIPs specifically for pure C.23–34 These studies aim to improve

the accuracy and transferability of the potential by training on dataset covering a broad

spectrum of atomic environments and configurations, such as MD trajectories at different

temperatures and pressures23,24 or including 0D-3D systems to have diverse boundary condi-

tions25,26 to capture the bond diversity. Based on specific applications, ongoing efforts aim to
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improve MLIPs by presenting different versions. For instance, the Gaussian approximation

potential (GAP)30,31 was first developed to study the behavior of liquid and amorphous C,32

later improved to encompass van der Waals corrections for C60 fullerene and nanoporous

C structures,33,34 and later ordered graphite configurations with different stacking patterns

were added to its training dataset for exploring the graphitic energy landscape of C.29

The existence of MLIPs specifically tailored for pure C highlights the difficulty and chal-

lenges in modeling such systems. Pure C itself presents significant training challenges; in-

corporating H to develop accurate MLIPs for C-H systems adds further complexity. This

includes effectively capturing bond variations and intramolecular interactions, such as hy-

drogen bonding. Achieving transferability of the MLIP across systems with various C/H

ratios and different boundary conditions is more demanding than for pure C systems. This

is due to the greater complexity and diversity of C-H compounds, necessitating the genera-

tion of a larger and more diverse training dataset. Efforts have been made to train MLIPs

that include C and H for specific applications, such as predicting CH stretching modes in

small molecules,35 C-C bond breaking in small molecules,36 C-H bond activation of CH4 on

Pt(111),37 and constructing the potential energy surface (PES) of CH4 and study its vibra-

tional levels.38 Some other efforts have aimed to go beyond specific system and provide a

general descriptions for all organic molecules, rather than for specific system.39–41 However,

these methods lack sufficient accuracy for different systems that are not essentially close to

their equilibrium state.42

In this study, we present a MLIP based on artificial neural networks (ANNs) for C-H

systems. To enhance the diversity of the training dataset to represent the complexities of

the systems, we train the ANN potential on cluster systems, rather than including differ-

ent boundary conditions. This approach provides a broader representation of the system’s

behavior. We demonstrate that our trained potential, solely based on cluster C-H systems,

can be applied not only to C-H systems but also to pure C systems under various boundary

conditions. Furthermore, our potential’s accuracy and versatility enable it to be used in
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diverse contexts, including reactivity and lattice dynamics. The trained ANN potential is

also utilized for crystal structure prediction (CSP) and has identified a novel C polymorph,

showcasing the potential’s practical applications.

Methods

Feed-forward ANN

In this study, we utilized high-dimensional ANN proposed by Behler43,44 for potential train-

ing. Such ANNs commonly operate in a feed-forward manner, transmitting signals in one

direction through the layers. The ANN structure consists of interconnected nodes linked by

weights, arranged in layers including input, hidden, and output layers. Firstly, atomic coor-

dinate representations are fed into the input layer by converting each atomic position into a

set of atomic symmetry functions {Gi}, describing the chemical environment of the atom.

We employed radial (G2) and angular (G5) symmetry functions,44 totaling 70 symmetry

functions (16 radial and 54 angular), as parameterized in previous work.45 For these symme-

try functions, we chose a cutoff radius of 6 Å based on testing different values conducted in

our work. Secondly, the appropriate level of network complexity to accurately represent the

underlying physics without overfitting the data was determined by testing various number

of hidden layers and node counts in each of them. It was found that a network configura-

tion with two hidden layers, each containing 17 nodes, reduced the root mean square error

(RMSE) to below 22 meV/atom. Finally, the output layer, comprising a single node, yields

the energy of atom in the system. For our ANN with two hidden layers and 17 nodes in each

hidden layer and 70 symmetry function in the input layer, the total energy of the atom is

obtained as

E = f

(
b31 +

17∑
k=1

a23k1 · f

(
b2k +

17∑
j=1

a12jk · f

(
b1j +

70∑
i=1

Gi · a01ij

)))
(1)
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where f is the activation function, bji are the bias weights. Each node i in each layer k is

connected to the nodes j in the next layer l = k + 1 by weights aklij .44 The total energy

(Etot) of the system is the collective sum of these atomic energies, each computed via an

individual ANN process. The force F acting on each atom is subsequently computed from

the negative gradients of the total energy with respect to its atomic coordinates according

to Fn = −∇nEtot (n = x, y, z). In this scenario, a direct relationship is absent, attributed to

the conversion of atomic cartesian coordinates into the symmetry functions. Consequently,

to compute the force components acting on each atom, the chain rule must be employed.44

Training dataset preparation

The training dataset used for constructing the ANN potential consisted of C-H cluster struc-

tures, varying in size from 10 to 71 atoms. Employing cluster structures allowed for a broad

sampling of atomic configurations within C-H systems, thereby enhancing the transferability

of the ANN potential. The initial dataset was constructed by about 7000 fully optimized

defective graphene nanoflakes obtained from our local database (Initial Training Data Gen-

eration in Fig. 1). These structures were generated by introducing 1 − 24 C vacancies in

a zigzag graphene flake.46 The original pristine graphene flake contains 54 C atoms, with

18 H atoms passivating the edges. The geometries of these defective structures underwent

optimization using DFT implemented in the Gaussian 16 package.47 Generally, the creation

of vacancies induces structural instability, leading to a transition toward amorphization at

higher vacancy concentrations.48,49 Consequently, these defective structures exhibited signif-

icant structural reconstructions after geometry optimization, resembling amorphous phases.

Given the possibility of similarities among structures for specific number of vacancies, we

screened the initial dataset to ensure the structural diversity. To achieve this, we employed

distances of atomic environment descriptors50,51 to identify and eliminate configurations that

were similar to each other. This initial data-filtering process results in an initial dataset com-

prising 4, 629 optimized defective flake structures. Given our interest in applying the ANN
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potential to systems with diverse boundary conditions, the energy and forces of these struc-

tures were recalculated by employing Vienna Ab initio Simulation Package (VASP version

6.4.1)52–54 as described in Section .

Training potential on well-optimized structures generally limits its comprehension of non-

equilibrium behavior, impeding its ability to precisely predict non-zero forces as atoms devi-

ate from their ideal positions. In order to capture non-zero forces, the training dataset was

gradually augmented by randomly selection of structures from the initial dataset and were

subjected to random atomic position displacements, each with an amplitude of 0.05 Å, in

subsequent training cycles. Additional structures were randomly generated and optimized

using DFT to expand the dataset (Data Augmentation in Fig. 1). This was necessary be-

cause the initial generation of the ANN potential failed in geometry optimization, resulting

in widely dispersed or collapsed structures. After improving the ANN potential to handle

reasonable geometry optimization without such issues, additional structures were generated

and used as initial guesses to explore low-energy regions of the energy landscape. This ex-

ploration was carried out using the minima hopping global geometry optimization method

(MHM) and the enhanced ANN potential.55,56 The resulting structures were filtered based

on the fingerprint method discussed in the previous paragraph. This filtering ensured the

diversity of the training data. Then, single point (SP) calculations with DFT was done

for the selected structures to get the energy (E) and forces (F). In this way, we generated

a dataset consisting of 26, 731 structures, from which 14, 664 structures were included in

training the final ANN potential due to the energy filtering that will be discussed in section .

Figure 2 displays some structures from our dataset, revealing their disordered nature similar

to amorphous solids.

Training process

The training process was conducted iteratively, starting from the well-optimized structures of

defective graphene nanoflakes from DFT. After structural filtering, the FLAME code51 was
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Figure 1: A schematic workflow for training the ANN potential for C-H materials. It is
divided into six blocks: Initial Training Data Generation, Data Processing, Model Training,
Model Evaluation, Data Augmentation, and Applications. To improve the RMSE in last
training iteration, Data elimination was applied.
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C7H3 C13H7  C13H7

 C23H7  C20H20

 C32H18  C42H18 C42H5

 C20H5

 C28H20

Figure 2: Representative C-H cluster structures used as training data points. The gray and
white spheres represent C and H atoms, respectively.
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utilized to train the ANN potential. The code incorporates tools to convert geometries into

symmetry functions fed into the ANN, along with the extended Kalman filter algorithm57 to

train the feed-forward ANNs. During training, the entire dataset was randomly partitioned

into training and validation sets, constituting 70% and 30% of the data, respectively. To

test the potentials during the training, we also prepared a small test dataset containing C-

H flakes with various edge types (the first condition in Model Evaluation block of Fig. 1).

Starting with 4, 629 data points, we found that the obtained potentials had RMSE less than

3 meV/atom for training and validation data. However, the error in our tests was large. The

accuracy of the potential improved after six iterations of training, increasing the dataset size,

and capturing non-zero forces.

Despite increasing the training dataset size, we observed minimal improvement in the

accuracy of the trained potential during the last training cycle. We hypothesized that this

could be attributed to the complexity and significant diversity in energy among the data

points (Figure S1), which varied widely across a range of 4.52 eV/atom. After conducting

multiple training sessions at different energy range values (as explained in section S1 and

shown in Figures S2 and S3), we identified the optimal dataset with an energy range of

2.0 eV/atom. Narrowing our attention to this energy range and further refining the data,

we eliminated training data with a final dataset size of 14, 664. The detailed analysis of

this dataset’s composition, illustrating the distribution of data across various C/H ratios

and the count of C atoms, is summarized in Fig. 3 and Figures S4-S5. The Fig 3-(a) also

highlights the absence of pure C systems and systems with a C/H ratio less than 1, as

well as an uneven distribution across the available ratios. By training ANN potentials with

this data, we noticed an improvement in the accuracy (Figure S4) and transferability of

the candidate potentials when applied to test cases. Based on their accuracy in test cases,

we identified a potential with an RMSE of 0.0216 and 0.0214 eV/atom in energy for the

training and validation sets, respectively. Fig. 4 exhibits the DFT total energies versus the

ANN potential predicted values. The figure also provides energy distribution of the structures
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(b)

(a)

Figure 3: The configuration analysis of data within the energy range of 2.0 eV/atom. (a)
The frequency of structures for distinct C-H ratios, depicted by a colormap (color intensity)
representing the count of structures within each ratio. (b) The distribution of structures vs.
the C/H ratio. The inset plot illustrates the distribution of data based on the count of C
atoms.
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within training and validation datasets. Both histograms exhibit similar distributions and

have consistency in peaks and tails, demonstrating that the potential is not suffering from

overfitting.

RMSEtrain : 
0.0216 eV/atom

RMSEvalid :
0.0214 eV/atom

Train
Valid

Train

Valid

(a)

(b)

(c)

Figure 4: The reference total energies obtained from DFT calculations versus the predicted
values by ANN potential are shown in panel (a), alongside probability density plots in panels
(b) and (c), which illustrate the distribution of configurations in the training and validation
datasets across different energy values. Pink and blue colors represent the training and
validation datasets, respectively.
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DFT calculations

The DFT calculations in this study were performed by employing VASP version 6.4.1.

The Perdew-Burke-Ernzerhof (PBE)58 functional within the generalized gradient approxi-

mation (GGA) was adopted to treat the exchange-correlation interactions and the projector-

augmented wave basis set with a 500 eV cutoff was used. The convergence thresholds for

energy and force during structural relaxation were set to 10−4 eV and 0.01 eV/Å, respectively.

For non-periodic systems, a Monkhorst-Pack mesh of 1× 1× 1 k-points was used to sample

the Brillouin zone. For periodic systems, the smallest allowed spacing between k-points was

set to 0.40 Å−1. To prevent interactions between images, a vacuum of 10 Å was selected for

the aperiodic directions of the systems.

Result and Discussion

Geometry and energy comparison of 0D-3D systems

We first examine the transferability of the trained ANN potential, which was exclusively

trained on a dataset of C-H clusters. We apply this trained potential to C-H systems across

various dimensions: 0D, 1D, 2D, and 3D. This comprehensive analysis elucidates the ac-

curacy and transferability of our ANN potential in predicting the energetics and structural

characteristics of diverse systems. Notably, our test cases here encompass pure C systems

as well as the structures where the number of H atoms exceeds the number of C atoms, a

distinctive inclusion given that the training dataset lacked pure C configurations and those

with C/H ≤ 1. These intentional inclusions allow us to assess the extrapolative capability

of the ANN potential in scenarios absent from its original training data.

0D systems

We studied 87 non-periodic systems, spanning five chemical groups: alkanes, alkenes, alkynes,

aromatic rings, and fullerenes, detailed in Table S1. Each structure underwent geometry
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optimization using both DFT and the ANN potential. In the following, we compare the

optimized geometries and then formation energies (Ef ).

The geometry comparison was conducted using V_sim software.59 Color-coded represen-

tations of bonds were employed, reflecting the varying bond lengths within the molecules, as

shown in Figures S6-S25. By visualization, we found that except three cases (cyclooctate-

traene, propadiene-12, and C11-008), the predicted geometries by ANN potential are similar

to DFT, however, some bond lengths are not identical. To quantify the discrepancy in bond

and angles, we did bond and angle analysis by employing cheminformatics library RDKit.60

Based on this analysis, we found that the C-C-C and C-C-H angles and C-C bond lengths

obtained from the ANN potential are generally in agreement, and the C-C bonds are slightly

underestimated by the ANN potential. However, for H-C-H angles and C-H bonds, no corre-

lation is observed despite similar geometries from DFT and the ANN potential (Figure S26).

This may be due to the sensitivity of bond lengths and angles to small deviations in atomic

positions. This validation underscores the robustness and reliability of the ANN potential

in representing the intricate bonding patterns exhibited by such molecular structures.

For each 0D group, we conducted an energy analysis by obtaining the Ef values. The

reference energy of H was taken as 1
2

of the H2 molecule energy in the gas phase from DFT,

and the reference energy of a C atom was taken as the C atom in cubic diamond from DFT.

The RMSE, maximum absolute error (MAE), and mean percentage error (MPE) of Ef were

obtained, as presented in Fig. 5. Based on these three metrics,alkynes showed the largest

deviation from the DFT results, with an RMSE of 0.126 eV/atom for Ef and an MPE of

0.62%. The MAE, primarily from C2H2, is 0.25 eV/atom. The results suggest that the model

performs relatively well in predicting energy for these groups. Another notable point is that

the MPEs are positive, indicating that the Ef predicted by the ANN potential tend to be

overestimated, albeit by less than 1% on average.

In summary, our analysis of 0D systems evaluated by both DFT and the ANN potential

demonstrates the effectiveness of the ANN potential in providing reasonable predictions for
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alkanes alkenes alkynes aromatics
(32 data) (28 data) (4 data) (12 data) (11 data)

fullerenes/cages

0.13

C5H6 0.27

C4H4
0.25

C2H2

0.05 0.08

C6H6 C46

Figure 5: Comparison of RMSE and MPE for Ef across different chemical groups in our
0D test set (entries in parenthesis next to the chemical group’s names are the number of
investigated structures for this group). The MAE (in eV) values and the associated structure
are displayed atop each bar.
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molecular geometries, capturing intricate bonding patterns, and predicting energies that are

close to DFT results with errors of less than 1%. However, there are a few cases where the

optimized geometries from DFT and the ANN potential differ, e.g. cyclooctateraene and

propadiene-12. Additionally, the RMSE of Ef for all the studied systems is 0.057 eV/atom,

which, while slightly larger than chemical accuracy, is also not unreasonably large. It is

worth noting that the majority of compositions in this test set were not included in our

ANN potential training dataset, particularly those with H/C larger than 1 and pure C

systems. Despite this, applying the ANN potential on them did not result in unreasonable

results.

1D and 2D systems

To assess the transferability of the trained ANN potential to boundary conditions that were

not included during training, we examined 11 1D and 2D systems, as depicted in Figure

S27. The 1D systems with periodicity along the z-direction comprise three 10-atom C-

chains including the pure C-chain and its one- and two-side H-saturated configurations, two

pristine and two fully H-saturated single-wall carbon nanotubes (SWCNT) with chiralities

(4,4) and (8,0). The four 2D systems include graphene and graphyne-X (X = 1, 2, 3) with

periodicity in the xy-plane.

Firstly, we compared the optimized lattice (a) constants and C-C bond lengths (dC−C)

from DFT and the ANN potential, as summarized in Table 1. This comparison revealed

that the ANN potential generally underestimates the lattice constants and bond lengths

compared to DFT results. Quantitatively, the MAE of SWCNT’s diameter (D), a, and

dC−C in the SWCNTs are 0.63 Å, 0.17 Å, and 0.10 Å, respectively. For 10-atom C chains,

the H-saturated configurations were obtained by adding the 10 H atoms in two ways: either

by placing all of them on one side of the chain or by alternating their placement on both

sides in a repeating up-and-down sequence. The geometry analysis of the periodic 10-atom

C chains shows that when H atoms are added to one side, all C atoms align in a straight
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Table 1: Geometrical and Ef results obtained by DFT and ANN for the 1D and 2D systems.
For SWCNT, D is the diameter of the tube and the entries written in parentheses next to the
D values are the lattice constant of the SWCNT’s unit cell along the nanotube (z-axis). For
10-atom C-chains, graphene, and graphyne, a is the optimized lattice constant of the unit
cell along the periodic directions (z-axis). dC−C is the bond length between C (for graphynes,
r indicates the C-C bond in the ring and c indicates the C-C bond along chains). All the D,
a, and d values are in Å and the energies are in eV/atom.

system DDFT (aDFT ) DANN (aANN ) ∆D dC−C,DFT dC−C,ANN Ef,DFT Ef,ANN ∆ Ef
SWCNT(4,4) 5.55 (2.46) 5.48 (2.37) 0.07 (0.09) 1.43, 1.44 1.39, 1.40 0.138 0.039 0.099
SWCNT(8,0) 6.37 (4.27) 6.30 (4.10) 0.07 (0.17) 1.43 1.40 0.073 -0.012 0.085
H-SWCNT(4,4) 6.28 (2.59) 5.90 (2.43) 0.38 (0.16) 1.56, 1.58 1.46, 1.49 0.135 0.102 0.033
H-SWCNT(8,0) 7.36 (4.43) 6.73 (4.47) 0.63 (-0.04) 1.57 1.52 0.181 0.154 0.027
system aDFT aANN ∆a dC−C,DFT dC−C,ANN Ef,DFT Ef,ANN ∆Ef

C-chain 12.84 12.45 0.39 1.28 1.24 0.914 0.712 0.202
H-C chain (one-side) 15.09 13.79 1.30 1.51 1.38 1.094 1.157 -0.063
H-C chain (two-side) 12.36 12.12 0.24 1.40 1.37 -0.033 -0.006 -0.027
graphene 2.44 2.39 0.05 1.41 1.38 -0.123 -0.119 -0.004
graphyne-1 6.89 6.72 0.17 1.43r, 1.35c 1.42r, 1.34c 0.503 0.502 0.001
graphyne-2 9.46 9.18 0.28 1.43r, 1.43r 0.647 0.586 0.061

1.40c, 1.23c 1.32c, 1.21c
graphyne-3 12.03 11.67 0.36 1.43r, 1.40c, 1.43r, 1.32c 0.701 0.619 0.082

1.23c, 1.34c, 1.21c, 1.25c
1.24c 1.23c

line with H atoms oriented perpendicularly to the chain. In contrast, the distribution of

atoms on both sides, result in a zigzag structure (similar to trans-polyacetylene). Both the

ANN potential and DFT give similar H-saturated C-chains patterns. The comparison of

dC−C obtained from DFT and the ANN potential for both H-saturated chains show that the

C-C bonds are underestimated by the ANN potential. For 2D systems, the MAE of lattice

constant a and dC−C is 0.36 Å and 0.09 Å, respectively, smaller than those in 1D systems.

Despite these geometrical differences in 1D and 2D systems, the ANN potential predictions

remain qualitatively consistent with DFT results. For instance, in 1D systems, both the

ANN potential and DFT results show that adding H atoms to the SWCNTs increases D and

dC−C . In 2D graphyne-X, the C-C bond lengths obtained by the ANN potential exhibit a

similar trend compared to DFT when X increases from 1 to 3: the dC−C in the hexagonal ring

are larger than those along the chains and the presence of the C-C bond lengths alternations

along these chains. The presence of various bond lengths denote different bond hybridization

in hexagonal ring and in connecting chains (acetylenic linkages) as discussed in details in

literature.61,62

For energy analysis by comparing Ef values, except graphene and H-saturated C-chains,

there is a slight overestimation with the ANN potential, i.e., the absolute values of the
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ANN potential’s results are smaller than DFT values. However, the trends of stability are

successfully captured by the ANN potential. For example, the SWCNT with chirality (8, 0)

is relatively more stable than that with chirality (4, 4), however, this stability order changes

after adding H. For C chains, two-side H-saturated is more stable than pure and one-side H-

saturated chains. Similarly, for 2D systems, both the ANN potential and DFT consistently

rank the structures, with graphene being more stable than all graphyne-X structures. Among

the graphynes, graphyne-1 is the most stable, followed by graphyne-2 and then graphyne-3.

In summary, our analysis of 1D and 2D systems indicates that the trained ANN poten-

tial can effectively address boundary conditions that were not encountered during training.

Our ANN potential overall underestimates the geometrical parameters and slightly overesti-

mates the energies. Nonetheless, it demonstrates promising performance in predicting these

properties of 1D and 2D systems.

3D systems

Materials with 3D periodicity represent a significant increase in complexity compared to the

lower dimensions previously discussed, necessitating a more intricate geometry optimization

process.63 In these materials, the geometry optimization extends to include the stress tensor,

requiring the simultaneous optimization of lattice constants, lattice angles, and atomic po-

sitions. Here we have considered 53 bulk materials, including 8 structures with C-H and 45

structures with only C. The 45 pure C systems can be categorized into four groups: molecu-

lar crystals composed of either flakes/clusters (group I), fullerenes bulks (group II), layered

structures (group III), and normal crystal (group IV). The geometries and details such as

chemical formula, space group, energy and geometric parameters, for the 53 systems, are

summarized in Figures S28-S30 and Tables S2-S3.

Geometrical analysis of the optimized structures from the ANN potential and compar-

ison with DFT revealed several key findings. Notably, from the 53 bulk phases, only the

layered C-H system optimized to an unreasonable structure using the ANN potential, with
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C-C atoms too close together and desorbed H atoms. Specifically, the ANN potential op-

timization of this structure resulted in significantly smaller C-C bond lengths compared to

DFT counterparts (dC−C,ANN = 0.95 Å and dC−C,DFT = 1.54 Å). Due to this discrepancy

and its significant impact on geometric properties and energy comparisons, this C-H lay-

ered system was excluded from subsequent analysis. Furthermore, errors in lattice constants

for C-H systems were found to be smaller than those for pure C structures: the maximum

RMSE and maximum MAE in lattice constants for C-H systems were 0.318 Å and 0.540 Å;

in contrast, for C systems, the corresponding maximum RMSEs and maximum MAEs were

2.078 Å and 9.219 Å, respectively, for groups II-IV. Table 2 summarized the MAE and

RMSE of geometrical parameters. The MPE values can be found in Table S4.

Table 2: Maximum absolute error (MAE, in Å), and RMSE (in Å) of lattice constants a,
b, and c in the 3D systems. The metrics for C-H∗ are after excluding the layered system.
The RMSE values of Ef are in eV/atom.

C-H C-H∗ C-I C-II C-III C-IV
MAEa 0.760 0.430 1.156 1.494 1.876 2.352
MAEb 0.760 0.430 1.605 1.444 1.876 0.593
MAEc 0.540 0.540 1.013 0.515 0.079 9.219
RMSEa 0.340 0.222 0.516 0.855 0.557 0.782
RMSEb 0.365 0.264 0.744 0.890 0.547 0.192
RMSEc 0.301 0.318 0.446 0.288 0.026 2.078
MAEEf

18.524 0.060 0.199 0.046 0.520 0.761
RMSEEf

6.549 0.032 0.097 0.027 0.231 0.236

Based on the Ef analysis, summarized in Table 2, we found that the RMSE and MAE of

C-H systems and C-II systems are notably smaller than other 3D systems. In contrast, the

largest errors are identified for the C-III and C-IV groups in the pure C systems. Additionally,

within each group, the comparison of Ef values reveals that the ANN potential correctly

predicts the energy ordering of various structures for C-H, C groups I and II. However, for

groups III and IV, the ANN potential fails to provide accurate energy ordering, particularly

for the layered C systems (group III) which the values are identical as documented in Table

S2, which could be a consequence of inaccuracy of the ANN potential for lattice parameters
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in these systems.

In summary, despite being trained on C-H cluster systems, the ANN potential demon-

strates applicability to periodic C-H systems, successfully identifying the energy ordering

and capturing correct morphologies, except for layered structures. For pure C molecular

crystals (group I and II), the potential can give the right energy ordering for the stability

of the configurations based on Ef analysis. However, for the other systems, especially for

the layered ones and the low-symmetry C systems with space group P1, the accuracy of the

potential needs to be improved.

Overall evaluation across dimensions

Based on the evaluations of 0D-3D C-H and pure C materials using the ANN potential

trained on C-H clusters, we identified notable strengths and areas for improvement in the

ANN potential.

Firstly, geometry optimization using the ANN potential generally provided reasonable

geometries for 0D-3D systems, in terms of having similar patterns, bond angles/lengths, and

lattice constants close to DFT results. The comparison with DFT values indicates an overall

underestimation of geometrical parameters. Furthermore, while the ANN potential works

for most of these systems, there were some discrepancies. For instance, it provided planar

geometry for non-planar cyclooctateraene (C8H8) and propadiene-12 (C3H4) molecules and

yielded an unreasonable layered C-H structure (C4H4) in 3D systems, where the C-C bonds

were approximately 0.9 Å smaller than DFT values with desorbed H atoms.

Secondly, the energy investigations show a slight overestimation, meaning the ANN po-

tential Ef are more negative than DFT values. The comparison of Ef values shows that the

largest MAE belongs to 3D pure C systems, particularly for group III (layered systems) and

those from group IV with lower structural symmetries (i.e. space group P1).

These geometrical and energy investigations demonstrate overall robust performance of

the ANN potential across various boundary conditions, despite being trained on clusters.

19

https://doi.org/10.26434/chemrxiv-2024-5qsnt ORCID: https://orcid.org/0000-0002-5341-4448 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-5qsnt
https://orcid.org/0000-0002-5341-4448
https://creativecommons.org/licenses/by/4.0/


According to the deviations encountered in analyses of different 0D-3D systems, refinement

is required to improve its accuracy. This refinement necessitates the incorporation of train-

ing data points consisting of pure C, layered flakes, and clusters with other C/H ratios,

particularly those ≤ 1.

Reactivity comparison

In this section, we assess the performance of the ANN potential in modeling various chemical

processes. We evaluate potential energy curves for C-C bond dissociation in a carbon dimer

and three hydrocarbons, comparing the results to DFT calculations to determine how well

the ANN potential captures the PES across different bond lengths. Then, we explore the

adsorption of CHX(X = 1−4) and H atom on graphene, analyzing the accuracy of the ANN

potential in predicting adsorption sites and adsorption energies. Finally, we study the fully

hydrogenation of both periodic and non-periodic 10-atom C-chains to assess the ability of

our ANN potential in capturing the favorable hydrogenated configuration and energies.

C-C PES

Capturing the PES is crucial for obtaining reasonable structure during geometry optimization

because the PES represents the energy landscape of the system, mapping out how energy

changes with variations in atomic positions. The inability of a trained MLIP to accurately

capture the PES could result in missing low-energy configurations of the system or giving

the structures that are physically not meaningful. Capturing correct PES across various

regions is not an easy task. For instance, a recent study on the performance of MLIPs

in capturing the PES of C dimer (C2) revealed that despite correct representation around

the equilibrium region, they encountered problems at C-C distances smaller/larger than

equilibrium, resulting in overstabilized collapsed/dissociated structures.64 To evaluate how

our ANN potential behaves across various regions of PES, we examined the potential energy

curves associated with the C-C bond dissociation process in C2, ethyne (C2H2), ethene
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(C2H4), and ethane (C2H6) and compared the results with DFT calculations.

Comparison of the potential energy curves obtained from our ANN potential and DFT

reveals a close resemblance in curve shape and energy variation across all four molecules

(Fig. 6). This suggests that the ANN potential accurately captures the overall trend of

the PES, performing well in predicting reasonable structures at near- and far-equilibrium

regions. Additionally, analyzing energy values indicates that the ANN potential predicts

energies for the C2 dimer that are higher than DFT across various bond lengths. However,

the discrepancy improves as the H content increases. Furthermore, moving from C-C dimer

to C2H2, C2H4, and then to C2H6, both the ANN potential and DFT consistently show an

increase in equilibrium bond lengths. This trend and the obtained values (Fig. 6) also align

with the recent values proposed from bond orders and populations (BEBOP) model.65

To conclude, our evaluation of C-C PES shows consistent trends across C2H2X (X=0,1,2,3),

suggesting that the ANN potential captures the general behavior of the energy vs. bond

length relationship well. The discrepancy between the ANN potential and DFT results are

primarily observed in the C-C dimer system. This can be attributed to the fact that our

training dataset does not include pure C systems.

Surface adsorption

We next evaluate the accuracy of the ANN potential by predicting the configuration and

surface adsorption energy of CHX(X = 1− 4) and H atom on graphene. The 5× 5 graphene

supercell, consisting of 50 C atoms, was constructed from the DFT and the ANN potential

optimized primitive cells of graphene. The in-plane lattice parameters are 12.33 Å and

11.96 Å from DFT and the ANN potential, respectively. This large lattice size, combined

with a vacuum of 25 Å perpendicular to the graphene plane (z direction), prevent interac-

tions between periodic images. For each adsorbate, we examined different adsorption sites,

including the top of a C atom (top), the midpoint of a C-C bond (bridge), and the center of

a hexagonal C ring (hollow), as shown in Fig. 7(a).
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Figure 6: Potential energy curves for (a) C dimer, (b) ethyne, (c) ethene, and (d) ethane
calculated by DFT and ANN potential. The equilibrium bond lengths from ANN potential
and DFT are shown by arrows and the values (in Å) are written in blue and pink, respectively
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top
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Figure 7: DFT-predicted top and side view of the most stable configurations of CHx and H
adsorbed on graphene. C and H atoms are shown in the gray and white colors, respectively.
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Based on the total energies obtained after geometry optimizations, we found that the

adsorption sites predicted by the ANN potential agreed with DFT results. Geometrical

analysis revealed that most adsorbates exhibited similar molecular orientations, with the

exception of CH adsorption. In the case of CH adsorption, the ANN potential predicted

CH to be perpendicular to graphene, resulting in a H-C-C bond angle of 180◦, while DFT

indicated a tilted CH orientation toward the substrate with a H-C-C bond angle of 120◦(Fig.

7(e)). The values of C-C bond lengths (d) between the C atom in CHx and the C atom in

the graphene substrate to which CHx is bonded, calculated from both DFT and the ANN

potential were in close agreement. The maximum deviation 0.11 Å of d was observed for

the CH case, while the others were smaller than 0.06 Å. For the case of H adsorption, d is

the C-H bond length between the adsorbed H and the C atom in graphene obtained from

the ANN potential is close to DFT value. The obtained d values of the adsorbed CHX and

H atom on graphene, along with the reported DFT values in literature, are summarized

in Table 3. Comparing our results with other reported values in literature shows there is

agreement between our findings and those values.

Table 3: The adsorption site, the calculated C-C bond lengths (d in Å) of adsorbed CHX

on the graphene, and the calculated adsorption energies (Eads in eV). For H adsorption, d
is the C-H bond length. The literature values for d are reported in column five and the
corresponding Eads are in the last column.

site dDFT dANN d EDFT
ads EANN

ads Eads

CH4 top 3.33 3.35 3.35866 0.03 0.00 -0.3366

CH3 top 1.59 1.56 1.58566 -0.76 -0.50 -0.4666

CH2 bridge 1.51 1.46 1.51566 -2.62 -3.22 -2.9466

CH1 bridge 1.48 1.37 1.48266 -2.10 -4.04 -2.2066

H top 1.13 1.08 1.12866 -0.76 -2.28 -1.5266

1.1267 -0.8267

-0.69 – -0.8768

-0.9469

-0.8070

-0.8471

After geometrical analysis, we evaluated the adsorption energies (Eads) of each species
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using the equation:

Eads = EX/gr − Egr − EX , (2)

where, EX/gr is the total energy of the optimized graphene systems with the x species (H or

CHX) adsorbed, Egr is the energy of pristine graphene, and EX is the energy of the isolated

X species. For H atom, the EX is the energy of single atom H from DFT with spin-polarized

calculations. Our results for CHX adsorptions show that, except for the case of CH, where the

geometry predicted by the ANN potential is not consistent with DFT, the ANN potential

effectively captures the relative adsorption strength of CHX species despite differences in

Eads between DFT and the ANN potential. Both methods indicate an increase in Eads as

the number of H atoms in CHX decreases which is in agreement with other DFT studies.

However, for H adsorption, there is a notable discrepancy in the Eads predicted by the ANN

potential, which is significantly more exothermic than those from our DFT calculation and

literature values. This discrepancy could be due to the low accuracy of the ANN potential for

pure 2D systems and predicting C-H bond lengths, as discussed in 0D systems. Therefore,

the accuracy of the ANN potential needs to be improved to address accurately the binding

strengths of the adsorbed H atom(s). It is also worth noting that accurately describing the

interaction of H with graphene to obtain its Eads is a general challenge in modeling. As shown

in Table 3, the summarized literature values for this system exhibit variability, ranging from

−1.52 eV to −0.69 eV, depending on different models, DFT functionals, and basis sets.66–71

This variability indicates inherent challenges in achieving consistent results for H adsorption

on graphene.

These results highlight the robustness and reliability of the ANN potential in modeling

interactions between molecules and materials, such as the adsorption of CHX and H on

graphene. The ANN potential effectively identifies correct adsorption sites and predicts the

relative adsorption strength which are close to DFT values. It suggests that the ANN poten-

tial is a promising tool for studying catalysis, which requires identifying correct adsorption

sites and configurations. However, further improvements is needed to enhance the accuracy,
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particularly in predicting Eads and C-H bond lengths.

C chain hydrogenation

We next investigate the hydrogenation of periodic 10-atom C chains. In Section , as ex-

plained in detail, the hydrogenation process was done by adding one and two-side H atom

to each C atom in the chain. Our geometry analysis showed the predicted dC−C bonds

are underestimated by the ANN potential. Here, we compare the hydrogenation energy

(Ehydro) of the chain which represents the energy change associated with adding H atoms to

C. Ehydro was calculated as the total energy difference between the hydrogenated (saturated)

and non-hydrogenated (pristine) states of the C-chain:

Ehyrdo = (Esat − Epr − 10.0 ∗ EH)/NC . (3)

Here, Esat and Epr are the total energies of the chain with and without 10 hydrogen atoms,

EH is half the energy of the H2 molecule, and NC is the number of C atoms in the chain.

The Ehydro obtained by DFT for one- and two-side hydrogenated chains were 1.273 eV/atom

and −0.980 eV/atom, respectively. These DFT results indicate that two-side hydrogenation

is energetically 2.253 eV/atom more favorable than one-side saturation. Similarly, the ANN

potential results indicate that the two-side hydrogenated chain is 2.326 eV/atom more fa-

vorable than the one-side configuration, with Ehydro values of 1.601 eV/atom for the one-side

and −0.725 eV/atom for the two-side configurations, respectively. Therefore, despite abso-

lute value differences between DFT and the ANN potential for Ehydro, the physical trends

are consistent.

Lattice dynamics

We further assess the accuracy of the ANN potential by studying the lattice dynamics, which

requires higher order derivatives of the PES, to build the dynamical matrices in order to ob-
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tain properties such as phonon dispersions. We employed the finite displacement method

as implemented in Phonopy72 package to obtain the interatomic force constants. These

calculations involve creating supercell structures with an optimal number of displacements

based on the structural symmetry. We considered the phonon dispersions of two experimen-

tally synthesized crystalline phases of pure C, namely cubic diamond Fd3̄m (C8, mp-66)

and hexagonal diamond P63/mmc (C4, mp-47), and one C-H system with space group I213̄

(C4H4, mp-1079612) by making supercells with sizes 4 × 4 × 4, 4 × 4 × 2, and 4 × 4 × 4,

respectively. The reason for selecting these structures is that they are non-molecular crystals

which provide non flat curves, making them suitable for our comparative analysis.

The phonon dispersions along different high-symmetry points in the Brillouin zone were

obtained using DFT and the ANN potential. The comparison between DFT and the ANN

potential results revealed a clear similarity in the overall emerging patterns, as depicted in

Fig. 8. The ANN potential accurately captures the essential features of the phonon spec-
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Figure 8: The comparison of phonon band dispersions obtained from ANN (blue lines) and
DFT (orange dotted lines) is conducted for three structures: (a) mp-66 (diamond)) (b) mp-
47 (c) mp-1079612.

tra, particularly in the case of acoustic modes, where frequency discrepancies are minimal.

However, a more pronounced deviation is observed for optical modes, indicating a higher

error in reproducing their frequencies. This observed discrepancy may arise from the inher-

ently challenging nature of capturing intricate details associated with higher-energy optical

vibrations.73,74 To assess the magnitude of errors in comparison with experimental data, we

specifically consider cubic diamond’s longitudinal optical (LO) modes for which reliable ex-
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perimental measurements are available. The experimentally measured LO frequencies at Γ

and L points are reported as 1314.69 cm−1 and 1250.17 cm−1, respectively.73 Our DFT cal-

culations closely align with these values, yielding 1292.69 cm−1 and 1244.81 cm−1. However,

the ANN potential predictions exhibit a slight deviation, with LO frequencies of 1345.79

cm−1 at Γ and 1291.20 cm−1 at L. Given these differences, it is noteworthy that the absolute

discrepancies of 31.10 cm−1 and 41.03 cm−1 from ANN potential are relatively small. Despite

quantitative disparities, the qualitative agreement in the phonon dispersions underscores the

reliability of the ANN potential in capturing the fundamental characteristics of lattice vi-

brations. Additionally, in practical applications, it is important to highlight that acoustic

modes play a crucial role in influencing thermal properties due to their lower energies and

significant contributions to heat conduction. Consequently, the accurate representation of

acoustic modes by the ANN potential underscores its reliability in predicting key material

properties.

Uncovering a novel C polymorph through ANN-guided structural

exploration

Phonon dispersion serves as a theoretical tool for assessing the stability of structures by

confirming the absence of imaginary frequencies, an important aspect of CSP. However, for

larger systems, phonon dispersion calculations for candidate structures can be demanding

using DFT. These calculations typically require creating a supercell, densely sampling the

Brillouin zone with k-points to accurately capture phonon modes, and calculating force

constants by solving the dynamical matrix equations for each atom pair and phonon mode.

Taking advantage of fast energy and force evaluations via the ANN potential, we assessed

the efficiency and applicability of our trained ANN potential for CSP. Employing the MHM

at zero pressure with our ANN potential and utilizing the cubic diamond structure as the

initial configuration, several structures within the energy range of 1.0 eV/atom above the

cubic diamond were revealed. Comparing them with the known phases in SACADA database
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collected by Hoffman et al.,75 we confirmed that one of the structures is a new C polymoprh.

In the following, we provide some DFT-calculated properties of the discovered C polymorph.

This novel monoclinic polymorph of C with the space group C2/m (No.12) contains eight

C atoms in its primitive cell, as shown in Figure S31. The atomic positions and lattice con-

stants are summarized in Table S5. The bond lengths are within 1.50-1.69 Å and the atoms

are three- and four-coordinated, reflecting sp2-sp3 bonded hybridization, and contains only

6-member C rings. Its dynamic stability was confirmed by the absence of negative frequency

modes through the entire Brillouin zone as depicted in Fig 9. The thermodynamic stability
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Figure 9: The phonon band dispersion of the novel C polymorph.

was examined by taking the energy of C atom in diamond structure as reference energy.

The calculated Ef of C2/m is 0.203 eV/atom which is energetically more favorable than

experimentally synthesized T-carbon76,77 (space group Fd3̄m) and other carbon allotropes

such as orthorhobmic carbon oC2078 (space group Cmcm) which have been reported.77,79

Its mechanical stability has also been validated by twelve mechanical stability criteria for

orthorhombic structures.80 Other properties, such as mechanical properties as well as ther-
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mal and electronic band structure are summarized in Table S6 and represented in Figures

S32-S33.

Conclusion

In this study, we developed a MLIP based on ANN for modeling C-H systems, achieving

an impressive RMSE in energy less than 22 meV/atom. The potential was trained on a

diverse dataset of C-H clusters ranging in size from 10 to 71 atoms and C/H > 1. Extensive

evaluations against DFT results demonstrated its accuracy and transferability across a range

of scenarios. We examined its performance in geometry optimizations and formation energy

predictions across 0D to 3D C-H structures, including systems with C/H ratios excluded in

training. While deviations were most pronounced in pure C systems, particularly 3D layered

structures, as well as C-H systems with C/H ≤ 1, the overall performance was robust. We

further assessed the reactivity accuracy of the ANN potential through investigations of po-

tential energy curves for C-C bond dissociation in C2 dimer and other small hydrocarbons,

as well as predictions of adsorption sites and adsorption energies, and C chain hydrogena-

tion. The results indicated its ability to accurately capture the PESs, adsorption sites, and

hydrogenation energies. All these evaluations highlight that training on clusters provided

diverse environment, resulting in the ANN potential’s versatility in addressing diverse sys-

tem properties. Furthermore, we evaluated the potential’s accuracy in lattice dynamics for

both pure C and C-H systems. Despite quantitative differences in optical modes, the phonon

dispersions exhibited qualitative agreement with DFT results. Finally, by taking advantage

of the computational efficiency and accuracy of the ANN potential in predicting energy,

forces, and obtaining phonon dispersions, we conducted a rapid structural search, leading

to the discovery of a novel C polymorph that is energetically more favorable than other

experimentally reported C allotropes. To enhance the accuracy of the current version of the

ANN potential and address identified limitations in layered and 2D systems, particularly in
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pure C and H-rich clusters, additional data points should be incorporated. This includes

data encompassing pure C and C/H ratio less than or equal to 1, as well as layered flakes.

These efforts constitute the scope of our forthcoming research endeavors.
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