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The motional narrowing effect has been extensively studied for cavity exciton-polariton systems
in recent decades both experimentally and theoretically, which is featured by (1) the subaverage
behavior, and (2) the asymmetric linewidths for the upper polariton (UP) and the lower polariton
(LP). However, a minimal theoretical model that is clear and adequate to address all these effects,
as well as the linewidth scaling relations remains missing. In this work, based on the single mode 1D
Holstein-Tavis-Cummings (HTC) model, we studied the motional narrowing effect of the polariton
linear absorption (LA) spectra via both semi-analytic derivations and numerically exact quantum
dynamics simulations using the hierarchical equations of motion (HEOM) approach. The results
reveal that under collective light-matter coupling between a cavity mode and N molecules, the
polariton linewidth scales as 1/

√
N under the slow limit, while scales as 1/N under the fast limit, due

to the polaron decoupling effect. Further, by varying the detunings, the polariton linewidths exhibit
significant motional narrowing, covering both characters mentioned above. Our analytic linewidth
expressions (Eqs. 34-35) agree well with the numerical exact simulations in all the parameter regimes
we explored. These results indicate that the physics of motional narrowing is adequately accounted
for by the single-mode 1D HTC model. We envision that both the numerical results and the analytic
polariton linewidths expression presented in this work will offer great theoretical value for providing
a better understanding of the exciton-polariton motional narrowing based on the HTC model.

I. INTRODUCTION

The term motional narrowing is first put forward by
Bloembergen, Purcell, and Pound [1–3] in the 1940s,
which is a counter-intuitive phenomenon that spectral
lines become sharper and narrower the more frequently
the nuclear spins are disturbed in nuclear magnetic res-
onance (NMR) spectra. Later, this concept is used to
explain the lineshapes in all facets of spectroscopy, in all
research fields and across all frequency bands [4–14]. The
motional narrowing effect cavity exciton-polaritons [15]
had recently attracted attention, due to the fact that
polariton has a much smaller effective mass and shorter
lifetime compared to exciton, thus exhibiting more sig-
nificant quantum mechanical effects and causes spatial
averaging of disorder potential. Specifically, the disorder
can be suppressed under strong light-matter coupling, re-
ducing the width of spectral lines (which correspond to
some quantum transitions). The first experimental find
of cavity exciton-polariton motional narrowing effect is
achieved by Whittaker et al. [14], where a characteristic
subaverage behavior of the polariton linewidths (which
means narrower than the average of the cavity and ex-
citon linewidths) are observed. Moreover, the upper po-
lariton (UP) and the lower polariton (LP) exhibit differ-
ent narrowing behavior, that the UP is always broader
than the LP. These universal behaviors observed in ex-
periments cannot be explained by simply averaging the
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exciton and photon linewidths, as would be valid if both
were homogeneously broadened [14, 16]. Other exper-
imental work was quickly and extensively followed up
later [17–23].

Shortly after the first experimental findings, Kinsler
and Whittaker [24] provided a phenomenological expla-
nation for the subaverage behavior. The main idea in
that work was recognizing that the exciton lineshape
is commonly a Gaussian, and the photon lineshape is
a Lorentzian. With given widths, the convolution be-
tween a Gaussian and a Lorentzian (i.e., Voigt func-
tion) has a linewidth narrower than the convolution of
two Lorentzians (i.e., direct average of the linewidths).
However, it does not provide the scaling relation between
the polariton linewidth with the number of molecules N ,
nor does it explain the experimentally observed asym-
metry between the UP and LP linewidths. Savona et
al. [25] proposed a microscopic model of disordered quan-
tum wells embedded in a microcavity. By solving the
nonperturbative coupled equations of motion of the exci-
ton and cavity photon system numerically, they success-
fully recovered the experimental results by Whittaker et
al. [14] in terms of motional narrowing, explaining both
the subaverage behavior and why the upper UP is always
broader than the LP – due to inter-branch scattering,
in which the multiple scattering to all orders is empha-
sized [25]. Nevertheless, a lot of theoretical controversies
are generated and remain unresolved [11, 25–31]. For
example, it is mentioned in Ref. 25 that the motional
narrowing effects are more pronounced in a 1D system
than in a 2D system, while Ref. 28 made the opposite
statement. And it is not clear the necessity of includ-
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ing the full dispersion band, as well as considering the
polariton multiple scatterings. Therefore, it is of great
importance to establish a minimal physical model and
theory to clarify the above-mentioned ambiguities.

Recently, Climent, Subotnik, and Nitzan [31] applied
the Kubo-Anderson classical stochastic theory of molec-
ular spectral lineshape [32–34] to the case of polaritons
formed in the collective strong coupling regime. By in-
cluding only one cavity mode which collectively interacts
with many molecules, they provided simple analytic re-
sults in the fast and slow limits of the disorder dynamics
and can be evaluated numerically for the intermediate
case. In particular, the polariton linewidth scales like
1/
√
N under the slow limit. Despite the theoretical suc-

cess in Ref. 31, we want to emphasize that the Kubo-
Anderson theory is classical and Markovian. It predicts
that no narrowing effect can be exhibited under the fast
limit [31], and does not explain the experimentally ob-
served asymmetry between the UP and LP linewidths.
Moreover, Ref. 31 focused on the resonant case and lacked
the discussion for general detuned cases. With regard to
these limitations, new theoretical and numerical efforts
are urgently needed, in which a fully quantum mechanical
description of the phonon environment should be empha-
sized.

In this work, we adopt the 1D Holstein-Tavis-
Cummings (HTC) model [35–37] with single cavity mode
to study the motional narrowing effect under a variety of
different parameter regimes, based on a system-bath for-
malism of open quantum systems. We performed numer-
ically exact quantum dynamics simulations using the hi-
erarchical equations of motion (HEOM) for the linear ab-
sorption (LA) spectra of the single mode 1D HTC model.
In particular, the polaron decoupling effect [35, 36] has
been investigated and applied to explain the spectral
linewidths narrowing phenomena [36, 38]. Our theoreti-
cal analyses reveal that in the polaron decoupling regime,
the polariton linewidth scales as 1/

√
N under the slow

limit which agrees with the Kubo-Anderson theory in
Ref. 31, and scales as 1/N under the fast limit. Both
the UP and the LP are subject to motional narrowing of
the spectral response, and this effect for UP is less sig-
nificant than LP due to inter-branch transitions (mainly
to the dark states) that the UP branch exhibits. More-
over, we provide modified analytic expressions (Eqs. 34-
35) to describe the subaverage behavior of the polariton
linewidths under general detuned cases. Our analytic
expressions are in excellent agreement with the results
obtained from numerical exact simulations. As a con-
sequence, our results show that a single mode 1D HTC
model will be adequate to exhibit a significant motional
narrowing effect featured by the subaverage behavior of
the polariton linewidths for both UP and LP, without
inclusion of the full dispersion band, and to exhibit the
experimentally observed asymmetry between the UP and
LP branches.

This paper is organized as follows. In Sec. II, we briefly
review the HTC model Hamiltonian; in Sec. III, we dis-

cuss the polaron decoupling effect and its influences on
the polariton linewidth, as well as the scaling relations
of polariton linewidth with N under the fast and slow
limits; in Sec. IV, we provide analytic linewidth expres-
sions for LP and UP under the fast limit and the general
detuned cases; in Sec. V, we present numerical exact sim-
ulations using HEOM for the polariton LA spectra and
compare their linewidths with the theoretical predictions;
in Sec. VI, we briefly conclude the paper. In addition, we
denote the full width at half maximum (FWHM) of the
peaks in LA spectra as the linewidth throughout this pa-
per unless specified.

II. THE HOLSTEIN-TAVIS-CUMMINGS
MODEL

A. Hamiltonian

We first introduce the HTC model Hamiltonian [36, 37,
39, 40] with a single cavity mode. The total Hamiltonian
can be written as a system-bath form as follows

ĤHTC = ĤS + ĥB + ĤSB. (1)

The system term ĤS consists of the excitonic degrees of
freedom (DOF) of the molecules and the photonic DOF
of the cavity and can be further expressed as [41]

ĤS = ĤM + Ĥcav + ĤLM, (2)

where ĤM describes the matter contribution due to the
excitonic DOF, Ĥcav describes the cavity radiation field,
and ĤLM is the light-matter interaction term. The
matter Hamiltonian ĤM describes N identical and non-
interacting molecules; each molecule is modeled as an
effective two-level system that represents the molecule’s
ground state |gn⟩ and excited state |en⟩ (for the nth

molecule). The matter Hamiltonian is written as

ĤM = ℏ(ω0 + λ)

N∑
n=1

σ̂+
n σ̂

−
n , (3)

where σ̂+
n = |en⟩⟨gn| and σ̂−

n = |gn⟩⟨en| are the creation
and annihilation operators of the nth molecule’s exciton,
and ω0 is the excitation energy between the molecule’s
ground and excited state. The corresponding reorganiza-
tion energy λ accounts for the energy shift due to exciton-
phonon coupling, which is described in the system-bath
interaction ĤSB (see Eq. 7). The cavity Hamiltonian

Ĥcav describes the quantized radiation field

Ĥcav = ℏωc(â
†â+

1

2
), (4)

where ωc is the cavity mode frequency, â† and â are the
photon creation and annihilation operators of the cavity
mode, respectively. Here, we consider only a single cav-
ity mode interacting collectively with N molecules. For
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the light-matter interaction term ĤLM, we assume the
long-wavelength approximation, that is, each molecule is
coupled to the quantized radiation field with the same
light-matter coupling strength gc. Under the rotating
wave approximation (RWA), ĤLM is expressed as

ĤLM = ℏgc
N∑

n=1

(
â†σ̂−

n + âσ̂+
n

)
. (5)

Note that the system Hamiltonian ĤS in Eq. 2 is just the
Tavis-Cummings model [41, 42] (with a constant energy
shift λ for the exciton site energies).

The bath Hamiltonian ĥB in Eq. 1 describes the nu-
clear DOF, which we assume is a phonon environment
that consists of a set of identical, non-interacting har-
monic oscillators:

ĥB =
∑
α,n

ℏωαb̂
†
α,nb̂α,n, (6)

where b̂α,n, b̂†α,n are the αth bath phonon annihilation
and creation operators for the nth molecule, who satisfy
the bosonic commutation relations, with ωα the phonon
frequency. The last term ĤSB in Eq. 1 characterizes
the system-bath interaction which describe the exciton-
phonon interaction, which we assume takes the linear
form as follows

ĤSB =
∑
n

σ̂+
n σ̂

−
n ⊗

∑
α

cα(b̂α,n + b̂†α,n), (7)

where b̂α,n, b̂
†
α,n linearly couple to the n-th exciton, with

cα the coupling strength which are n-independent, i.e.,
identical for all the molecules. To describe the inter-
actions between the system and bath, we introduce the
spectral density function, which is defined as [43, 44]

J(ω) =
π

ℏ
∑
α

c2αδ(ω − ωα) =
2λωfω

ω2
f + ω2

, (8)

being identical for all excitons (for n ∈ [1, N ]). We use a
Drude-Lorentz form for the spectral density in our inves-
tigations, where ωf is the bath characteristic frequency,
and λ is the reorganization energy, which can also be ex-
pressed in terms of the coupling strength and the phonon
frequencies as

λ =
1

π

∫ +∞

0

dω
J(ω)

ω
=

∑
α

c2α
ωα

. (9)

Note that Eq. 1 does not consider the cavity loss ef-
fects. In this work, the cavity loss is modeled through a
phenomenological description [45] via the Lindblad dis-
sipators, which is widely applied in molecular polari-
ton dynamics simulations [46, 47], real-time simulations
of linear and nonlinear spectroscopy for exciton polari-
tons [48, 49], photodissociation reactions [50–52], and
photoinduced electron transfer reactions [53], etc. [54].

Specifically, we introduce a set of Lindblad dissipators
for the photon mode time evolution as follows

LΓÔ = Γc[1 + n(ωc)]

(
âÔâ† − 1

2

{
â†â, Ô

})
+ Γcn(ωc)

(
â†Ôâ− 1

2

{
ââ†, Ô

})
, (10)

where

n(ω) = 1/(eβω − 1) (11)

is the Bose-Einstein distribution function, β = 1/(kBT )
is the inverse temperature, and kB is the Boltzmann con-
stant. Further, Γc is the photon-loss rate, {Â, B̂} =

ÂB̂ + B̂Â denotes the anti-commutator. The quantum
dynamics of Hamiltonian in Eq. 1 with the Lindblad dis-
sipators are simulated using mixed HEOM-Lindblad for-
malism [55], described in Sec. VA.

B. Polariton States and Rabi Splitting

We analyze the eigen spectrum of ĤS, i.e., the Tavis-
Cummings model, in the ground and single excitation
subspace, which is spanned by the zero photon-dressed
ground state |G, 0⟩ where all the molecules are in the
ground state and no photon in the cavity, one photon-
dressed ground state |G, 1⟩ where all the molecules are
in the ground state and one photon is in the cavity,
and the single-molecule excited state |En, 0⟩ where all
the molecules are in the ground state except for the nth

molecule. These diabatic states are defined as

|G, 0⟩ = |g1⟩ ⊗ ...|gn⟩...⊗ |gN ⟩ ⊗ |0⟩, (12a)

|G, 1⟩ = |g1⟩ ⊗ ...|gn⟩...⊗ |gN ⟩ ⊗ |1⟩, (12b)

|En, 0⟩ = |g1⟩ ⊗ ...|en⟩...⊗ |gN ⟩ ⊗ |0⟩, (12c)

where |gn⟩, |en⟩ are the ground and first excited en-
ergy eigen states of site n ∈ {1, · · · , N}, with σ̂+

m|gn⟩ =
δm,n|en⟩ and σ̂−

m|gn⟩ = 0. Further, |0⟩, |1⟩ are the zero
and one photon Fock states, which are eigenstates of the
bare-cavity Hamiltonian (Eq. 4). In the single excita-
tion manifold, we also have a collective “bright” excitonic
state

|B⟩ = 1√
N

N∑
n=1

|En, 0⟩ (13)

that couples to the |G, 1⟩ state through ĤLM, generating

polariton states |±⟩ which are eigenstates of ĤS. These
|±⟩ states are expressed as follows [41]

|+⟩ = cosΘN |B⟩+ sinΘN |G, 1⟩ (14a)

|−⟩ = − sinΘN |B⟩+ cosΘN |G, 1⟩, (14b)

where the mixing angle is

ΘN =
1

2
tan−1

[
2
√
Ngc

ωc − ω0 − λ

]
∈ [0,

π

2
), (15)
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and the corresponding energies ω± of the |±⟩ states are

ω± =
ω0 + λ+ ωc

2
± 1

2

√
(ω0 + λ− ωc)2 + 4Ng2c . (16)

One can define the collective Rabi splitting as follows

ΩR = ω+ − ω− =
√
(ωc − ω0 − λ)2 + 4Ng2c . (17)

Under the resonance condition of ωc = ω0 + λ, one has
ΩR = 2

√
Ngc. We further denote the detuning between

the cavity and the exciton as ∆ω = ωc − (ω0 + λ). One
can alternatively use the Hopfield coefficients to represent
the mixing angles, expressed as [16, 37]

|C|2 = sin2 ΘN =
1

2

[
1 +

∆ω√
(∆ω)2 + 4Ng2c

]
, (18a)

|X|2 = cos2 ΘN =
1

2

[
1− ∆ω√

(∆ω)2 + 4Ng2c

]
. (18b)

According to Eq. 14, the exciton fraction |Cex|2 for the
UP and LP branches are

|Cex|2 ≡

{
|X|2 for UP,

|C|2 for LP,
(19)

respectively, for a general detuning ∆ω.
When taking into account the finite lifetime of the cav-

ity photon and the exciton, Eq. 16 is modified as [16, 37,
56]

ω± =
ω0 + λ+ ωc + i(Γex + Γc)

2

± 1

2

√
[ω0 + λ− ωc + i(Γex − Γc)]2 + 4Ng2c . (20)

where Γex is the nonradiative decay rate of an exciton (or
the molecular linewidth). Further, Γc is the cavity decay
rate due to imperfect mirrors. As a linear superposition
of an exciton and a photon, it has been believed that the
lifetime of the polaritons is directly determined by Γc and
Γex as follows [16]

Γ+ = |C|2Γc + |X|2Γex, (21a)

Γ− = |X|2Γc + |C|2Γex. (21b)

Unfortunately, Eq. 21 contradicts the experimentally ob-
served motional narrowing phenomena, including the
subaverage trend and the asymmetric line widths be-
tween the UP and the LP branches [12, 13].

In the case of no detuning (∆ω = 0), the Hopfield co-
efficients to each polariton state are both |C|2 = |X|2 =
1/2. The Rabi splitting in Eq. 17 is modified as [56]
(when considering the exciton decay and cavity loss)

ΩR =
√
4Ng2c − (Γc − Γex)2. (22)

The Rabi splitting eventually vanishes when Γc ≫
√
Ngc.

On the other hand, the system is in the strong coupling
regime if the rate of exchange of energy between the
molecules and the cavity photon is faster than the dissi-
pation rate of the cavity photon (Γc) and the molecules
(Γex) [56], i.e.,

2
√
Ngc > (Γc + Γex)/2. (23)

Under the strong coupling condition, one can see the LA
spectra exhibiting two well-separated peaks that corre-
spond to the upper and lower polariton states, respec-
tively.

Furthermore, there exists N − 1 dark states |Dk⟩ ex-
pressed as follows [37, 41, 57]

|Dk⟩ =
1√
N

N∑
n=1

exp(−2πi
nk

N
)|En, 0⟩, (24)

where k ∈ {1, · · · , N − 1}. The energy of the dark states
remain the same as the exciton site energy. Note that the
dark states have no overlap with the collective “bright”
states, and they do not participate in the interaction with
the cavity mode mediated by ĤLM. They are optically
dark (has no transition dipole from the ground state).
Eq. 14 and Eq. 24 form the polariton basis (or the Tavis-
Cummings basis [41]). Further, we introduce the follow-
ing discrete Fourier transform for the bath operators [57]

b̂α,k :=
1√
N

N∑
n=1

exp(2πi
nk

N
)b̂α,n, (25a)

b̂†α,k :=
1√
N

N∑
n=1

exp(−2πi
nk

N
)b̂†α,n. (25b)

Under the polariton basis, the HTC Hamiltonian in Eq. 1
becomes

ĤS = ω+|+⟩⟨+|+ ω−|−⟩⟨−|+ (ω0 + λ)

N−1∑
k=1

|Dk⟩⟨Dk|,

(26a)

ĥB =
∑
α,k

ωαb̂
†
α,k b̂α,k, (26b)

and
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ĤSB =

[
cos2 ΘN |+⟩⟨+|+ sin2 ΘN |−⟩⟨−| − 1

2
sin(2ΘN )

(
|+⟩⟨−|+ |−⟩⟨+|

)]
⊗
∑
α

cα√
N

(b̂α,0 + b̂†α,0)

+ cosΘN

[N−1∑
k=1

|Dk⟩⟨+| ⊗
∑
α

cα√
N

(b̂α,k + b̂†α,−k) + h.c.
]
− sinΘN

[N−1∑
k=1

|Dk⟩⟨−| ⊗
∑
α

cα√
N

(b̂α,−k + b̂†α,k) + h.c.
]

+

N−1∑
k=1

N−1∑
j=1

|Dk⟩⟨Dj | ⊗
∑
α

cα√
N

(b̂α,−j+k + b̂†α,j−k), (26c)

where ĤS is now diagonal. Transitions between |+⟩, |−⟩
and {|Dk⟩} are only mediated by phonons in the bath.
Note that in Eq. 26c, if the subscript is outside the range
of {1, · · · , N − 1}, it can be moved back by adding or
subtracting N due to the translational symmetry. For

example, b̂α,−k → b̂α,N−k.

III. POLARITON LINEWIDTH SCALING WITH
N UNDER THE POLARON DECOUPLING LIMIT

A. Polaron decoupling effect

Herrera and Spano [35, 36] had shown that strong col-
lective resonant coupling of a cavity field with N exciton
transitions can effectively decouple exciton-phonon cou-
plings in a disordered molecular ensemble. This has also
been observed experimentally [38]. To be specific, the

coupling strength is re-scaled as cα/
√
N for both the di-

agonal (Holstein coupling) and off-diagonal (Peierls cou-
pling) terms associated with the polariton states |+⟩ and
|−⟩ as shown in Eq. 26c. In particular, under the res-
onance condition, the mixing angle is ΘN = π/4. As
a result, the displacement between the |G, 0⟩ and the

|±⟩ states is given by [36] Rα,0 = Rα,0/(2
√
N), where

Rα,0 =
√

2c2α/ω
3
α is the displacement between a given

exciton state |En, 0⟩ and the ground state |G, 0⟩. Thus,
the effective reorganization energy λN between the |G, 0⟩
state and the |±⟩ states is

λN =
1

2

∑
α

ω2
αR2

α,0 = λ/(4N), (27)

which is 4N times smaller than outside the cavity case.
Intuitively, this is because when the collective Rabi os-
cillation period is shorter than the time scales for vibra-
tional motion, the excitons can exchange their energy
with the cavity mode many times before the nuclei have
time to reorganize their configuration to the excited state
potential. For large N , the reorganization energy will ap-
proach to zero, and the equilibrium positions of the po-
laritonic states potential and the ground state potential
are aligned [35, 36].

The width of the optical lineshape (such as polari-
ton absorption) that corresponds to |G, 0⟩ → |±⟩ opti-

cal transition is contributed by both exciton and cavity
broadenings. Here we consider the linear absorption (LA)
spectra. A concise review for the LA spectra lineshape
theory is provided in Appendix A, in which a simple two-
state model is discussed.
Under the high temperature limit of kBT ≫ ℏωf , we

define the dimensionless parameter as follows [58]

κN =
( ℏω2

f

2λNkBT

)1/2

∝
√
N, (28)

where λN is defined in Eq. 27. By simply considering
only the two polariton states (without including the dark
states) coupled to a Drude-Lorentz bath [58], the polari-
ton lineshape can be expressed analytically under two
well-known limits based on κN , discussed below.

B. The slow limit

First, we focus on the slow limit defined as κN ≪ 1,
where the polaritons exhibit Gaussian lineshape, ex-
pressed as follows [58]

A±
N (ω) =

1√
2π∆2

N

exp
[
− (ω − ω±)

2

2∆2
N

]
, (29a)

where the polariton frequencies ω± can be found Eq. 20,
and the square variance

∆2
N = 2λNkBT/ℏ ∝ 1/N. (29b)

As a result, the scaling of the polariton linewidth is ∆N ∝
1/
√
N , agreeing the Kubo-Anderson theory described in

Ref. 31.

C. The fast limit

The other is the fast limit κN ≫ 1, where the polari-
tons spectra exhibit a Lorentzian lineshape, expressed as
follows [58]

A±
N (ω) =

1

π

ΓN/2

(ω − ω±)2 + Γ2
N/4

, (30a)
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with linewidth

ΓN = 2λNkBT/(ℏΛ) ∝ 1/N. (30b)

As a result, the polariton linewidth scales as 1/N under
the fast limit, which differs from the no narrowing ef-
fect prediction of Kubo-Anderson theory under the fast
limit in Ref. 31. Note that the scaling relations with N
in Eqs. 29b and 30b will not be influenced if the high
temperature limit (kBT ≫ ℏωf ) is not satisfied.
The scaling relations with N in Eqs. 29b and 30b un-

der the slow and fast limits are the first main theoretical
result of this paper. In this work, we are more interested
in the fast limit because usually N ≫ 1 in typical experi-
mental setups, such that κN ≫ 1. As a consequence, the
polariton lineshape is described by Lorentzian (Eq. 30).
We also want to emphasize that only the two polariton
states are included to obtain Eqs. 29- 30. The dark states
and inter-branch scattering processes have not been con-
sidered yet. This will be further discussed in the following
section.

IV. A GENERAL THEORY OF POLARITON
LINEWIDTH UNDER THE FAST LIMIT

A. LP linewidth

Under the strong coupling condition (Eq. 23), the po-
laron decoupling limit is reached around the resonance
condition, where the mixing angle ΘN → π/4. As a re-
sult, the polariton linewidth will become much narrower
than systems outside the cavities [36, 38]. Under the fast
limit, the polariton lineshape is described by Lorentzian
(Eq. 30). Further consider the cavity loss with Γc as the
(homogeneous) cavity loss rate, so that the bare photon
spectral lineshape is also described by a Lorentzian. As
a result, the overall LP linewidth is additive, reading as

Γ̃− = Γc/2 + Γex/(2N), (31)

where a 1/N factor is associated to the exciton contri-
bution Γex due to the polaron decoupling effect, as is
discussed in section III. Consequently, the LP linewidth
in Eq. 31 is much narrower compared to Eq. 21 (un-
der the resonance condition), which primarily explains
the subaverage behavior of the LP linewidth in polariton
motional narrowing.

On the other hand, when the cavity frequency is far de-
tuned from the exciton energy such that |∆ω| ≫

√
Ngc,

the mixing angle ΘN → 0 (blue-detuning limit, ωc ≫
ωx+λ) or ΘN → π/2 (red-detuning limit, ωc ≪ ωx+λ).
Under this circumstance, the time scale of Rabi oscilla-
tion is much longer than the phonon bath, which means
the polaron decoupling arguments no longer hold. As a
result, the system behaves like a decoupled one where the
polariton states akin to pure exciton/photon states, i.e.,

Γ̃− =

{
Γc for ΘN → π/2,

Γex for ΘN → 0.
(32)

In other words, the light and matter components can be
easily distinguished.
For general detuned cases with a mixing angle ΘN ,

to the best of our knowledge, there is no simple closed-
form theory to quantitatively estimate the polariton line
widths. What have been widely used is an empirical
linewidth expression [12–14, 29, 30]:

Γ̃− = |X|2Γc +
|C|4

|X|2
· (Γex

N
), (33)

which highlights the nonlinearity of the LP linewidth.
Note that Eq. 33 recovers Eq. 32 for ΘN → π/2, and
Eq. 31 for ΘN → π/4. Remarkably, it well captures the
behavior of LP linewidth for π/4 < ΘN < π/2, as shown
by Rury and co-workers [12, 13]. However, Eq. 33 does
not recover Eq. 32 for the limit of ΘN → 0 (with |C|2 → 1
and |X|2 → 0) and is unbounded, which leads to a severe
overestimation of the LP linewidth for 0 < ΘN < π/4. To
solve this problem, we propose the following modification
to Eq. 33 as follows

Γ̃− = |X|2Γc +
|C|4

|X|2 + |C|4
N

· (Γex

N
), (34)

which preserves the boundedness and recovers Eq. 32 for
ΘN → 0.

B. Inter-branch transitions and UP linewidth

It is pointed out that inter-branch scattering (between
UP and dark states) is crucial to explain the difference
between the UP and LP linewidths [14, 25, 28, 59]. To
be specific, the UP linewidth is usually much broader
than the linewidth of the LP state, mainly due to the
UP → LP and UP → dark states (DS) decay channels,
which causes additional broadening to UP compared to
LP. By assuming that the additional broadening effect
is additive, one can express the UP linewidth by further
incorporating inter-branch transitions, i.e.,

Γ̃+ = Γ̃
(0)
+ + Γ+→{Dk} + Γ+→−, (35)

where the first term

Γ̃
(0)
+ = |C|2Γc +

|X|4

|C|2 + |X|4
N

· (Γex

N
) (36)

is symmetric with Eq. 34, and the last two additional
broadening terms are estimated via Fermi’s golden rule
(FGR) as follows [60]

Γ+→− =
1

2N
· sin2(2ΘN ) · J(ΩR) · [n(ΩR) + 1], (37a)

Γ+→{Dk} =
2(N − 1)

N
· cos2 ΘN · J(ω+ − ωx − λ)

· [n(ω+ − ωx − λ) + 1],
(37b)
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where J(ω) is defined in Eq. 8, and n(ω) is defined in
Eq. 11. The detailed derivations are provided in Sec. II
of the Supplementary Material. On the other hand, due
to the energy differences, the scattering rate constants for
LP → UP (Γ−→+) and LP → DS (Γ−→{Dk}) are much
smaller in magnitude than Γ+→− and Γ+→{Dk}, respec-
tively. As a result, the LP linewidth is barely influenced
by inter-branch scatterings.

The polariton linewidth expressions in Eq. 34 (for LP)
and Eq. 35 (for UP) are the second main theoretical re-
sult of this paper. In the next section, we will see that
they successfully describe the polariton motional narrow-
ing phenomena and quantitatively agree well with the
numerically exact simulations in all parameter regimes
we explored.

V. NUMERICAL RESULTS AND DISCUSSIONS

A. Model and numerical details

In this section, we use the mixed HEOM-Lindblad
formalism [55] (see Sec. I of the Supplementary Mate-
rial) to simulate the LA spectra of the single mode 1D
HTC model. The reduced system part is restricted in
the ground and first excited manifolds under the dia-

batic basis (see Eq. 12), and ĥB is treated as bath DOF.
We briefly summarize the main model parameters used
in numerical simulations in Table I, which lead to a di-
mensionless parameter of κN ≈ 1.26

√
N (see Eq. 28),

so that the bath is in the fast limit as N increases. The
bath parameters lead to a bare exciton linewidth of about
Γex ≈ 76.5 meV. Note that under the room temperature
of T = 300 K, the thermal energy is about kBT ≈ 26
meV.

TABLE I. Parameters of the single mode 1D HTC model.

Parameter ω0 T λ ωf

Value 2.0 eV 300 K 30 meV 24.8 meV

The LA spectra can be directly computed from the
Fourier transform of the dipole-dipole correlation func-
tion according to [44, 58]

A(ω) ∝
∫ ∞

−∞
dt ⟨µ̂(t)µ̂(0)⟩eiωt, (38)

where the dipole-dipole correlation function is defined as

⟨µ̂(t)µ̂(0)⟩ = Tr [µ̂(t)µ̂(0)ρ̂SS] , (39)

where ρ̂SS is the steady-state reduced density ma-
trix (RDM) obtained using the HEOM steady-state
solver [61, 62], which has significant advantages over the
Krylov subspace solver or long-time propagation using
RK-4 integrator. Details on the procedures of the HEOM
steady-state solver can be found in Ref. 62. For all the

numerical simulations, the dipole operator is expressed as

µ̂ = (1/
√
N)

∑N
j=1(σ̂j + σ̂†

j ), where a 1/
√
N prefactor is

applied for spectra intensity normalization. In addition,
we set the static error tolerance for self-consistent itera-
tion (SCI) processes as 1× 10−5 and the hierarchy levels
are all truncated automatically, which converges within
just a few steps. Note that with the filtering algorithm,
the numerical cost of the SCI is very low.

B. Polariton linewidth scaling with N

We first examine the effect of collective coupling to po-
lariton linewidths due to the polaron decoupling effect.
By doing so, we set the overall Rabi splitting to be much
larger than the bath characteristic frequency ωf , and for
simplicity, we do not include the cavity loss (Γc = 0).
The cavity frequency is set to be in resonance with the
exciton energy (ωc = ω0 + λ). On the other hand, we
keep the overall Rabi splitting ΩR < 400 meV so that
η ≡ ΩR/(2ωc) < 0.1 which does not enter into the ultra-
strong coupling regime [37, 63], ensuring that the RWA
is valid and the dipole self-energy (DSE) term is negligi-
ble [64]. There are two schemes to explore the polaron
decoupling effect to polariton linewidths, one is fixing
the single molecule coupling strength gc and the other
is fixing the overall Rabi splitting ΩR, which does not
influence the scaling relation of the polariton linewidth
with N .
Fig. 1 presents the collective coupling effect of polari-

ton spectra by varying the number of molecules N under
both the fast and the slow limits under the zero detun-
ing case. Panels (a)-(c) are the results under the fast
limit with ωf = 24.8 meV. Fig. 1a presents the polari-
ton spectra by fixing single molecule coupling strength
gc = 68.1 meV and varying N . The total Rabi splitting
is ΩR = 2

√
Ngc. One can see that as N increases, the

total Rabi splitting increases. The polariton lineshape
are Lorentzian-like, and the linewidth becomes narrower
due to the polaron decoupling effect. Fig. 1b presents the
polariton spectra by fixing the total Rabi splitting ΩR =
385.2 meV and varying N . The single molecule coupling
strength is gc = ΩR/(2

√
N). As N increases, a simi-

lar linewidth narrowing phenomenon is observed, being
gc-independent. Moreover, the polariton peaks become
asymmetric, showing an upper polariton peak broader
and less pronounced than the lower one. This is at-
tributed to the influence of the dark states (UP to dark
transition). The bare-molecule spectra are also provided
in both panels for comparison.
Fig. 1c further shows the polariton linewidths plotted

against 1/N , which exhibit a linear trend. The blue and
red open circles are the FWHM of the LP and the UP
obtained from the LA spectra computed from our HEOM
simulations, respectively. The blue and red dashed lines
are the corresponding linear fitting results, with the co-
efficient of determination R2 ≈ 0.999 for both LP and
UP. Moreover, the slope of the fitting curve for the UP is
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FIG. 1. Effect of collective coupling. Here ωc = ω0 + λ, the number of molecules vary from N = 1 to 8, no cavity loss is
exerted (Γc = 0). (a) Fixing single molecule coupling strength gc = 68.1 meV and varying N , the total Rabi splitting is

ΩR = 2
√
Ngc. (b) Fixing the total Rabi splitting ΩR = 385.2 meV and varying N . The single molecule coupling strength is

gc = ΩR/(2
√
N). The bare-molecule spectra is also provided in both panels for comparison. (c) Polariton linewidths plotted

against 1/N , where the blue and red open circles are the FWHM of the LP and the UP measured from the LA spectra simulated
by HEOM, respectively, and the blue and red dashed lines are the corresponding linear fitting results (with R2 the coefficient
of determination). (d)-(f) are the same as panels (a)-(c), but with ωf = 2.48 meV (slow limit), and the polariton linewidth

scales as 1/
√
N , as is shown in panel (f).

smaller than the LP, meaning the UP is less susceptible to
the polaron decoupling effect than the LP. These results
are in perfect accordance with the 1/N scaling relation
predicted in Eq. 30b under the fast limit. As a corollary,
under the large N limit and with the total Rabi splitting
ΩR ≫ Γex, the exciton broadening gradually vanishes at
the polariton frequencies and only the cavity broadening
Γc/2 remains (if non-zero). As we can see from Fig. 1c
that the blue dashed line extends roughly through the
origin.

Fig. 1d-f further explores the collective coupling effect
under the slow limit. The parameters are kept the same
as panels (a)-(c) but with ωf = 2.48 meV, which results

in a dimensionless parameter of κN ≈ 0.126
√
N ≪ 1

under a relatively small N (see Eq. 28). One can see
that the polariton lineshape are Gaussian-like. As N
increases, a similar linewidth narrowing phenomenon is
observed. Moreover, the linewidth scales as 1/

√
N as

is exhibited in panel (f), which is expected according to
Eq. 29b as well as the Kubo-Anderson theory [31]. Fur-
thermore, the lineshape is almost symmetric for the UP
and the LP branches, due to much weaker inter-branch
scatterings.

C. Polariton lineshape under various detunings

Next, we explore the effect of detuning on polariton
lineshape. Near the resonance condition (ωc = ω0 + λ),
the system enters the polaron decoupling regime which
leads to linewidth narrowing, and the polariton lineshape
is described by Eq. 30 under the fast limit (or Eq. 29
under the slow limit). On the other hand, in the large
detuning limit (ΘN → 0 or π/2), the system behaves like
an uncoupled system where the light and matter com-
ponents are well-separated. The polariton linewidths re-
main Γex for the matter end and Γc for the photon end.

Fig. 2 presents the spectral lineshapes under different
detunings near the resonance condition (ωc = ω0 + λ =
2.03 eV). In the numerical simulations, we control the
parameters to always stay in the strong coupling regime
(see Eq. 23 as well as Appendix B) to make the po-
lariton peaks distinguishable from each other. Here, we
fix N = 4 and gc = 68.1 meV. The cavity frequency
varies from ωc = 1.83 eV to ωc = 2.23 eV. Fig. 2a shows
the results with a cavity loss rate Γc = 44.15 meV and
Γex = 76.5 meV. One can see that for the red-detuned
cases (ωc < ω0 + λ), the LP is dominated by the pho-

ton component, with a width Γ̃− ∼ Γc, while the UP is
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FIG. 2. Spectral lineshapes under different detunings near the
resonance condition (ωc ∼ ω0 + λ = 2.03 meV). Here N = 4,
the single molecule coupling strength gc = 68.1 meV, and the
cavity loss rate is Γc = 44.15 meV.

dominated by the exciton component so that Γ̃+ ∼ Γex.
Moving towards the resonance condition (ωc = ω0 + λ
= 2.03 meV), the polariton linewidths are narrower due
to the polaron decoupling effect. Further, for the blue-
detuned cases (ωc > ω0+λ), Γ̃− ∼ Γex and Γ̃+ ∼ Γc. The
FWHM of all the polariton peaks are directly obtained
from the numerically simulated A±

N (ω).

D. Characters of motional narrowing

Based on the previous section, one can extract the po-
lariton line widths with respect to different detunings.
Experimentally, there are two characteristic phenomena
associated with motional narrowing [14, 18]: (1) the sub-
average behavior for both the UP and the LP, and (2)
the asymmetric linewidths between the UP and the LP.
In this section, we explore these effects via both the nu-
merical exact simulations and the analytic linewidth ex-
pressions in Eq. 34 (for LP) and Eq. 35 (for UP).

Fig. 3 exhibits the cavity frequency (or exciton frac-
tion) dependence of the polariton linewidths. Here we
fix the single molecule coupling strength gc = 68.1 meV
and change the number of molecules N . The cavity loss
rate is Γc = 44.15 meV, corresponding to a quality fac-
tor of Q = ωc/Γc = 45.3 (with ωc = 2.0 eV). For all the
panels (a)-(h), the HEOM results are in open circles, the
analytic linewidth in Eq. 34 (for LP) and Eq. 35 (for UP)
are in solid lines, and Eq. 21 are in silver dashed lines.
Figs. 3a-b present the polariton linewidths (blue for the
LP and red for the UP) when N = 1, in which panel (a)
is plotted against the cavity frequency ωc, while panel (b)
is plotted against the exciton fraction |Cex|2 (see Eq. 19).
Fig. 3c-h are similar to panels (a)-(b), but with N =

2, 4, 8, respectively. One can see that for all panels, the
analytic expressions agree well with the numerical ex-
act simulations for the linewidth of both UP and LP
states. And the subaverage behavior is well captured
as both linewidths are lower than the silver dashed line
in our simulations, but more impressively, for the ana-
lytic answer to semi-quantitatively describe them. As
N increases, the subaverage behavior for the UP and
the LP linewidth become more pronounced. This is be-
cause, with a larger N , λN is smaller (see Eq. 27) so
that the exciton contribution to the linewidth becomes
smaller (which scales as 1/N in the fast limit considered
in the model here) in the polaron decoupling regime. Fur-
ther, the difference between the UP and the LP linewidth
becomes larger, because a larger number of dark states
are presented thus more channels for inter-branch tran-
sitions. Here, the LP is generally narrower than the UP
except for the N = 1 case (when there is no dark state).
It is pointed out by Savona et al. [25] that in the col-
lective strong coupling regime, the motional narrowing
occurs mainly for the lower polariton. The upper po-
lariton, on the other hand, is affected by multiple scat-
terings which cause additional broadening. Our results
are in good agreement with the experimentally observed
trends [14, 18]. On the other hand, the linewidth expres-
sion in Eq. 21 does not change with N , so that the sil-
ver dashed line remains unchanged by varying N , which
means no motional narrowing. Eqs. 34-35, on the other
hand, do change with N due to the polaron decoupling
effect explicitly considered in these expressions. We also
have results under a smaller cavity loss rate (Γc = 8.83
meV), see Sec. III of the Supplementary Material.

Looking into the details, one can observe from the
bottom panels of Fig. 3 that both the UP and the LP
linewidth exhibit a convex distribution against the exci-
ton fraction, which is more pronounced as N increases.
The analytic expression in Eq. 34 agrees nearly perfectly
with the numerical exact results when |Cex| → 0, but
becomes less accurate as |Cex| → 1 and as N increases,
which overestimates the LP linewidth. Similarly, Eq. 35
describes the UP linewidth better for |Cex| → 1 than
|Cex| → 0. Further, regarding the linewidth differences
between the UP and the LP, this effect is well captured
by FGR which includes only UP to dark states (as well
as to LP) scattering processes. We expect that polariton
multiple scatterings (which correspond to higher order
processes that are beyond FGR) play a less important
role for the model parameters we considered, agreeing
with the conclusion by Whittaker [28]. Going beyond,
we anticipate that under larger electron-phonon coupling
strengths where the FGR theory starts to fail and it be-
comes necessary to perform nonperturbative treatments
to get the correct linewidths, then polariton multiple
scatterings shall become important. It is also worth men-
tioning that the FGR expressions in Eq. 37 work better
for the negative detuned cases than the positive detuned
cases [60].
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FIG. 3. Cavity frequency (or exciton fraction) dependence of the polariton linewidths. Here we fix gc = 68.1 meV, and
Γc = 44.15 meV. The HEOM results (open circles), and analytic theory in Eqs. 34-35 (solid lines) are presented, where the
blue and red symbols account for the LP and the UP, respectively. The number of molecules are (a)-(b) N = 1; (c)-(d) N
= 2; (e)-(f) N = 4; and (g)-(h) N = 8. The top panels are plotted against the cavity frequency ωc, while the bottom panels
are plotted against the exciton fraction |Cex|2 (see Eq. 19). The silver dashed line denotes the result of Eq. 21 which does not
exhibit motional narrowing.

VI. CONCLUDING REMARKS

Based on the single mode 1D HTC model, we have
theoretically studied the motional narrowing effect us-
ing both the analytic linewidth expressions (Eqs. 34-35)
and the numerical exact simulations via HEOM. In the
polaron decoupling regime, we have demonstrated that
the polariton linewidth scales as 1/N under the fast

limit, while scales as 1/
√
N under the slow limit, con-

sistent with the recent work based on Kubo-Anderson
theory [31]. The scaling relations are verified by numer-
ical exact simulations. Furthermore, both the UP and
the LP exhibit a subaverage behavior, and UP is usually
broader than LP mainly due to inter-branch scatterings,
which are the two major characteristics of the motional
narrowing effect. Our results agree well with the experi-
mental trends [12, 13]. Moreover, the analytic linewidth
expressions in Eqs. 34-35 agree well with the numerical
exact results in all the parameter regimes we explored.
In brief, our results reveal that motional narrowing effect
can be adequately described using the single mode 1D
HTC model, which is also closely related to the polaron
decoupling effect [35, 36].

Despite the fruitful progresses, our analytic expres-
sions and numerical simulations have certain limitations.
First, the analytic expressions are empirical and with ad
hoc corrections. The UP linewidth expression works only
when FGR is valid, which might break down in certain
parameter regimes. With regard to the numerical exact
simulations, the computational cost increases drastically
with N , which limits us to exploring only a small num-
ber of molecules. Moreover, the HEOM method is usu-
ally restricted to certain forms of spectral density func-
tions [65]. Future theoretical efforts are needed to address
these problems.

Looking forward, the findings as well as the methods
presented in this work should be very useful for pro-
viding a better understanding of the exciton-polariton
motional narrowing effect [13]. A direct generalization
of the current model could be extending it to 2D with
many cavity modes from the full dispersion curve [37, 66],
which is then referred to as the generalized Holstein-
Tavis-Cummings (GHTC) model [37] and would be the
closest to experimental reality [67]. A detailed study on
the effect of the full cavity dispersion band and dimen-
sionality will be extremely valuable. On the other hand,
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realistic system-bath interactions are usually described
by complicated spectral density functions. For exam-
ple, the super-Ohmic spectral density is usually adopted
for the CdSe nanoplatelet systems [40, 68, 69]. To over-
come the computational difficulties, the mixed-quantum-
classical (MQC) dynamics methods [49, 70, 71] could be
potentially very useful. Last but not least, the polariton
linewidth at general detuned cases needs to be derived
basing on the first principle. For instance, using the
Green’s function method [14, 25, 28, 72], in which po-
lariton multiple scatterings shall be carefully evaluated
in order to obtain their contributions to the polariton
linewidth. These remain to be the future work.

SUPPLEMENTARY MATERIAL

See the Supplementary Material for additional infor-
mation on the hierarchical equations of motion (HEOM)
as well as the mixed HEOM-Lindblad formalism; deriva-
tion for the inter-branch transition rate constants using
Fermi’s golden rule (FGR), where numerical illustrations
are also attached; and the polariton lineshapes under a
smaller cavity loss rate (Γc = 8.83 meV), as well as the
resulting motional narrowing characters.
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Appendix A: Theory of Linear Absorption Spectral
Lineshape

Consider a two level system (with energy gap ω0) cou-
pled to a Drude-Lorentz bath, with spectral density

J(ω) =
2λΛω

ω2 + Λ2
, (A1)

where λ is the reorganization energy, and Λ is the bath
characteristic frequency. The LA spectra is expressed as
follows [58]

A(ω) =
1

π
Re

∫ ∞

0

dt exp [i(ω − ω0)t] exp[−g(t)], (A2)

where, g(t) = g′(t) + ig′′(t), with

g′′(t) = −(λ/Λ)[exp(−Λt) + Λt− 1], (A3a)

g′(t) = (λ/Λ) coth(ℏβΛ/2)[exp(−Λt) + Λt− 1]

+
4λΛ

ℏβ

∞∑
n=1

[exp(−νnt) + νnt− 1]

νn(ν2n − Λ2)
, (A3b)

where νn = 2πn/(ℏβ) are known as the Matsubara fre-
quencies which provide low temperature correction. Un-
der the high-temperature limit of kBT ≫ ℏΛ, g(t) can be
approximated as follows

g(t) ≈ 2λkBT

ℏΛ2
[exp(−Λt) + Λt− 1]

− i(λ/Λ)[exp(−Λt) + Λt− 1]. (A4)

Define the following dimensionless parameter

κ =

√
ℏΛ2

2λkBT
. (A5)

Eq. A2 has two well-known limits, one is the slow limit
with κ ≪ 1. As a result, g(t) ≈ λkBTt

2/ℏ, which leads
to a Gaussian lineshape:

A(ω) =
1√

2π∆2
exp

[
− (ω − ω0)

2

2∆2

]
, (A6)

with ∆2 = 2λkBT/ℏ. The other is the fast limit with
κ ≫ 1. As a result, g(t) ≈ Γt − iλt, which leads to a
Lorentzian lineshape:

A(ω) =
1

π

Γ/2

(ω − ω0)2 + Γ2/4
, (A7)

with Γ = 2λkBT/(ℏΛ).

Appendix B: The Effect of Cavity Loss Rate

In this section, we explore the effect of cavity loss rate
Γc on polariton linewidths, which is a crucial component
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for the motional narrowing. Here, the cavity loss is mod-
eled by the Lindbladian (Eq. 10). It is straightforward
to see from Eqs. 21 and 34 that under the resonance
condition (ωc = ω0 + λ), cavity loss contributes to the
polariton linewidths by an amount of Γc/2. Under the
lossless limit of Γc → 0, the polariton linewidths are dom-
inated by exciton broadening, while under the lossy limit
of Γc ≫ Γex, the polariton linewidths are dominated by
cavity broadening.
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FIG. 4. Effect of cavity loss to polariton lineshapes. Here
we fix N = 4, gc = 68.1 meV, and ωc = ω0 + λ (resonance
condition). The cavity loss rate varies from Γc = 0 (lossless)
to Γc = 441.5 meV.

Fig. 4 presents the effect of cavity loss on polariton
lineshapes. Here, we fix N = 4, the single molecule cou-
pling strength gc = 68.1 meV, and the cavity frequency
ωc = ω0 + λ (resonance condition). The cavity loss rate
varies from Γc = 0 (lossless) to Γc = 441.5 meV. One can
see that as Γc increases, the polariton linewidths gradu-
ally increase while the intensity decreases, and the total
Rabi splitting decreases, consistent with Eq. 22. At a
very high loss rate (Γc >

√
Ngc), one starts to see that

two polariton peaks gradually merge into one, indicating
that the strong-coupling condition (Eq. 23) is no longer
fulfilled. Our numerical results are in line with the pre-
vious literature results [49, 73, 74].
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