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Abstract 

We describe a new tool for the efficient management of computational chemistry. Digichem is a 

program that automates and simplifies nearly the entire computational pipeline, including large-scale 

batch submission of calculations, analysis and results parsing, the generation of 3D density plots and 

2D graphs of calculation data, storage and retrieval of calculation results to a database, and automated 

handling of multi-step jobs. The program is designed to reduce the tedium and likelihood of human 

error for researchers of all skill-levels but is particularly targeted towards novice users who otherwise 

may find the barrier to entry to computational chemistry unnecessarily high. To date, this program 

has been used to successfully run and analyse over 50,000 individual calculations, evidencing its 

usefulness and utility. The Digichem program is presently released under a free-to-use license, and 

components of the Digichem system are additionally available under an open-source license.  
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Introduction 

Since its inception in the 1920s, computational chemistry has had a revolutionary impact on the way 

chemists perform research.1 Once limited to describing the bonding interactions of the hydrogen 

molecule,2 modern computational chemistry can accurately predict a multitude of molecular 

properties for systems containing hundreds or thousands of atoms,3–6 including molecular orbitals and 

their energies, molecular vibrations, electronic excited states, transition states, nuclear magnetic 

resonance (NMR) shielding and coupling constants, and reaction pathways. Much of this explosion 

in scale was driven by the seminal works of Hohenberg, Kohn, and Sham,7,8 building upon the works 

of many others,9–12 in developing the fast but accurate methodology that is known as density 

functional theory (DFT). Today, a plethora of computational models are available to the theoretician. 

This not only includes various flavours of DFT, including the original local-density approximation 

functionals, the nowadays ubiquitous hybrid functionals such as B3LYP13–16 and PBE0,17–19 and the 

modern double-hybrid functionals of Truhlar,20 Grimme21 and others, but also post Hartree-Fock (HF) 

methods, such as Møller–Plesset perturbation theory22,23 and coupled cluster theory.24–27 In the latter 

case, the popularity of these post-HF wavefunction based methods has been greatly accelerated by 

time-saving approximations, such as the resolution of the identity (RI) approximation,28–34 and the 

closely related chain of sphere exchange algorithm (COSX),35,36 permitting their application to larger 

systems than has been possible previously. These developments, amongst others, have led to 

computational chemistry being routinely used to understand natural phenomena that are otherwise 

inscrutable, and to predict the properties of molecules, either as a screening tool to help guide 

synthetic efforts, or to provide additional evidence for synthetic pathways or molecular properties. 

Over its lifetime, the accuracy, speed, and breadth of problems that can be addressed by computational 

chemistry has been steadily expanded. However, comparatively little has been done to improve the 

usability, accessibility, or productivity of computational chemistry. Most computational tasks are still 

too demanding in terms of memory, hard-drive space, and central-processing unit (CPU) cores to be 

performed on a personal computer and completed in a reasonable amount of time. Instead, most 

computational chemistry is relegated to distributed, remote super-computing clusters. These clusters 

invariably operate without a graphical user interface, forcing the user to interact solely via the 

command line. For experienced computing users, this setup enables faster and more efficient 
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workflows because of its inherent support for scripting, but for many non-expert users the opposite 

is true, and the lack of a familiar interface can make even basic computing tasks, such as opening a 

file, arduous. Further, solving a computational chemistry problem rarely involves executing only a 

single program. Instead, it typically consists of several programs operating in sequence, which 

together make-up a pipeline, each program taking the output from the last as input to the next. The 

core of this pipeline is the computational chemistry program, or engine, which solves the 

computational chemistry problem itself, but other steps are equally important in order to correctly set 

up the computing environment and analyse the results (Figure 1). These steps may include, but are 

not limited to: (1) drawing of the molecules/systems of interest; (2) choice of computational 

parameters (level of theory, CPU/memory usage, molecular properties of interest, etc.); (3) uploading 

of the molecule files to the cluster where the calculations are performed; (4) interfacing to the cluster 

queuing system; (5) running the computational chemistry engine; (6) regular monitoring to determine 

if the calculation has completed; (7) analysis of output files to determine if the calculation succeeded 

correctly (for example, checking for convergence of the wavefunction); (8) optional post-processing 

of results, such as the generation of orbital density plots; (9) downloading of completed calculation 

results; (10) extraction of results from completed calculations, collation and further 

processing/analysis. 

Figure 1. Flow-diagram of the traditional computational chemistry pipeline. Green tasks relate to 

setup, blue to executing the computational chemistry engine, and red to analysis. 

 

This pipeline is complex and difficult to learn because it is made up of many different individual 

programs, and the user must learn how to use all of these programs correctly before any results can 

be obtained. Complicating matters is that most of the setup is performed using text files, with little-

to-no validation, and error reporting varies greatly in quality between the different programs. Further, 
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it is normally necessary to perform the pipeline multiple times for each molecule because the 

properties of interest to the chemist (e.g., HOMO-LUMO gap) are dependent on the correct molecular 

geometry being obtained first, and the geometry optimisation calculation which provides this must 

normally be run separately. The process must then be repeated again for each molecule in the study, 

and so large computational studies can quickly swell to thousands of individual calculations. 

Together, these problems place an enormous learning burden on the would-be computational 

chemist and make the field challenging to break into. Even for more experienced users, the daily 

process of performing computations can be tedious, time consuming and error prone, because so 

much of the process needs to be curated manually. Many computational chemists will know the 

anguish of discovering a mistake in an input file only after the calculation has returned with useless 

data, wasting days of CPU time, and demanding the entire process be started again. Even when 

performed correctly, this process is inefficient. Many parts of the pipeline, most noticeably between 

separate calculation steps, require manual intervention by the chemist to set up the next stage. This 

results in the overall execution time being limited not by the speed of the computer, but by how 

attentive the user is in checking the calculation progress. For computational screens involving many 

molecules, the inefficiencies are multiplied because only one molecule can be prepared by the user at 

a time. For very large computational projects, this essentially mandates that the scientist writes their 

own code to help automate the process, but this is not a skill that is accessible to all, nor one that is 

necessarily linked to scientific proficiency. 

Existing Solutions 

Many researchers use computational chemistry as a tool to support their experimental research, rather 

than working full time in the field itself. In these studies, the number of computations is typically 

lower, and so the impact of the inefficiencies of the computational chemistry pipeline is lessened. In 

these cases, many scientists will choose to accept the status quo. For researchers who are unable to 

overcome the learning barrier themselves, they may instead be able to outsource computational tasks 

to collaborators, thus relieving themselves personally of the burden. For scientists looking to conduct 

more complex studies however, or who do not yet have a well-established network of collaborators 

to rely upon, this situation is not tenable. In these cases, it is common for the researcher to develop 

programs or scripts to assist them in managing the pipeline. In the simplest case, a group may share 

a set of standardised input templates, which each researcher then modifies to suit their needs. In this 
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way, the need to write the whole input file from scratch is removed. More advanced programs may 

automatically merge parts of the input file together, for example to combine a standardised section 

specifying the method of the calculation with a customizable section containing the geometry for each 

molecule. For large-scale computational screens, this sort of automation is near-essential because of 

the number of files that need to be prepared. Sometimes, these in-house developed codes will mature 

to the point where they will be shared with other researchers, but in many cases they will only be 

available to members of the same research group or close collaborators. This results in a large 

duplication of effort because multiple researchers are attempting to solve the same problem. The 

generalizability of the scripts can also be a problem, and they may need to be substantially modified 

to address a new problem. This demands a significant investment of time at the start of each new 

project. While human error should be reduced because of the automation they offer, care needs to be 

taken in modifying these programs, because any errors that are introduced can propagate to many 

calculations. Finally, the quality of these programs depends on how much time the researcher can 

dedicate to maintaining them, and this is not always in abundance. 

 Alternatively, or in addition, researchers can use an existing code or product.. As examples, 

CalcUS,37 WebMO,38 ChemCompute39 and MolCalc40 are all web-based, calculation submission 

platforms. They provide tools to draw and/or upload molecular structures, chose calculation options, 

and submit a calculation to a number of backend computational chemistry programs. They also offer 

common analysis options, such as the parsing of molecular orbital energies, the plotting of molecular 

orbitals and the visualization of vibrational modes, although the exact feature set differs between each 

program. They all interface to a queuing system, either coming bundled with an internal queuing 

manager (CalcUS) or interfacing to external programs, such as SLURM41 (WebMO). CalcUS and 

WebMO are targeted towards academic research, while ChemCompute and MolCalc are designed for 

undergraduate teaching. CalcUS and MolCalc are free and open-source software, while 

ChemCompute is offered as a free-to-use service only, and WebMO is commercial, although it does 

offer a free basic version with a reduced feature set. Winmostar42 is a similar calculation submission 

platform, but is designed to be run on the user’s desktop rather than in a web-browser, and is also 

commercial. Maestro,43 Spartan,44 TMoleX45 and GaussView46 are graphical user-interfaces (GUIs) 

to the computational engines Jaguar,47 Q-Chem,48 Turbomole,49 and Gaussian,50 respectively, and 

each is specific to its own engine. Maestro is typically distributed as part of the commercial 

Schrodinger platform, along with Jaguar, which, according to the authors,43 is targeted primarily 

towards researchers in drug discovery. Spartan is sold as a standalone product, with Q-Chem bundled 
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inside of it, while Gaussview is sold as an addon for Gaussian, and TMoleX is included in the 

purchase of Turbomole. All four offer common analysis features, such as parsing of molecular orbital 

energies, vibrational frequencies, and excited states, along with more advanced functionality such as 

the plotting of molecular orbital densities. They differ somewhat in their support for submitting 

calculations. Both Gaussview and TMoleX can either write input files to the hard drive, or call the 

underlying engine directly, if installed on the same machine. TMoleX additionally supports calling 

remote installations of Turbomole. Spartan and Maestro, on the other hand, are designed to perform 

the calculation internally, without calling an external engine, although both can additionally interface 

to remote installations. Molden,51 Gabedit52 and Avogadro53 are more general tools and interface to a 

number of backend programs. They offer the usual analysis functions such as molecular orbital 

plotting, as well as input file creation tools, but do not manage the running of the calculation itself. 

There are also a number of libraries and support tools available that the intrepid computational 

chemist can incorporate into their own scripts and programs. Open Babel54,55 is a tool for the 

interconversion of chemistry file formats, while cclib56,57 provides parsing of calculation output. Both 

are available as a python application-programming interface (API) and a command-line tool. 

RDKit58, CDK59–62 and ASE63 are three extensive libraries for performing computational chemistry, 

with RDKit and CDK focusing on analysis and post-processing, and ASE63,64 on performing atomistic 

simulations. They are mainly accessed via an API, but RDKit and ASE also offer a number of 

standalone programs. Finally, AQME65 is a collection of workflows designed to automate various 

repetitive computational chemistry tasks. 

Figure 2. Flow-diagram of the Digichem pipeline. Green tasks relate to setup, blue to executing the 

computational engine, and red to analysis. 

 

 Despite the plethora of programs and libraries that are available, a complete single solution is 

not readily available. Many of the codes that are described above offer excellent support for either 

analysis or submission management, but none offers sufficient support for both for it to be used as a 
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standalone tool. The user must still navigate multiple different programs in order to manage the 

complete pipeline. In particular, none of the tools that we have explored offer comprehensive support 

for large-scale computational screens, where the number of individual computations may reach the 

thousands, and in these cases the scientist is still expected to develop their own scripts. Many of the 

programs that offer a more complete set of tools may also be too expensive for a subset of researchers, 

or exist only as programming libraries, and cannot be used without the scientist having coding 

experience. To address this problem, we have developed Digichem, a complete computational 

management tool suitable for computational chemists of all skill-levels, but particularly directed at 

novice users. Digichem is designed to be the only program the user needs to interact with on the 

server (Figure 2). It contains both a command-line and pseudo-graphical interface, the latter powered 

by the Urwid library,66 and supports computational screens of unlimited size. Here, we describe this 

program and its operation in detail. 

Program Scope 

Computational chemistry is a broad term. Included in this definition is the study of both molecular 

and periodic (i.e,, crystalline) systems, using techniques such as quantum chemistry (QC), molecular 

mechanics (MM), molecular dynamics (MD), mixed QC/MM methods,67 Monte Carlo68 simulations 

and, increasingly, machine learning (ML). While some concepts are common to multiple different 

branches of computational chemistry, the way in which each type of calculation is performed, and the 

results obtained, can differ substantially. In Digichem, we have chosen to focus on the application of 

quantum chemistry to molecular systems. This includes common wavefunction methods (HF, MP, 

CC) as well as DFT, using atomic-orbital type basis sets. We do not explicitly include or exclude 

certain methods (e.g., different functionals), but rather interface with the functionality that is already 

presented in each computational engine. Currently, the program supports interfacing with the 

Gaussian,50,69 Turbomole,70 and ORCA71 programs. All common molecular calculations are 

supported, including single-point energies, geometry optimisations (including of excited states), 

vibrational frequencies, excited states (via both linear-response type methods72,73 and ΔSCF74 for the 

first triplet state), and nuclear magnetic resonance chemical shifts and coupling constants. The exact 

feature set supported varies from program to program, and naturally depends on the functionality of 

the underlying computational engine. The program does not currently support calculations involving 

multiple structures, most noticeably transition state (saddle point) type calculations, but we look 

forward to incorporating these in the future. 
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Program Design 

 

Figure 3: Digichem main menu. 

Digichem is split into several sub-modules, each designed to handle a separate aspect of 

computational chemistry. All the sub-modules are accessed from a single command on the command-

line, which is digichem, followed by a keyword to identify the sub-module. Each of the sub-modules 

can be accessed entirely on the command-line, which is quicker for power-users, while the most 

important sub-modules also support a pseudo-graphical interactive interface, which can be accessed 

by specifying the ‘-I’ (interactive) option after the sub-module name. The interactive interface can 

also be launched directly by specifying the ‘digichem interactive’ command (Figure 3), from 

which all major facets of the program can be accessed. For novice users, this is the only command 

they are required to learn. The graphical interface formats text and other non-alphanumeric characters, 

such as the Unicode box drawing characters,75 to appear like graphical widgets such as buttons, 

checkboxes, text-entry fields, and scrollable windows. These interactive elements are more familiar 

to users of traditional GUIs than the opaque command-line. Because the library powering this 

interface only uses the functionality already available in the text console,66 this interface does not 

require a full graphical software stack (e.g., X-server) on the remote cluster. All access to Digichem 
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is provided via the secure-shell (SSH) protocol, which is already the default way users interact with 

their calculation servers, and it is therefore equally accessible from client machines running Windows, 

MacOS, or Linux. Digichem is written in Python, is simple to install, contains all its required 

dependencies internally (even including Python itself), and does not require elevated privileges 

(neither through sudo nor a super-user account) to install or run. It does not require any firewall ports 

to be opened, except for SSH port 21, which is already required to provide access to the cluster, in 

contrast to web-server designs.37,38,40 The currently supported sub-modules are: digichem submit, 

for calculation submission; digichem convert, for managing input data types, digichem 

result, for parsing and analysing completed calculation results; digichem report, for generating 

portable document format (PDF) reports of completed results; digichem image, for generating 

graphical data from completed calculations; and digichem database, for managing historical 

calculation data. These are described in more detail below. 

Calculation Submission (digichem submit & digichem convert) 

 

Figure 4. Comparison of the method file format for three equivalent calculations for the calculation 

engines a) Gaussian, b) Turbomole, and c) Orca. 

 

Conceptually, each computational chemistry calculation consists of two parts: the method, which 

describes the level of theory (the DFT functional, the basis set, the solvent model, etc.); and the 
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coordinates, which describes the geometry of the molecule of interest. In most computational engines 

these components are combined within a single input file, but in Digichem we made the conscious 

decision to separate them. This confers a number of advantages, but in particular it makes it easy to 

reuse a computational methodology across multiple molecules, as is required in a large-scale 

computational screen. Both the method and coordinate files are written in the non-binary YAML 

format,76 which can be edited using any text editor and is more intuitive than many of the calculation 

engine native formats. In addition to the molecular geometry, the coordinate file also specifies the 

overall charge and spin multiplicity of the system, something which is missing from many popular 

cheminformatics formats (XYZ, for example), and this is preserved across Digichem calculations. 

Both files are calculation engine independent, which means that any geometry or method file is 

compatible with any of the calculation engines that Digichem supports, so long as the chosen 

calculation options are supported by the underlying calculating engine (Figure 4). To improve 

interoperability, we have also made efforts to standardize calculation options across different engines, 

for example supporting both PBE0 and the Gaussian specific PBE1PBE as names for this popular 

hybrid functional.17,19 Digichem does not currently offer a 3D molecule builder, because this is not 

possible within the confines of a terminal interface, but instead supports all of the common 

cheminformatics file formats, including program-independent .xyz and .cml, Gaussian .com/.gjf, 

ChemDraw .cdx and crystallographic .cif, which are automatically converted to the internal Digichem 

format. Digichem is able to parse a subset of these formats natively, such as the Gaussian input file 

and XYZ file, while others are converted by calling the external obabel program,54 which permits the 

user to use whichever 3D sketching software they are most accustomed. Files can also be manually 

interconverted with the digichem convert sub-module. 
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Figure 5. Example submission process with digichem submit. In each case, only the starting 

geometry is taken from the given input file, while any calculation options (in the case of the 

Gaussian .com file) are ignored. 

 

 Submission in Digichem is achieved using the digichem submit sub-module. Any number 

of coordinate and/or method files can be specified at once. Each coordinate file will spawn a 

calculation to be run in parallel with the other coordinate files, while each method will be queued up 

to be performed in series using the output geometry from the previous calculation step (Figure 5). 

Once submitted, all the selected calculations will be started automatically, and no further interaction 

by the user is required. Once each calculation is complete, Digichem will automatically analyse and 

parse the completed calculation results, generate any requested report and/or image files (see below), 

and automatically setup and submit the next calculation in the queue. Digichem currently supports 

the Gaussian,50,69 Orca71 and Turbomole49 programs, and can handle submitting to different programs 

in series. In this way, a Turbomole calculation can use the output geometry produced from Gaussian, 

for example, as the coordinates will be formatted automatically. This process can be repeated near-

infinitely and is limited only by the resources available on the underlying cluster. In this way, 

computational screens of any size can be handled in an identical manner. Parallel calculation 

submission and resource management is handled by external queuing software, and Digichem 

currently supports both SLURM41 and PBS.77 Options to control shared resources, such as the amount 

of memory, number of parallel CPUs, and maximum job execution time, can all be configured as part 

of the method file. Digichem has options to ensure that the resources requested by the calculation, 

such as the amount of memory, do not exceed those requested from the scheduler. 
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Figure 6. Screenshots of the submission sub-module showing simultaneous set-up of three 

molecules (benzene, naphthalene, and pyridine) to be performed in parallel and two calculations (a 

geometry optimisation followed by TD-DFT excited-states calculation at the PBE0/6-31G** level 

of theory) to be performed in series. a) input coordinate file-picker. b) main submission interface. 

c) internal method library, from which the calculation can be chosen. d) the same method library, 

but further expanded to show more options. 

 

 The digichem submit sub-module greatly simplifies the submission process for 

intermediate and advanced users, but for novice users the requirement to use the command-line and 

to write method files by hand is not ideal. For this scenario, the interactive submission interface is 

more suitable, which can be accessed using the digichem submit -I command (Figure 6), or 

from the main menu. From this screen, the user can choose all the parameters of the calculation 

without using the command-line or generating the files manually. The starting geometries can be 

selected from a file-picker type interface (Figure 6a), similar to how files are selected in any 

commonly used GUI application, and the charge and multiplicity can be adjusted for each using text 

fields (Figure 6b). The empirical formula of each molecule is also displayed to permit the user to 

check that the correct structure has been loaded. Each selected starting geometry will start a separate 
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calculation that will be run in parallel, the same as if submitting from the command-line. The 

calculation methods, meanwhile, can be selected from one of the approximately 240,000 pre-built 

calculations stored in Digichem’s internal library, which cover the calculations of optimised 

geometries, vibrational frequencies, single-point energies and gradients, excited states, and NMR 

properties. This library is explored in a hierarchy (Figure 6c and d). The first level of the hierarchy 

corresponds to the chosen SLURM partition or PBS queue, and allows the user to pick, for example, 

between a high or low priority submission. The second level corresponds to the calculation 

submission engine. At present, Gaussian, Turbomole and Orca are all supported. The remaining levels 

select the specifics of the calculation itself, including the properties to be calculated (geometry 

optimisation, excited states, NMR properties, etc.), the computational method or functional, and the 

basis set. Multiple calculation methods can be chosen, and each will be performed in series, and the 

interface provides buttons to re-order the methods to ensure they are performed in the correct 

sequence. Each calculation method is associated with a unique numerical identifier (ID) consisting 

of three parts separated by a forward-slash, which in order correspond to: 1) the SLURM/PBS queue, 

2) the calculation engine, and 3) the calculation itself. For example, the optimisation calculation 

shown in Figure 6a has the unique code 1/4/182628. These calculation codes, if known in advance, 

can be used to quickly select a calculation from the internal library without navigating the interactive 

hierarchy, and can be specified on the command line to further speed up the submission process for 

advanced users. The library provides options for the most popular DFT functionals, including 

PBE017,19 and B3LYP,13–16, as well as more advanced methods such as Møller–Plesset and coupled-

cluster theory, a variety of common solvents and the most common basis sets in the Pople,78 

Karlsruhe,79 and correlation-consistent families.80 We expect that, in most cases, the Digichem library 

will provide all the calculation options that a novice computational chemist would require, but the 

interactive interface also provides options to load a method file in case the user wishes to write a 

method from scratch or re-use a method from a previous calculation. Finally, Digichem provides an 

interface to interactively modify the calculation options from any loaded method (Figure 7). This 

interface groups related options together and provides help messages and validation, where 

appropriate, to help novice users find and understand each calculation option. In this way, a user could 

select an existing method from the library and modify it to suit their needs; for example, changing the 

basis set to one that is smaller and increasing the number of requested CPUs so that the calculation 

will run more quickly. Once the calculation has been set up to the user’s specifications, all queued 
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molecules will be submitted to the queuing manager simultaneously once the green ‘confirm’ button 

is pressed (Figure 6). 
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Figure 7. Screenshots of the calculation method editor interface. a) general overview, showing 

example options for the calculation level of theory. b) example validation for the DFT dispersion 

correction option. 

Calculation File Storage and Monitoring 

The automated handling of submitted calculations is identical regardless of whether the user chooses 

to use the command-line or interactive interfaces. Digichem automatically partitions calculation data 

into a hierarchy of files and folders (Figure 8). At the top of the hierarchy, each molecule is self-

contained to its own directory. Within this, each individual calculation is stored in a separate sub-

directory, which is named after the calculation in question. Digichem ensures that no two calculations 

can be performed in the same sub-directory, even if the same calculation is submitted multiple times. 

In this case, a number is appended to the directory name to distinguish it, and this logic is race-

condition free. Within each calculation sub-directory, a third tier of directories store the calculation 

data. These directories are as follows: ‘Flags’, which conveys information about the current status of 

the calculation (see below); ‘Input’, which stores input files both for the specific calculation engine 

and Digichem; ‘Logs’, which stores log messages from Digichem and monitors CPU and memory 

usage (see below); ‘Output’, which stores raw output from the calculation engine, including the log 

file and any checkpoint binary files; ‘Results’, which stores formatted calculation data in text format, 

including CSV; and ‘Report’, which contains the PDF report and any associated image data. The 

Results and Report folders will naturally only be created after the calculation has completed, as they 

only contain completed calculation data. A separate ‘scratch’ directory is also created and managed 

for each calculation, which is used by many computational engines for input/output (IO) intensive 

reading and writing. This scratch directory is normally stored outside of the rest of the calculation 

directory hierarchy to take advantage of faster and/or larger physical file storage media. Each scratch 

directory is also ensured to be unique for each calculation and is automatically removed following 

the completion of the corresponding calculation. This hierarchy of folders is managed entirely by the 

program, and greatly simplifies data management and storage. 
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Figure 8 Example of the Digichem directory hierarchy for three molecules (benzene, naphthalene 

and pyridine) and two calculations (a geometry optimisation and a TDA-DFT excited-states 

calculation). 

 

 Calculation monitoring is traditionally achieved by: 1) checking the status of the job using the 

relevant queuing manager, for example with the squeue command; and 2) checking the final lines 

of the calculation engine log file, for example using the less or tail commands. Digichem provides 

an alternative that does not depend on external tools, and is more convenient for novice users, by 

means of the Flags sub-directory. Within this folder are a number of text files with distinctive names. 

These files are all empty, but the name of each file conveys information about the status of the 

calculation, and new files are created, and old ones are deleted, as certain milestones in the calculation 

are hit. At the beginning of the calculation, the PENDING flag will be the only file present, which 

indicates the calculation is currently in the queue, and awaiting resources. Once the calculation 

reaches the top of the queue and execution begins, the PENDING flag will be deleted and replaced 

with the STARTED flag. Once the calculation is complete, this in turn will be replaced with the 

SUCCESS flag, and the POST phase will begin, and so on. In this manner, it is possible to monitor 

the entire process of the calculation from the file-explorer, without using any external tools. The 

currently supported file flags, and their meanings, are detailed in Table 1. 
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Table 1. List of currently supported file flags. 

Flag Name Description 

PENDING The calculation has been submitted but has not yet begun. Most commonly, 

this occurs because the calculation is waiting in the queue for server 

resources. 

STARTED The calculation has begun. This flag persists even the calculation has 

completed. 

RUNNING The calculation is currently ongoing. This flag is removed once the 

calculation has completed. 

SUCCESS The calculation has completed successfully. 

CONVERGED The optimisation converged successfully; only relevant to geometry 

optimisations. 

NOT_CONVERGED The optimisation did not converge successfully; only relevant to geometry 

optimisations. 

CLEANUP The main calculation has finished, and Digichem is currently cleaning up. 

ERROR The calculation has stopped because an error occurred. 

POST The main calculation has finished, and Digichem is currently performing 

post-analysis. This largely involves writing the PDF report and any 

associated image files. 

DONE All work on the calculation folder is complete, and Digichem will make no 

further changes. The calculation folder can be safely moved, downloaded 

or deleted. 

 

https://doi.org/10.26434/chemrxiv-2024-v9vrf ORCID: https://orcid.org/0000-0001-7183-6022 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-v9vrf
https://orcid.org/0000-0001-7183-6022
https://creativecommons.org/licenses/by/4.0/


 

 

 

 

 

18 

 

Figure 9. Graph of CPU and memory usage of an example calculation, plotted from the profiling 

data provided by Digichem. The calculation was the optimisation of Naphthalene, performed at the 

PBE0/6-311G**/GD3BJ level of theory, in the gas-phase, using Orca with 4 CPUs and a maximum 

memory allocation of 10 GB. Profiling was performed every 1 s. The CPU usage is the total for all 

CPUs, so 400% corresponds to 4 CPUs working at maximum load. 

 

The flags directory conveys information about the status of each calculation and can be used to check 

for when the calculation has completed, but it conveys no information on the resource usage of the 

calculation. The CPU usage, memory usage and read/write speed of the calculation over time is of 

particular importance to both users of computational chemistry and designers of new software, as it 

helps to identify ‘bottlenecks’ (i.e., the slow part) of a calculation, and to diagnose out-of-memory 

failures. Digichem provides calculation profiling for all of its supported calculation engines, and 

records the following information: 1) CPU usage; 2) real; and 3) virtual memory usage; 4) total 

number of bytes read from the file system; 5) instantaneous read speed; 6) total number of bytes 

written to the file system; 7) instantaneous write speed; and 8) the number of new processes spawned 

since the last profiling step. This information is continuously logged to a CSV file as the calculation 
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progresses, so it can be inspected even before the calculation has completed, and the profiling 

frequency can be manually adjusted to favour either higher resolution (more profiling steps) or lower 

file size (fewer profiling steps). The CPU and memory statistics for an example optimisation 

calculation are shown graphically in Figure 9, which clearly details the short, large decreases in CPU 

usage surrounding a new energy calculation step starting. 

Calculation Analysis (digichem result) 

After each calculation has completed Digichem then automatically performs parsing of the 

calculation log file. In the first instance, Digichem determines whether the calculation has completed 

successfully, which can normally be detected by the presence of a trigger line at the end of the 

calculation (for example, “****ORCA TERMINATED NORMALLY****” for Orca, or “Normal 

termination of Gaussian” for Gaussian), as well as by checking if the exit code of the calculation 

engine is 0. For a geometry optimisation, the optimisation must also have converged to a minimum 

for the calculation to be considered successful. The success/failure status of the program is used to 

set the SUCCESS or ERROR file flags, as appropriate, and is also used to determine whether to 

continue to the next calculation in the queue. If the calculation is not successful, no further 

calculations in the chain will be submitted. This prevents errors being accidentally propagated to 

subsequent calculations and wasting CPU time. 

Figure 10. Excerpts from an example result summary output file written by Digichem. 
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 If the calculation was successful, Digichem then proceeds to perform a more complete 

analysis of the output. The calculation log file is parsed using the cclib56 library, which is able to 

extract various numerical results, such as orbital energies and vibrational frequencies, as well as vital 

calculation metadata, including the DFT functional/calculation method, basis set and solvent. 

Additional data, which is not present explicitly in the calculation output, is also calculated by 

Digichem. This includes simulated absorption spectra, using Gaussian-broadened electronic excited 

states or vibrational frequencies, simulated NMR spectra, fluorescence decay rates, the dissymmetry 

factor of transition dipole moments,81 and spin-orbit coupling, the latter of which is calculated using 

a modified version of the PySOC program.82 The processed data is saved to a number of text files in 

the Results directory of the calculation. The most important of these results, such as the calculation 

metadata, HOMO/LUMO energies and geometry information are available in the summary results 

file (Figure 10). This file is written in a plain-text format which allows it to be easily read using simple 

text editors, including those available on the command line (nano, vi, emacs, etc), and thus provides 

an immediate overview of the completed calculation data. For further processing with other programs 

or tools, the individual calculation results are saved to a number of tabular CSV files, which can be 

opened using common spreadsheet management programs or graphing software. This gives the user 

the opportunity to perform their own analysis and graphing; however, Digichem also generates graphs 

of the most important results automatically (described below). A CSV version of the summary file is 

also created. Together, these text-based result files can greatly facilitate an author’s ability to conform 

to FAIR data practices because the files are easily read and are program-independent. Additionally, 

all the results processed from the completed calculation are stored in a Digichem-specific YAML file. 

This file can be read by the `result`, `report` and `database` sub-modules to load the full-set 

of calculation results, without having to re-parse the calculation log file. Finally, the output geometry 

of the calculation is stored in the Digichem-specific .si format and the program-independent .xyz 

format, allowing for easy reuse in future calculations or deposition in electronic supplementary 

information. All of the automatically generated result files, and their contents, are detailed in Table 2. 

Table 2. List of the currently supported result files, and their contents. 

File Type Contents 

Absorptions .csv Simulated UV-Vis absorption spectrum using Gaussian-broadened 

excited states, plotted on an energy (eV) scale. 
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Atoms .csv Atoms of the studied molecule and their output geometry. 

Beta .csv Orbital energies and symmetries of any beta orbitals. 

CC .csv Coupled cluster (CC) energies, including at each optimisation step if 

relevant. 

ES .csv Electronic excited state (ES) energies, multiplicities and other data. 

IR .csv Simulated IR absorption spectrum using Gaussian-broadened vibrational 

frequencies. 

MP .csv Møller–Plesset (MP) energies, including at each optimisation step if 

relevant. 

NMR .csv Nuclear magnetic resonance (NMR) data. This file contains a calculated 

NMR shielding, and a matrix of coupling constants between each of the 

non-magnetically equivalent atoms of the molecule. Additional CSV files 

are also created of simulated NMR spectra, with and without simulated 

decoupling, using Gaussian-broadened peaks. 

Orbitals .csv Orbital energies and symmetries. If the calculation uses unrestricted 

orbitals (or otherwise contains both alpha and beta orbitals), this file will 

contain only the alpha orbitals. 

SCF .csv Self-consistent field (SCF) energies, which normally correspond to 

calculations at the Hartree-Fock or DFT level, including at each 

optimisation step if relevant. 

SOC .csv Spin-orbit coupling (SOC) matrix between each calculated excited singlet 

and triplet state. 

Summary .csv Single-row overview of the calculation metadata and principal results. 

Summary .txt The same information as above, but presented in a human-readable text 

format. 

UV-Vis .csv Simulated UV-Vis absorption spectrum using Gaussian-broadened 

excited states, plotted on a wavelength (nm) scale. 
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Vibrations .csv Calculated vibrational frequencies. 

Geometry .si Output geometry in a Digichem-native format, including charge and 

multiplicity. 

Geometry .xyz Output geometry in a program-independent format, not including charge 

or multiplicity. 

Result .sir Complete processed output from the calculation, in a lossless Digichem-

native format, can be used for further processing. 

 

 In addition to the automated parsing that is performed by Digichem at the end of each 

calculation, it is also possible to parse any calculation log file on demand. This is achieved with the 

‘digichem result’ sub-module, which is capable of writing any of the result files that are normally 

generated automatically. This allows the user, for example, to analyse a calculation result that was 

not submitted by Digichem, and still obtain the same data. In addition, although Digichem only 

currently supports submission to the Gaussian, Turbomole, and Orca calculation backends, it can 

parse the calculation results from a further 13 calculation engines. In the current version, these are: 

ADF,83 DALTON,84 Firefly,85 GAMESS,86 GAMESS-UK,87 Gaussian,50 Jaguar,47 Molcas,88 

Molpro,89 MOPAC,90 NBO,91 NWChem,92 ORCA,71 Psi4,93 Q-Chem,48 and Turbomole.49 

Meanwhile, the desired output format can be selected by specifying the relevant option after the 

command, for example CSV can be selected with the ‘-c’ option, or the text summary format with ‘-

s’.  

Often, the scientist is only interested in a subset of the results from the calculation output. 

Digichem supports the extraction of targeted data through filters, which can reference any part of the 

nested hierarchy of data that Digichem stores internally. For example, the filter `-f orbitals` will 

return all orbital information associated with the calculation, while `-f orbitals:HOMO` will only 

return information related to the HOMO, and `-f orbitals:HOMO:energy` will only return the 

energy of the HOMO, and so on. In addition, Digichem supports not only parsing results from a single 

calculation result file, but also many simultaneously by specifying multiple output files after the ` 

digichem result` command. In this way, the results from entire studies can be collated into a 

single spreadsheet file, and specific results can be extracted using the commands described above, 

giving the user the flexibility to acquire any result they require with ease. 
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Calculation Result Storage (digichem database) 

Processing large datasets is one of the more daunting and tedious tasks faced by the computational 

chemist. The analysis tools described above greatly facilitate the processing of results from each 

individual calculation, and the ability to parse multiple output files simultaneously allows for easy 

consolidation of data. However, the result sub-module operates on individual log-files (or the 

Digichem-specific .sir results file), which is only possible while the calculation data remains on the 

server. Often, each user is granted only a limited file-storage quota, and so it is beneficial to remove 

completed calculations from the cluster as soon as they are completed. For large computational 

screens, this means that not all of the log files will be stored on the cluster at the same time, and so 

multiple rounds of analysis will need to be performed to collect all the data, or alternatively log files 

will need to be re-uploaded to the cluster for analysis. Completed log files are also occasionally lost, 

particularly in long-running studies, and in these cases the calculation must be repeated to obtain the 

desired data. Meanwhile, in studies that involve multiple researchers, the `result` sub-module does 

not provide a satisfactory solution for merging the data from each researcher without sharing the 

underlying log files, which may be impractical if the files are large. 

To overcome these issues, Digichem provides the `database` submodule. Firstly, the parsed 

results from each calculation are automatically stored in an internal database, unique to each user. 

The data stored are identical to that found in the `Result` (.sir) file (Table 2), and thus can be used to 

reconstruct any of the result files normally found in the Result folder of each calculation. This parsed 

data is significantly more compact than the raw output from the calculation, and so the formatted 

output from many thousands of calculations can be stored in the database without consuming large 

amounts of file space. The database can then be queried using the ̀ digichem database` command, 

and Digichem provides tools to insert data, using `digichem database insert`, delete data, 

using ̀ digichem database delete`, and extract results using ̀ digichem database search`. 

In addition to the main database, which is activated by default, Digichem also allows for the 

configuration of any number of additional databases. These can be used, for example, to construct a 

shared database between a group of users, or to store the results pertaining to one particular study in 

a separate container. Databases can also be copied, using the `digichem database slice` 

command, which allows for convenient and efficient sharing of datasets between researchers. 

Digichem supports both the JSON-based TinyDB backend for human-readable data storage, and the 
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binary-based Mongita backend for more efficient storage. Both backend programs operate using file-

locks to manage concurrent access, and so can be safely used from multiple processes simultaneously. 

The true utility of any database, however, is the ability to query it for certain results, and the 

commands `search`, `delete` and `slice` all support a simple query language to select which 

calculation results to interrogate. This query language functions similarly to the filter language for 

the `digichem result` command. Each query starts by identifying an attribute to search against, 

for example the HOMO energy, followed by a comparison operator, the most common of which are 

‘<’ (less than), ‘<=’ (less than or equal to), ‘=’ (equal to), ‘==’ (exactly equal to, which is case sensitive 

for text), ‘>’ (greater than) or ‘>=’ (greater than or equal to). Digichem also supports more advanced 

queries to allow comparison of a single item in a list, and for molecular substructure searching. Each 

query is then completed with a value to search against. As a full example, the command `digichem 

database main search orbitals:values:any:label==HOMO:energy:value<-0.5` 

would retrieve all calculation results from the main Digichem database with a HOMO energy of less 

than -0.5 eV. Multiple queries can be specified simultaneously and combine in a logical AND fashion, 

which permits querying for results that fall between a given range. 

In addition to the typical calculation metadata, Digichem also assigns a unique ID to each 

calculation result. These IDs are calculated from the checksum of the corresponding log file, meaning 

they are deterministic, and are used to prevent an identical calculation from being inserted into the 

same database twice. In addition, each calculation has a `history` attribute, which can optionally 

contain the ID of the calculation that occurred before it and thus generated the geometry for the 

following calculation. For example, the `history` attribute of an excited-states calculation might 

contain the ID of the geometry optimisation that preceded it. In this way, the researcher can easily 

determine the chain of calculations that lead to each result. 

Calculation Reports (digichem report & digichem image) 

For experienced practitioners, the tables of data generated by the `result` and `database` 

commands are an efficient way to access the results of a calculation or study. However, for novice 

users, these tables may be daunting and confusing because the data they contain is presented without 

context. If the user does not understand the headings of the table, then the data within it are useless. 

Likewise, if the user is unaware of the correct name of the datum they require, they cannot use the 

filter tools to extract it because they do not know what to query. Even for the experienced users, there 
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are some data that must be visualized to be understood. A classic example for computational 

chemistry would be an orbital density plot, which shows the electron density distribution of an orbital 

throughout the molecule, and these types of results must be shown graphically. Even for data that are 

purely numerical, the user must typically format or produce graphs of the results before they can be 

understood or shared with a collaborator. This work is time-consuming, yet can be automated. 

Figure 11. Excerpts from an example calculation report generated by Digichem. The excited states 

of pyridine at the PBE0/6-31G* level of theory using the Tamm Dancoff approximation were 

calculated. a) Header section, b) abstract summary and 3D rendered image of the molecule, c) 

calculation metadata, d) result summary tables, e) methodology section, f) start of the result 

discussion section, g) 3D rendered of the total electron density at the DFT level, h) start of the 

geometry discussion section, including 2D drawing of the molecule. 

 

 To achieve this, Digichem provides the `report` sub-module. Following from the successful 

completion of a calculation, Digichem will automatically generate a single PDF document that 
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presents all the parsable results of that calculation. This report is presented in a style designed to 

mimic that of a scientific journal article (Figure 11), as we envisioned that this format should be 

familiar to scientists and thus easy to navigate. The report begins with a header section  that contains 

the name of the molecule and the type of calculation that was performed, including which properties 

were calculated and at what level of theory. This is exemplified in Figure 11a, which summarizes the 

calculation of the excited states of pyridine, calculated at the DFT level using the PBE0 functional 

(named PBE1PBE in Gaussian terminology) and the 6-31G(d) basis set. This section is followed by 

the ‘abstract’ (Figure 11b), which contains a brief textual summary of the most important results of 

the calculation. This again contains the molecule name and level of theory, but also included are 

important numerical results, such as the HOMO-LUMO gap, and the energies of the lowest energy 

singlet and triplet excited states. In place of the traditional graphical abstract, the Digichem report 

includes a 3D rendered image of the geometry of the molecule. Next is a table of the metadata of the 

calculation (Figure 11c), which includes the calculation engine used (in this case, Gaussian 19) and 

the execution time. Next is the summary section (Figure 11d), in which headline results from the 

calculation are displayed in a tabular format. The data presented here are identical to those shown in 

the summary text result file generated by the `result` sub-module, but here additional captions and 

more descriptive headings provide context to the tables. A methodology section follows (Figure 11e), 

which contains a textual description of the same metadata shown in Figure 11c, followed by a brief 

description of the analysis performed by Digichem itself. This latter section also includes references 

to the various libraries used to help generate the report, such as Weasyprint,94 Mako,95 and cclib.56 

The final section shown is the discussion, which occupies the bulk of the report. Visible here is the 

discussion of the total system energy (Figure 11f), with an accompanying 3D plot of the total electron 

density of the system at the PBE0 level (Figure 11g), and a discussion of the molecular geometry 

(Figure 11h) including a 2D drawing of the molecule. 
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Figure 12. Example graphs generated by Digichem. a) Graph of HOMO and LUMO energies, and 

nearby orbitals, b) graph of electronic excited states, c) graph of total system energies with 

optimisation step number, d) graph of simulated IR absorption graph. 

 

 Individual sub-section discussions cover all the results from the calculation that Digichem is 

able to parse, which includes total system energies (at the SCF/DFT, MP and/or CC levels), molecular 

geometry, orbitals, permanent and/or transition dipole moments (PDM/TDM), that latter of which 

includes the calculated dissymmetry factor between the electronic and magnetic TDM,81 if both are 

present, electronic excited states, and vibrational frequencies. Each discussion section is populated 

with important numerical results and provides general context for the results, to help the user to better 

understand the data that they have computed. We note that we do not use artificial intelligence or 

machine learning models to write any part of the report or interpret the results, they are compiled 

entirely from predetermined templates.  

Where relevant, these discussion are aided by graphical representations of the data, which are 

drawn using the Matplotlib library.96 This includes a graph of the total system energy plotted against 

each optimisation step gap (Figure 12c), which is useful for diagnosing convergence problems, a 

graph of the HOMO-LUMO and close-lying orbitals gap (Figure 12a), and a graph of the electronic 

excited-state energies (Figure 12b). Digichem is also capable of simulating UV-Vis 

absorption/emission, IR absorption and NMR spectra, by applying a Gaussian line-broadening 
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function to the calculated electronic excited states, vibrational frequencies (Figure 12c) and/or NMR 

shielding parameters and coupling constants. 

Figure 13. Excerpts from an example calculation report generated by Digichem, demonstrating the 

inclusion of 3D renders. The calculation was of the excited states of pyridine at the PBE0/6-31G* 

level of theory using the Tamm Dancoff approximation. a) render of the molecular geometry, b) the 

same, showing the calculated permanent dipole moment of the T1 state, c) the same, showing the 

calculated electric (red) and magnetic (green) transition dipole moment of the S1 state, d) render of 

the HOMO-1 density, e) render of the HOMO density, f) render of the LUMO density, g) render of 

the HOMO (blue) and LUMO (red) orbital densities, overlayed. The colour of the orbital lobes in 

d), e) and f) correspond to the different phases of the orbital. 

 

In addition to these graphs, the Digichem calculation report sub-module can create three-dimensional 

renders of the molecular geometry (Figure 13a), which can be optionally augmented with a plot of 

the permanent dipole moment (Figure 13b) and/or a selected transition dipole moment (Figure 13c). 

In the case of the TDM, both the electric and magnetic components are plotted, if available, as the 
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relative orientation of both is an important parameter for the design of circularly-polarized light (CPL) 

emitters,81 amongst other applications. Digichem can also generate renders of electron densities, and 

currently supports orbital densities, total SCF density, spin-density (for open-shell systems), natural-

transition orbital densities, and excited-state difference densities. In the case of orbitals, Digichem 

only plots the densities of the HOMO (Figure 13e), the LUMO (Figure 13f), the HOMO-LUMO pair 

together (Figure 13g), and any orbitals that are calculated to have a significant contribution to an 

electronic excited-state transition, by default. The ‘significance’ of each orbital is based on the 

probability of an electronic transition involving the orbital; by default, orbitals involved in transitions 

with > 20% probability are deemed to be significant and are included, although this value can be 

adjusted by the user. Any additional orbital can also be manually requested for each calculation. As 

an example, Figure 13d shows a render of the HOMO-1 orbital, because the T2 excited state of 

pyridine has a 67% contribution from a HOMO-1 → LUMO+1 transition. The LUMO+1 orbital was 

also therefore rendered in this report but is not shown in Figure 13. Each 3D image is rendered from 

four different perspectives to allow the researcher to view the molecule from multiple angles, these 

are: 1) along the z-axis; 2) along the y-axis; 3) along the x-axis; and 4) at 45° to the three axes. 

Digichem currently supports two rendering engines for generating these images: VMD,97,98 which is 

well-established software in the field of computational chemistry, but is only free for academic use; 

and Blender,99 using the Beautiful Atoms plugin,100 which by contrast is less well established but is 

open-source. All the examples showcased here are rendered using VMD, but the content is the same 

regardless of the engine used; only the visual style of the render is different.  

In the same manner as the `result` sub-module, the report program has both an automated and 

manual implementation, and reports can be generated at any time using the `digichem report` 

command. As for the `result` program, this sub-module can also be used to parse calculations that 

were not submitted with Digichem, and so it is not necessary to re-submit old, completed calculations 

only to generate a new report. However, unlike for numerical results, image generation requires the 

binary checkpoint file from the calculation, in addition to the text-based log file, and if this is absent 

then the calculation will need to be repeated. Regardless of whether it is generated automatically, or 

through the `digichem report` command, each report contains not only the final PDF file, but 

also individual image files for every graph and 3D render used within it. These images are available 

in both a portable, low-quality JPEG format, and a publication-ready PNG format, and can be readily 

included in the user’s own works. Digichem also offers the ̀ digichem image` command to generate 
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only single images, for situations in which the entire report is not needed or the user requires an image 

that is not included by default. For example, the command `digichem image output.log --

image HOMO-10` can be used to render the HOMO-10, which would typically be absent from the 

automatically generated report, while the command `digichem image output.log --list` 

can be used to list all the available images that Digichem can render from a given calculation. 

Figure 14. Excerpts from an example calculation report generated by Digichem, demonstrating 

tabulated data. The excited states of pyridine at the PBE0/6-31G* level of theory using the Tamm 

Dancoff approximation were calculated. a) table of molecular geometry, b) table of selected 

molecular orbitals, c) table of electronic excited states, d) table of transition dipole moments. 

 

 Following from the discussion section, the penultimate part of each report contains the tables 

of results. This section contains tables of all the data that were parsed by Digichem from the 

calculation, and their structure broadly matches those of the CSV files written to the Result directory 

at the end of the calculation. The results tabulated here include the molecular geometry (Figure 14a), 
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selected molecular orbitals energies and symmetry (Figure 14b, which orbitals appear here is 

configurable), electronic excited states (Figure 14c), including energies, symmetries, multiplicities, 

equivalent photon wavelengths, oscillator strengths and contributing orbitals, transition dipole 

moments (Figure 14d), including parameters important for CPL such as the calculated dissymmetry 

factor, spin-orbit couplings, vibration frequencies and symmetries, and NMR shielding parameters. 

These tables serve as an in-depth depository of the calculated results, in contrast to the higher-level 

analysis provided by the discussion section. Finally, the last part of the report (not shown here), is the 

bibliography, containing references to the external libraries and programs used by Digichem to 

generate the report. Together, the data contained in each calculation report should be sufficient for the 

needs of computational chemistry users of all experience levels, and in many cases, they remove the 

requirement for the scientist to use external tools to process or format the calculation output. The 

automatic generation of publication-ready 3D renders saves considerable time for the chemist, both 

because this task is tedious, and because the renders themselves take time to compute. Lastly, the 

portable nature of the PDF means it is ideally suited for the sharing of results with collaborators and 

colleagues, and because all the results of the calculation are included within it (at least to the extent 

parsable by Digichem), it is rare that the raw calculation output needs to be distributed. 

Program Status and Future Work 

 

Figure 15. Graph of the running total number of calculations submitted with Digichem in the 

Zysman-Colman research group over time. 
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Digichem has been in development for over three years, during which time it has been extensively 

tested by the Zysman-Colman research group. Since mid-February 2021 (when we first began 

recording usage information) to the end of April 2024, Digichem has been successfully used to submit 

53,406 calculations (Figure 15a), an average of 46 calculations per day. By the time of writing of this 

article, Digichem has entirely replaced the manually-operated calculation pipeline for nearly all of 

the group’s research. The program currently supports three computational engines, which are 

Gaussian50, Turbomole,49 and Orca71, with the latter only being introduced in November of 2022 

(Figure 15, red line). Due to its more recent inclusion, some of the more advanced analysis features 

are not yet supported for Orca, including natural transition orbitals and difference density plots, and 

these are features we intend to incorporate soon. We are actively considering the support of new 

computational engines, particularly those that offer complementary types of calculations that are not 

supported by the current roster of backend programs. In particular, the Python native computational 

package PySCF101 appears to be an ideal candidate, considering it shares the same programming 

language as Digichem, it has an open-source license, and it supports a wide-range of double-hybrid 

DFT functionals, which have recently shown great promise for the prediction of challenging 

molecular properties in the field of thermally activated delayed fluorescence.102 Meanwhile, we are 

continuing to expand the range of metadata that Digichem can parse, and in a forthcoming version 

we will add support for recognising the different excited states methodologies (e.g., TDA-DFT vs 

TD-DFT), as well as pertinent performance data, such as the number of CPUs and the amount of 

memory that was allocated to each calculation. We are also looking to expand upon the program’s 

support for in-series calculation queuing, as Digichem is not currently able to automatically submit 

multiple calculations from one completed calculation in a branching fashion. Finally, we intend to 

develop an additional web-based interface to the program to further increase the approachability of 

computational chemistry, which would be particularly appreciated by the novice user. 

 

Availability and licensing 

We have demonstrated through our continuing usage that Digichem is ready for use in active research 

environments. To facilitate this, the Digichem project has been split into two main components. Core 

components of the program (Digichem-core) have been released as a python library under the 
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permissive, open-source BSD-3-clause license. This library is freely available for any purpose and 

can be incorporated into computational workflows by the user. Currently, the library contains 

functionality pertaining to results parsing, image generation (both 2D graphs and 3D density plots), 

file interconversion, simulated spectroscopy (vibrational frequencies, nuclear magnetic resonances 

etc.), and other miscellaneous functions. Meanwhile, the full program is available in a closed-source 

format (i.e., compiled binary only) that contains bundled dependencies (produced using 

PyInstaller103). This program is released under a timed license that is free to use for any purpose, but 

automatically expires after a set duration (currently set to 3 months from release). New releases 

(compiled automatically every night) are automatically upgraded with a new license with a new 

expiry. We have chosen this licensing model for two reasons: 

• To ensure users remain up-to-date with recent releases. As the software license expires every 

3 months, this ensures the user updates the program at least this frequently. This is important, 

particularly during this rapid development phase, to ensure that crucial bug fixes (as well as 

new features) are distributed to end-users. We have chosen 3 months as a compromise between 

convenience (to not force constant updates) and recentness. 

• All software requires updates, maintenance, and development to remain useful and relevant. 

In a fully open-source project, this requires a critical mass of committed developers to sustain, 

many (if not all) of whom are not directly paid for their time. This can be difficult to achieve, 

especially in academia, as evidenced by the examples of software that do not see updates past 

their initial publication, and/or are no longer available.104–106 We are committed to the 

continued development of Digichem, and acknowledge that this cannot be done for free, 

forever. By adopting this licensing scheme, we are able to explore funding strategies for future 

development, either through commercialisation, sponsorship, or other means. 

Digichem-core is available from ref.,107 while the full Digichem program is available from ref.108 

Conclusions 

We have developed a program designed to automate and simplify the computational chemistry 

pipeline. We have included tools that reduce the tedium, duration, and likelihood of errors in 

performing calculation submission, management, and analysis for studies of all sizes, but we have 

particularly focused on performing large-scale computational screens where these issues are normally 
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exasperated. The program is designed to be used by computational chemists of all skill levels and 

experience, but we expect it to be of particular value to novice users, who would normally find the 

process of learning the intricacies of the pipeline the most daunting. We have extensively tested this 

program over a period of more than three years, and the future direction of the project has been 

outlined. Through the continued development of Digichem, we continue to strive towards making 

computational chemistry accessible for all. 
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