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Abstract

The forward screening and reverse design of drug molecules, inorganic molecules,
and polymers with enhanced properties are vital for accelerating the transi-
tion from laboratory research to market application. Specifically, due to the
scarcity of large-scale datasets, the discovery of polymers via materials infor-
matics is particularly challenging. Nonetheless, scientists have developed various
machine learning models for polymer structure-property relationships using only
small polymer datasets, thereby advancing the forward screening process of
polymers. However, the success of this approach ultimately depends on the diver-
sity of the candidate pool, and exhaustively enumerating all possible polymer
structures through human imagination is impractical. Consequently, achieving
on-demand reverse design of polymers is essential. In this work, we curate an
immense polymer dataset containing nearly one million polymeric structure-
property pairs based on expert knowledge. Leveraging this dataset, we propose a
Transformer-Assisted Oriented pretrained model for on-demand polymer gener-
ation (PolyTAO). This model produces polymers with 99.27% chemical validity
in top-1 generation mode (approximately 200k generated polymers), representing
the highest reported success rate among polymer generative models. Addition-
ally, the average R2 between the properties of the generated polymers and their
expected values across 15 predefined properties is 0.96. To further evaluate the
pretrained model’s performance in generating polymers with additional user-
defined properties for downstream tasks, we conduct fine-tuning experiments on
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three publicly available small polymer datasets using both semi-template and
template-free generation paradigms. Through these extensive experiments, we
demonstrate that our pretrained model and its fine-tuned versions are capa-
ble of achieving on-demand reverse design of polymers with specified properties,
whether in semi-template generation or the more challenging template-free gener-
ation scenarios, showcasing its potential as a unified pretrained foundation model
for polymer generation.

Keywords: Reverse On-Demand Design; Polymer Discovery; Generative Model; Large
Language Model

1 Introduction

The array of potential materials available on Earth is staggering, with estimations
reaching as high as 1060[1]. However, this figure may prove to be even more expansive
in reality, considering factors such as lattice defects in inorganic materials and the
stochastic, multi-scale structures inherent in polymers[2].

Machine learning (ML) has emerged as a formidable tool in the quest for efficiently
discovering candidate structures capable of serving as viable ’materials’, showcasing
notable accuracy and efficiency across various domains including inorganic materials[3,
4], metal materials[5, 6], organic molecules[7, 8], and polymer materials[9, 10]. Yet, the
journey towards developing polymer materials presents distinct challenges owing to the
scarcity of data and the intricate cross-scale structure-property relationships[11–16].
In the realm of ML-assisted polymeric materials discovery, two primary methodolo-
gies can be delineated: Forward Screening and Reverse Design. The Forward
Screening entails the utilization of models to sift through candidate structures from
a predetermined pool of potential polymers. A gamut of ML models, ranging from
rudimentary to sophisticated, including feed forward neural network[17, 18], con-
volutional neural networks[19, 20], graph neural networks[21–23], recurrent neural
networks[24], and more recently, Transformer models[16, 25, 26], have been used to
establish surrogate models for polymer forward screening. Although this approach
yields commendable efficacy, particularly with small polymer datasets[14, 27, 28], there
remains a risk of overlooking structures that transcend human imagination[29, 30].

Conversely, the Reverse Design paradigm enables the direct, on-demand design of
candidate structures tailored to meet performance specifications, obviating the neces-
sity for a predetermined pool of candidates. This represents a more optimal strategy
for bespoke polymer design and harbors the potential to yield candidate structures
that elude expert intuition. At its core, this paradigm is underpinned by generative
models, such as the variational autoencoder (VAE)[31, 32], diffusion models[33, 34],
and Transformer[35, 36], and has witnessed groundbreaking advancements, particu-
larly in the design of organic small molecules and drugs[31, 34, 37], with the percentage
of chemically valid molecules generated surpassing 99%[34].

Inspired by the success of molecular generation models on small molecules and
drugs, polymer scientists are also endeavoring to develop generative models tailored
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to the dynamic demands of polymer applications. Batra et al.[29] introduced a mod-
ified VAE designed to generate polymer repeat units based on SMILES notation,
while they found the chemical validity of the generated polymers was less than 30%.
This stark contrast with the higher validity observed in generative models for small
organic molecules is largely due to the presence of two unique characters (’*’) in
polymer SMILES strings[15, 29]. These characters, which do not correspond to any
chemical elements but signify distinct polymerization points[38], add complexity to
polymer generation and diminish the performance of generative models trained on
limited datasets[15]. Indeed, training on larger datasets holds promise for enabling the
model to learn the intricacies of polymer chemistry[16, 25, 26]. Meanwhile, polymer
scientists attempted to represent polymers using molecular graphs as an alternative
representation method to enhance the chemical validity of generated polymers. Kim et
al.[15], Liu et al.[39], and Gurnani et al.[30] have respectively employed graph neural
networks for training polymer generative models. These efforts have yielded signifi-
cant improvements in the chemical validity of generated polymers, with success rates
ranging from 16.07 to 89.40%, 44.03%, and 93%, respectively.

Although there has been improvement in the proportion of chemically valid
polymers generated at present, current polymer generative models still encounter
significant challenges: 1) Foundational models can help boost the performance of down-
stream tasks[40], especially in the field of chemistry where the small data phenomenon
is frequently encountered. The absence of pre-trained foundation models for poly-
mer generation is a critical limitation. Due to constrained polymer datasets, polymer
scientists often train polymer generative models from scratch using small, property-
specific datasets, such as those tailored for dielectric performance [30, 39]. However, a
pre-trained foundation model holds the promise of leveraging small datasets for vari-
ous polymer properties, facilitating the accurate generation of polymers with diverse
properties. 2) Current polymer generative models are trained based on SMILES-to-
SMILES translation[29] or graph-to-graph translation[15, 30, 39] (or reconstruction).
The unsupervised nature of this strategy inherently requires more data to learn hidden
chemical patterns. As a result, the ability of the current polymer generative models
to generate chemically valid polymers is limited. 3) When generating new molecules,
these unsupervised approaches typically involves modifying the numerical representa-
tions within the hidden layers of generative models, which are then decoded into new
polymer structures. Thus this approach necessitates an initial template polymer with
the desired properties, yet identifying such templates is a formidable challenge[41].
Besides, due to the large dimensionality of the editable numeric representation of the
template polymer, the directionality of reverse design is partially out of control[31, 39],
introducing uncertainty to the screening task. 4) Additionally, this generation often
occurs within the neighborhood of the template polymer[39], and it is difficult to effi-
ciently explore the diverse polymer space as polymers with low structural similarity
may exhibit similar properties. For instance, a polymer chain containing hydrogen
bonding interactions may exhibit a similar glass transition temperature to another
polymer chain containing multiple benzene rings[41].

To address these challenges, we refined a polymer structure-property dataset con-
taining nearly 1,000,000 entries based on the largest unlabeled polymer dataset,
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PI1M[42]. Using this curated structure-property dataset, we propose PolyTAO, a
polymer generative pre-trained large language model (LLM), via supervised learning
(Figure 1). The pre-trained model demonstrates impressive polymer generation capa-
bilities, with chemical validity exceeding 99% when generating a total of approximately
200,000 polymers in top-1 mode. We calculated the 15 pre-defined fundamental prop-
erties of the generated polymers, showing extremely high prediction accuracy with the
expected values (the average R2 is 0.96). We further tested its ability to generate poly-
mers with other user-defined properties in multiple downstream tasks and explored
the feasibility of the progressive semi-template and completely template-free polymer
generation. The results demonstrate its excellent performance in on-demand reverse
polymer generation, and the generated polymers exhibits diverse structural features,
which showcases the model’s ability to thoroughly explore the polymer space, as well
as its capabilities as a foundational polymer generative model.

15 Pre-defined Polymer Properties
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Fig. 1 (a) Model architecture of PolyTAO. Using a set of 15 predefined fundamental features related
to polymers as input, it has demonstrated impressive accuracy in generating the SMILES of polymer
repeat units that satisfy these features via supervised learning for conditional generation. Subse-
quently, we validated the model’s ability to generate polymers with other user-defined properties by
generating polymers with specified band gaps (b), atomization energy(c), and electron affinity(d).
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2 Results

2.1 Performance of PolyTAO on polymer generation

2.1.1 Top-1 generation

We first conducted top-1 generation experiments (i.e., generating one polymer for
each input) using the pre-trained model on the test set, resulting in a total of 199,159
samples generated. Among them, 99.27% were chemically valid, which represents the
highest value among existing polymer generative models to date on the largest test
sample (Table 1). This demonstrates that the model has deeply learned the mapping
between polymeric fundamental properties and SMILES after pretraining via large-
scale supervised learning.

Table 1 Performance of the pre-trained model on the test set via top-1 generation. # Data: number
of training data; # Gen.: number of generated polymers; Val.: validity; UNC: unconditional; CND:
conditional. a Results for two polymer properties (glass transition temperature and band gap). b

Results for one polymer property (i.e., the partition coefficient, logP). c Results for 15 polymer
properties (as illustrated in Methods).

Model Architecture Mode # Data # Gen. Val./% ↑ Average R2↑
SD-VAE[29] CNN UNC 250k 1k 13-27 0.65a

polyG2G[30] GNN UNC 13k 58k 93
IGGM[39] GNN UNC 250k 10k 44.03

Mole. Chef[15] GNN UNC 120k 16.07-89.40 0.96b

Ours Transformer CND 800k 199k 99.27 0.96c

We conducted a statistical analysis of the types of chemical elements present in
our polymer structure-property dataset and the generated polymers (Figure 2). The
most abundant elements are C, N, and O, followed by other inorganic elements such
as S and F, while metal elements constitute a smaller proportion, which aligns with
the empirical knowledge in polymer science. The distribution of element proportions
in the training set (Figure 2a) is similar to that in the test set (Figure 2b), indicating
a relatively uniform dataset partition. Interestingly, in the polymers generated using
the top-1 mode, some metal elements are not generated (Figure 2c). This is because
that each LLM generates tokens (i.e., chemical elements) based on the probability of
each token’s occurrence, and tokens with very low probabilities may not be generated.
If necessary, this can be optimized by increasing the proportion of metal polymers in
downstream tasks.
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Fig. 2 Statistical analysis of the types of chemical elements of the: training set (a), test set (b) and
generated polymers (c). Gen.: Generated.

In order to demonstrate whether the generated polymers possess the expected
fundamental properties specified in the input parameters, we examined the afore-
mentioned properties of the generated polymers, where we found a high degree of
agreement between them (Figure 3). For the chemically valid and unique polymers
generated by the pre-trained model, the average R2 value across the 15 polymer
properties is 0.96. This indicates that PolyTAO can preliminarily achieve the on-
demand generation of polymers with specified properties. This result instills confidence
in our model’s ability to generate polymers with other properties, as discussed in
the Applications of PolyTAO in generating polymers with other user-defined prop-
erties section. Interestingly, for certain properties, such as the number of aliphatic
carboncycles (NumAliphaticCarboncycles) and the number of aliphatic heterocycles
(NumAliphaticHeterocycles), the generated polymers exhibit relatively poor consis-
tency. However, these inconsistencies are advantageous for the model to produce
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structurally diverse polymers, facilitating the generation of various ring structures (as
illustrated in S2 of SI).

R2=0.993 R2=0.995
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Fig. 3 The fitting plots of the properties generated by the model (Generation) against the expected
properties (Ground Truth). (b)-(c) The chemical space of polymers after t-SNE dimensionality reduc-
tion, with the background color indicating the randomly selected training set from PI1M and (b)
represents top-1 generation, with (c) representing top-10 generation. (d) illustrates the SAscore of
PI1M and the valid, unique, and novel molecules generated under the top-10 mode.

2.1.2 Top-k (k>1) generation

Due to the stochastic and probabilistic nature of generation of LLMs, to validate the
generation stability of PolyTAO, we examined the model’s performance in top-k gen-
eration. Specifically, we generated three (top-3), five (top-5), and ten (top-10) samples
for the same input, evaluating the Validity, Uniqueness, and Novelty of the generated
polymers. Additionally, we assessed the Tanimoto similarity coefficient between the
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generated polymers and input samples, as well as the synthesizability (SAscore) of
the generated polymers. The results are reflected as Table 2. In the top-k generation
mode, the model tends to be ”adventurous” in its generation, resulting in polymers
that maintain a high level of uniqueness and novelty. Compared to top-1 generation
(Figure 3b), top-k generation expands the chemical space of generated polymers, even
extending beyond the chemical space corresponding to the training set (Figure 3c).
Regardless of the value of k, the chemical similarity between the generated polymer and
the polymer corresponding to the input prompt is consistently low. In contrast, gener-
ating new molecules based on artificially modified latent representations of molecules
tend to produce molecules with very high similarity[39]. However, this ”adventurous”
generation can also lead to the generation of chemically invalid polymers, resulting in
a slight decrease in the chemical validity of the generated polymers compared to top-
1 generation, but still higher than previous polymer generative models. Impressively,
for all valid, unique and novel molecules generated under the top-10 mode (totaling
1,828,027), and their synthesizability did not become more challenging, demonstrating
a synthesizability similar to that of PI1M as illustrated in Figure 3d.

Table 2 Performance of the pre-trained model on the test set via top-k (k=3,5,10)
generation.

Metric Top-3 Top-5 Top-10
Validity ↑ 97.75±0.0001 97.76±0.0002 97.75±0.0004

Uniqueness ↑ 99.07±0.0001 99.06±0.0002 99.08±0.0001
Novelty ↑ 93.56±0.0009 93.73±0.0005 94.01±0.0006

Similarity ↓ 0.302±0.0002 0.303±0.0002 0.306±0.0002
SAscore ↓ 3.84±0.77 3.83±0.77 3.85±0.77

2.2 Applications of PolyTAO in generating polymers with
other user-defined properties

The above results demonstrate the impressive capability of PolyTAO in generat-
ing polymers with pre-defined foundational properties. Then we further assessed the
model’s ability to generate polymers with other user-defined properties to demonstrate
its robustness and universality in the on-demand design of polymers.

In principle, polymer generation based on SMILES-to-SMILES translation or
graph-to-graph translation require a template polymer that meets the desired
performance[15, 29, 30, 39]. By editing the latent representation of the template poly-
mer and decoding this representation, new polymers can be generated. We refer to this
paradigm as template-based polymer generation. However, due to the randomness
in editing the latent representation, achieving on-demand design through this method
is limited[39]. Additionally, finding template polymers that meet the requirements
is also an arduous and challenging task[38, 41, 43–45]. Instinctively, By incorporat-
ing the target properties directly into the input prompts in a similar manner to the
pre-training phase, there is potential to achieve on-demand generation of polymers
without providing template polymers. Though this approach represents an advance-
ment compared to template-based polymer generation, the input at this stage includes
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not only the target properties but also the 15 fundamental polymer properties we
defined. Therefore we define this paradigm as semi-template generation.

Then, we tested the performance of the pre-trained model in the semi-template gen-
eration scenario. We finetuned this pre-trained model on ten public polymers datasets
of different properties (S3 of SI) to obtain expert LLMs for each property. However,
since experimentally validating the properties of generated polymers on a large scale is
resource-intensive, we attempted to train proxy models for each dataset to efficiently
validate the properties of the generated polymers on large-scale. To be specific, we
utilized graph neural networks, known for their excellent performance in molecular
property prediction, to train proxy models for each property. Since the accuracy, i.e.,
coefficient of determination (R2), of the proxy models is crucial in assessing the prop-
erties of the generated polymers and the performance of expert LLMs, we selected the
top three proxy models with the highest R2 (exceeding 0.9, detailed in S3 of SI) and
the corresponding dataset as subsequent case studies. These proxy models are tailored
for the following polymer properties: band gap, atomization energy, and electron affin-
ity. We then finetuned the pre-trained model using these datasets individually, with
the same data partitioning as when training the respective proxy models. Each poly-
mer property served as an additional vector added to the input prompt (see Figure 1
(b)-(d)). After fine-tuning, the loss of the expert LLMs exhibited convergence (Figure
4a, 5a and 6a).

In the generation of expert LLMs, we conducted top-5 generation (i.e., generating
five samples for each input) and repeated the process for three rounds, to mitigate the
randomness of LLM and assess the model’s ability to generate multiple polymers sat-
isfying the target properties. Here, our main focus is to investigate the feasibility and
reliability of LLM-based polymer generative model in practical usage. Therefore, we
do not delve into detailed discussions regarding the uniqueness of generated polymers
in the following sections.

We selected samples from the test sets for each property, following the criterion
that the proxy model’s prediction for the sample closely matches the ground truth,
aiming to enhance the rationality of utilizing the proxy model to assess the properties
of generated polymers (i.e., at least, the proxy model should be sufficiently accurate
in predicting the properties of input samples). Moreover, we also aimed to ensure that
the selected samples exhibit outstanding properties whenever possible.

Band gap The band gap of polymer holds significant importance in the advance-
ment of polymer-based electronic and photonic devices, as it profoundly impacts their
functionality across domains such as organic photovoltaics and light-emitting diodes.
We take the example of generating polymers with wide band gaps (greater than 6
eV)[30]. Following the aforementioned selection criteria, we opted for the structure
depicted in Figure 4a as the input sample, whose band gap is 6.23 eV measured by the
proxy model, with its 15 fundamental properties plus its band gap serves as the input
prompt. Across 3 rounds of top-5 generation, the expert LLM on band gap yielded
14 out of 15 chemically valid polymers, with 13 out of 14 showcasing novel structures
from the input sample. Impressively, the predictions of the proxy model showcased
that these 13 novel samples demonstrate properties that align with the target band
gap (with a margin of error of 5% from 6.23).
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Fig. 4 Loss of the expert LLM on band gap and the input sample (a) and on-demand inverse
generation on band gap task (b)-(d). The numbers in subfigures (b)-(d) represent the band gaps
predicted by the proxy model (relative to the similarity with the input sample), i.e., predicted band
gap(similarity). During the fine-tuning of this task, the training set consisted of 3042 samples, while
the test set comprised 338 samples.

Atomization Energy The atomization energy of polymers reflects the strength
and stability of the bonds within polymer molecules. Similarly, from the test set of
the atomization energy database, we selected a polymer with high atomization energy
as the input sample (Figure 5a) and its atomization energy is -6.18 eV measured
by the proxy model. The 15 fundamental properties plus the atomization energy of
this polymer are used as the input prompt. After three rounds of top-5 generation,
the expert LLM on atomization energy generated 100% chemically valid and novel
polymers. It is noteworthy that the data size of this dataset is too small for a LLM,
resulting in a slight decrease in the accuracy of generated polymers. According to the
predictions of the proxy model, 11 out of 15 polymers exhibit properties that align
with the target atomization energy (with a margin of error of 5% from -6.18).
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inverse generation on atomization energy task (b)-(d). The numbers in subfigures (b)-(d) represent
the band gaps predicted by the proxy model (relative to the similarity with the input sample), i.e.,
predicted atomization energy(similarity). During the fine-tuning of this task, the training set consisted
of 351 samples, while the test set comprised 39 samples.

Electron Affinity The electron affinity of polymers reflects the polymer
molecule’s ability to accept electrons, a property crucial in photovoltaic applications
and other electronic applications of polymers. Unfortunately, the dataset for this prop-
erty is also relatively small. During the generation, we chose the 15 fundamental
properties plus the electron affinity of the structure depicted in Figure 6a as the input
prompt. The electron affinity of this polymer is 3.14 (measured by the proxy model).
From the results of three rounds of top-5 generation, 100% of the generated polymers
were chemically valid, with 14 out of 15 being novel. According to predictions from
the proxy model, 10 out of 14 polymers exhibit properties that align with the target
electron affinity (with a margin of error of 5% from 3.14).
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Fig. 6 Loss of the expert LLM on electron affinity and the input sample (a) and on-demand inverse
generation on electron affinity task (b)-(d). The numbers in subfigures (b)-(d) represent the band
gaps predicted by the proxy model (relative to the similarity with the input sample), i.e., predicted
electron affinity(similarity). During the fine-tuning of this task, the training set consisted of 331
samples, while the test set comprised 37 samples.

2.3 Template-free generation: an ambitious task towards
on-demand polymer design

Compared to previous template-based approaches[15, 29, 30, 39], the semi-template
method introduced above takes target properties as part of input, enabling the gen-
eration of polymers with specified properties. This represents an advancement over
entirely template-based polymer generation. However, one more challenging goal is to
achieve template-free polymer generation. The potential scenario for this paradigm
is to provide the generative model with only a desired property value, allowing the
model to freely generate structures that meet the requirements. Clearly, this design
paradigm is ambitious yet more challenging due to the contradiction between the infi-
nite chemical space of polymers and the limited training data available. To assess the
feasibility of our pre-trained model in this challenging task, we conducted fine-tuning
tests using the band gap dataset due to its larger number of data entries. During the
implement, we utilized only the value of band gap as input, with the corresponding
polymer repeat unit SMILES as output (Figure 7a).

Meanwhile, in order to simultaneously achieve a meaningful objective, our aim
is to have the fine-tuned expert LLM generate polymers with higher band gaps. We
used 6.5 eV (higher than previous semi-template generation task) as target, then
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the model was expected to generate polymer structures with band gaps around 6.5
eV. Throughout the generation process, we continued to utilize the top-5 generation
mode and repeated the process for three rounds to assess the stability of the LLM-
based polymer generative model. The generation results in Figure 7b indicate that
the proportion of chemically valid molecules generated is 100%, which is a significant
prerequisite for the success of this task. Furthermore, in this novel task previously
unexplored by polymer scientists, as verified by the proxy model, the expert LLM
can produce no fewer than 2 samples with target band gap (with a margin of error
of 5%) in each round of generation (marked in red font in Figure 7b). In total, 9
polymers exhibit properties that align with the target band gap (with a margin of error
of 5%). Interestingly, compared to template-based and semi-template-based polymer
generation methods mentioned earlier, the template-free approach generates a more
diverse range of polymer structures, showcasing the model’s freedom to explore the
polymer space. These results demonstrate the feasibility of on-demand reverse polymer
generation without template.
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Fig. 7 (a) Fine-tuning the pre-trained model for the template-free generation. (b) The generation
results via template-free generation. The model will aim to generate polymer structures that meet
the specified target values.
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3 Discussion and Conclusion

In this work, we proposed a generative pre-trained model based on LLMs for on-
demand reverse polymer design. The pre-trained model was trained on a meticulously
curated dataset containing nearly one million polymer structures and fundamental
properties, crafted based on expert knowledge. Evaluation on a test set of nearly
200,000 samples revealed that the model generated chemically valid molecules with
a proportion of 99.27%. Through further top-10 generation, the pre-trained model
designed over 1.8 million valid and novel polymer structures, effectively doubling the
entries of the off-the-shelf polymer datasets. These data, along with widely known
datasets like PI1M, can offer a richer candidate pool for paradigms based on for-
ward screening. To achieve the generation of polymers with other specific properties,
we fine-tuned the pre-trained model on three publicly available polymer property
datasets, resulting in expert LLMs tailored to each property. The generation results
of these expert LLMs demonstrate the powerful capability of the model in on-demand
reverse generation. However, for more precise on-demand design, we advocate for
greater efforts from the polymer community to expand polymer property datasets.
Additionally, we attempted an ambitious task using the dataset with a relatively large
amount of data on band gap, aiming for completely template-free polymer genera-
tion. The results indicate that the fine-tuned expert LLM can achieve on-demand
reverse polymer generation based solely on the provided values of the desired polymer
properties.

In summary, we have demonstrated a pre-trained model for on-demand reverse
generation of polymers, and its performance on multiple downstream datasets indicates
its broad applicability and transferability. Meanwhile, by employing more advanced
polymer representations, such as BigSMILES[46], coupled with a larger amount of
polymer data, there is potential to further enhance the model’s performance in on-
demand polymer generation. Also, more efforts, including but not limited to advancing
the acquisition of large-scale BigSMILES strings and collecting multimodal, multiscale
polymer data, need to be put into practice.

4 Methods

4.1 Polymer structure-property dataset

The largest publicly available polymer structure-property dataset currently is Poly-
Info, containing around 20,000 polymer structure-property pairs. However, this dataset
is insufficient for training a LLM. Recently, a virtual polymer database, PI1M[42], has
been extended from PolyInfo, comprising nearly one million polymer structures but
lacking corresponding property values. Researchers have utilized PI1M for unsuper-
vised pretraining for polymer generation but this unsupervised pretraining paradigm
results in the limited capacity of generating chemically valid polymers[39]. To achieve
unprecedented large-scale supervised learning on this largest polymer dataset, we
opted to compute foundational properties for each polymer structure in PI1M as
descriptors. Due to the significant influence of molecular interactions and chain struc-
ture on the properties of polymers at the microscopic level, we carefully selected 15
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descriptors related to the factors mentioned above. Specifically, we considered: 1)
Molecular weight, providing an approximate constraint on the number and types of
atoms in the repeat unit. 2) Hydrogen bonds, including the types and quantities of
hydrogen bond donors and acceptors. 3) Atom types, including the number of het-
eroatoms apart from the common carbon and hydrogen atoms in polymers. 4) Chain
structure, including the types and quantities of rings and the number of rotatable
bonds, which account for the flexibility of polymer molecules. For the specific list
and the corresponding description, please refer to Section 1 (S1) of the Supporting
Information (SI). The above foundational properties and their corresponding SMILES
constitute our polymer structure-property dataset.

4.2 Prompt Engineering

Like any LLM, designing high-quality prompts is crucial for on-demand generation by
the model. We computed 15 fundamental physicochemical properties for each polymer
repeat unit’s SMILES and concatenated them to form the input prompts for PolyTAO.
Except for molecular weight, all other physicochemical properties are of integer type.
To reduce the input token size and improve training efficiency, we also converted the
molecular weight to an integer type. In fact, this approach, imprecisely specifying the
molecular weight and instead slightly ”fuzzifying” it, increases the model’s freedom
when generating new molecules, thus facilitating the generation of structurally diverse
molecules (as shown in S2 of SI).

4.3 Model Settings

Currently, there are many open-source large language models (LLMs) available for
pretraining in chemical tasks. However, our previous research demonstrates that LLM
based on a deep understanding of chemical knowledge may perform better even on
less data[26]. Taking into account both model complexity and computational device
requirements, we have chosen our previously developed PolyNC[26] as the foundational
model. PolyNC is a LLM based on polymer structures with over 22 million parameters,
capable of predicting various properties such as the glass transition temperature of
polymers, benefiting from the cross-attention mechanism[47].

4.4 Polymer generative pretraining via large-scale supervised
learning

During the pretraining, the foundational properties will be concatenated as input,
while the corresponding structures (SMILES) serve as the output (Figure 1(a)). Com-
pared to generative models using SMILES-to-SMILES translation and graph-to-graph
translation, our paradigm of property-to-SMILES aims to enable the model to cap-
ture more foundational properties of polymers and their corresponding structures
(SMILES). We randomly partitioned the polymer structure-property dataset into a
training set (80%, ∼0.8 million) and a test set (20%, ∼0.2 million) for pretraining.
During fine-tuning for ”semi-template” generation with other user-defined properties,
we added other polymer’s properties as additional vectors to the input prompt (Figure
1(b)-(d)).
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4.5 Model Metrics

For molecular generative models, the primary metric of interest is the chemical Valid-
ity (the percentage of chemically valid molecules), which is our foremost consideration.
Additionally, LLM can produce multiple outputs for the same input (i.e., top-k gen-
eration), which is beneficial for generating structurally diverse candidate molecules
and helps assess the stability of the model’s generation capability. Therefore, for top-k
generation scenarios, we also evaluate the Uniqueness (the percentage of chemically
valid molecules generated that are mutually unique in each generation of the k times
generation) andNovelty (the percentage of generated valid molecules not in the train-
ing set and the test set in each generation of the k times generation) of the generated
polymers.

It is worth mentioning that previous polymer generative models rarely discussed
the similarity of generated polymers to existing polymers and, more importantly, the
synthetic feasibility of the generated polymers. Thus, in top-k generation scenarios,
we additionally assess the Similarity (i.e., Tanimoto similarity[48]) and synthetic
feasibility[49] (SAscore) of the generated polymers.

Data availability. The PI1M dataset is publicly available at https://github.com/
RUIMINMA1996/PI1M. The 15 fundamental properties in the pre-training stage were
calculated using RDKit package (version: 2023.3.2). Our pre-trained model is publicly
available at https://huggingface.co/hkqiu/PolymerGenerationPretrainedModel. Any
other data and code related to reproducing the results will be provided promptly upon
request.

Code availability. The source codes of demos for generation polymers
via semi-template and template-free are available at https://github.com/hkqiu/
PolymerGenerationPretrainedModel.

Supplementary information. The following files are available free of charge.

• Polymer physicochemical properties selected
• Structurally diverse polymers generation
• Proxy model for evaluation the properties of the generated polymers
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