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Abstract 
We present LSM1-MS2, a pre-trained self-supervised foundation model designed for tandem mass 

spectrometry (MS/MS) utilizing a transformer architecture with custom tokenization for masked MS2 

peak reconstruction. Our model is fine-tuned on smaller, labeled datasets for tasks such as compound 

property prediction, spectral matching, and de novo molecular generation. LSM1-MS2 demonstrates 

superior performance compared to traditional supervised models, achieving high accuracy with minimal 

labeled data. It outperforms conventional methods in database lookups and molecular query retrievals 

and shows promising results in the opening field of de novo molecular generation. The model's efficiency 

in spectral lookup tasks, with significantly reduced evaluation times, underscores its potential for large-

scale applications. Our findings highlight the transformative capability of self-supervised pre-training in 

enhancing the predictive power of models for mass spectrometry, particularly in data-limited scenarios. 

The success of LSM1-MS2 in property prediction, database spectral lookup, and molecular generation 

paves the way for its application in metabolomics and drug discovery, facilitating robust and scalable 

analysis with reduced data requirements. 

1) Introduction 
Advances in Deep Learning and Artificial Intelligence, such as transformer-based architectures1,2, 

pioneered in the Natural Language Processing (NLP)1,3,4 and Computer Vision (CV)2,5 fields are 

increasingly being applied to chemical and biological data6–9. This is for good reason. Deep learning 

strategies promise better predictive models for life science problems by exploiting the highly unstructured 

information content of biological and chemical data. Due to their complexity, and despite routine 

collection, we hypothesize that most of the unstructured information content present in chemical and 

biological data, e.g., mass spectrometry data, is left unexploited by most predictive modeling and insight 

generation efforts.  

One faces immediate challenges adapting deep learning methodologies from NLP and CV to the life 

sciences. The structure and abundance of genes, transcripts, proteins, and biomolecules (c.f., metabolites, 
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lipids, drugs, drug metabolites, toxins, bioactives, etc.) are often continuous valued, sparsely non-zero, 

and span orders of magnitude in dynamic range. These challenges make deep learning on life science data 

particularly challenging10. That said, there has recently been rapid progress in the application of deep 

learning methods to life sciences data, including for mass spectrometry data7,11–15. 

A more fundamental challenge facing deep learning efforts in the life sciences, however, is that most 

methods pioneered for NLP and CV problems were borne of environments with abundant labeled data 

(e.g., text and image data obtained from the web, mining corporate documents, driving data etc.). Many 

of the AI advances generating current excitement in text and image processing have been trained on 

millions, tens of millions, or hundreds of millions of labeled data to achieve state-of-the-art 

performance3,4,16. In the life sciences, it is rare to come by high-quality labeled data sets of comparable 

size. In this context, labeled data means that the data are annotated with all relevant metadata - be it 

chemical, biological, pharmacological or clinical. Pre-clinical datasets in drug discovery might include a 

few thousand labeled points, whereas clinical datasets may only house a few hundred. Even where large 

data archives have been curated, such as gene and metabolite databases, annotation is often sparse and 

inconsistent. For example, less than 2% of compounds detected in typical high-resolution liquid 

chromatographic mass spectrometric (LC/MS) and tandem mass spectrometric (LC/MS/MS) 

metabolomics experiments are readily annotated using available databases17. Tandem mass spectrometry 

data has a specific problem due to lack of precursor specificity in the collected data. Precursor selection 

in MS/MS is typically 1 Da, while precursor and fragment detection ranges from 1-10 ppm. The 

unintentional leakage of fragments from poorly selected precursors creates a large challenge in both the 

curation of MS/MS spectra and the use of databases for identification. This large low-quality data, while 

not ideal for supervised machine learning techniques, empowers the use of self-supervised models that can 

be trained at scale then fine-tuned on high quality curated data for a variety of downstream predictive 

tasks. 

Thus, for the life sciences to capitalize on advanced deep learning, there is a fundamental need to reconcile 

the healthy data appetites of transformer-based architectures with the practical size limitations of real-

world datasets. Again, we look to advances made in the NLP and CV communities: self-supervised pre-

training of large semantic foundation models using unlabeled data3,4,18. While labeled biological datasets 

are typically small, the aggregation of these datasets across diverse applications and experiments is quite 

large. For instance, through a combination of internally generated and externally sourced19 data 

acquisitions, we have accumulated more than 100 million unlabeled MS and MS/MS spectra, cumulative 

over a wide variety of underlying applications. These data are abundant, but unlabeled. 

It thus remained to be shown that pre-training on these (or subsets thereof) unlabeled datasets yields an 

advantage for predictive modeling when focused on a specific task using a relatively small volume of task-

specific labeled data. Here, we do just that. We provide evidence that self-supervised pre-training of a 

large semantic model (a.k.a., a foundation model) followed by fine-tuning a task-specific model using only 

a relatively small, labeled dataset can work. Additionally, we show the potential for this method to yield 

superior predictive power versus a standalone fully supervised deep learning model trained on a very large, 

labeled dataset. 
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As a concrete demonstration, we report the self-supervised training of an LSM1-MS2, an early version of 

our Large Spectral Model (LSM) built for MS2, representative of the overall foundation models our team 

is building for primary omics data. We fine-tune the LSM1-MS2 on the specific task of chemical property 

prediction, and we compare its performance versus recent highly-successful fully-supervised models for 

chemical property prediction7,11. Like the standalone deep learning model results, our fine-tuned predictive 

model outperforms property prediction obtained by spectral similarity searching of large reference 

databases, i.e., spectral look-up methods7,11–15. Separately, we show that LSM1-MS2 outperforms both a 

supervised transformer architecture and a heuristic-based method (cosine similarity) in the more 

conventional spectral lookup tasks with substantially less training data than is required to train a fully 

supervised model. Finally, we also show potential in using the LSM1-MS2 for de novo molecular generation 

directly from individual MS2 spectra. These tasks are demonstrated on a variety of test datasets to mimic 

common metabolomics workflows. The first dataset is an ‘Unknown’ dataset, which is both spectral 

disjoint and molecular disjoint. Many molecules in our dataset have more than one representative 

experimental spectrum. This multiplicity is caused by each spectrum representing a unique collision 

energy, ionization mode, liquid chromatography method or other unique experimental variable. Also, 

separate instances of the same molecule may appear in multiple databanks. Evaluation on this dataset is 

analogous to performing analysis on a completely unseen set of data (i.e., new molecular matter). Our 

next dataset is a ‘Known’ dataset which is spectral disjoint, meaning the experimental instance of the 

spectra themselves are not in the training dataset, however, it is not molecular disjoint. This Known 

dataset mimics an experiment where the set of possible molecules analyzed are known but data 

distributions may be different to the test set. Our third dataset was the ‘CASMI 2022’ dataset - used in 

the field of metabolomics as a challenge dataset20. For model development and validation, we also had the 

‘CASMI 2017’21. We also ensured that none of the CASMI 2022 or 2017 samples were present in the 

training dataset to prevent leakage (see Methods for full dataset details). 

2) Results 

2.1) Leveraging Reconstruction-Based Pre-Training for Improved 

Contextual Learning in Mass Spectrometry 

The strength and value of our method lies in our pre-training. Pre-training primes models with contextual 

information for downstream fine-tuning tasks, empirically improving performance compared to supervised 

training only methods. We approach our pre-training in a reconstruction-based masked-signal-modeling 

approach3,22 described in Figure 1a. For fine-tuning on the property prediction and spectral-lookup tasks 

we employ the architecture modifications in Figure 1b.  
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Figure 1: Model Architecture, Pre-Training and Fine-Tuning. a) Our spectrum embedding method. We embed the m/z 

values using two separate embedding layers, one for each of the integer part (nominal mass) and the fractional (mass defect) 

part of the value. We use a single embedding layer for binned intensity. All three layers have a vocabulary size of 1,000. We 

then project the concatenated embeddings through a linear layer before passing them through a transformer encoder. Random 

peaks are masked by replacing the token with a learnable token shared across all masked peaks. Three separate neural network 

classification heads are then used to reconstruct the peak's m/z and intensity values. Loss is calculated on all peaks, both masked 

and unmasked. The precursor peak is never masked. b) We use the mean of all encoded token embeddings for downstream tasks 

by adding a fully connected MLP head. For property prediction, a set of 209 properties are calculated through a featurizer 

(RDKit), the LSM1-MS2 is fine-tuned to predict these properties. For spectral lookup, paired spectra are each fed through the 

LSM, then a projection head to generate a smaller molecular embedding. The model is trained to make the cosine similarity 

match the Tanimoto similarity of their respective SMILES. 

 

While performance on downstream tasks is difficult to predict strictly based on the pre-training metrics, 

we show the reconstruction error on both masked and unmasked peaks for the pretrained model on three 

different test datasets ‘Known’, ‘Unknown’ and ‘CASMI 2022’. Given that unmasked peaks are inputs to 

the model, it is expected that reconstruction performance will be good (Figure 2a) compared to that of 

the masked peaks (Figure 2b). We also observe that the masked peak reconstruction for m/z values has 
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a highest error in CASMI 2022 compared to both the Known and Unknown test sets. This might partially 

explain why CASMI 2022 specific tasks did not match the performance of the other two datasets in 

downstream tasks. 

 

Figure 2: Reconstruction Performance during Pre-Training. a) Absolute reconstruction error for both intensity and 

m/z values for unmasked peaks. Error differences between the three datasets are not meaningful even though some comparisons 

show statistical significance. b) Same error calculations across the masked peaks, as expected the errors for masked peaks are 

higher, with m/z errors being substantially higher than those of unmasked peaks. Additionally, there is a clear difference between 

the three datasets in terms of m/z reconstruction error where the CASMI dataset is the most challenging. N=5,000 peaks. 

 

2.2) Superior Performance in Property Prediction 

For property prediction, we use three baseline methods, a re-implementation of a recently published highly 

performant supervised transformer-based model MS2Prop7, a supervised-only version of our LSM1-MS2 

model, and modified cosine similarity. In our re-implementation of MS2Prop, we train a model using the 

hyperparameters and token embedding strategy described in the original paper. For our supervised-only 

baseline model, we use the same hyperparameters as in our fine-tuned LSM. Finally, to evaluate cosine 

similarity baseline, we retrieve the most similar spectrum in the training dataset for every query spectrum 

https://doi.org/10.26434/chemrxiv-2024-k06gb-v3 ORCID: https://orcid.org/0000-0001-8851-1224 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-k06gb-v3
https://orcid.org/0000-0001-8851-1224
https://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

6 
 

in our test dataset. Then, we impute the query's molecular properties from the properties of the retrieved 

molecule. In our results, we only report best-in-class performance. Thus, given that our MS2Prop and 

supervised-only LSMs are similar supervised-only transformer architectures, we only report the top 

performing supervised model representation (MS2Prop).  

We broke down the RDKit23 properties/descriptors into continuous values (if the values for the test 

dataset ground truth had more than 2 possible values) and binary otherwise (Figure 3). The fine-tuned 

LSM performs significantly better, on average, across continuous properties than both the fully supervised 

transformer model and cosine similarity (Figure 3a) with the Known dataset performing significantly 

better than both the Unknown and CASMI 2022. For the binary properties/descriptors we did not see 

any major differences across the three approaches, (Figure 3b) most likely since these tend to be 

structural descriptors and are much easier to predict than continuous values with a large dynamic range. 

Additionally, there exists a large number of features in the RDKit descriptors that simply are unrelated 

to anything that an MS/MS signal can be informative of and hence might be impossible to predict. We 

do not isolate these however and treat all outputs as being equally likely to be predicted through a single 

MS/MS spectrum in a single mode and single collision energy. Figure 3c shows a single example property 

(QED: Quantitative Estimation of Drug-Likeness) compared across the three datasets and three 

approaches (for all 209 outputs see Supplementary Information). 

 

Figure 3: Property Prediction Task. a) Prediction performance for continuous RDKit properties. In all cases, the LSM fine-

tuned model outperforms both cosine similarity and the fully supervised transformer model. For all three approaches average 

prediction across all properties is substantially better for the Known dataset and drops of for the Unknown and CASMI 2022 

datasets. b) For binary properties we do not see any difference between the three approaches. c) An example property shown 
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(QED: Quantitative Estimation of Drug-Likeness). The same performance trends apply across all properties (see Supplementary 

Information) where R2 values are higher for the LSM vs other approaches even on a challenging dataset such as CASMI. N=~160 

for continuous properties and ~49 for binary properties (but both vary depending on the values in the test set). Error bars represent 

standard deviations. 

 

2.3) Efficient and Accurate Database Spectral Lookup Outperforming 

Conventional Methods in Speed and Scalability 

We evaluate database spectral lookup task through the creation of a spectral database using LSM1-MS2 

embeddings generated with our training set. For each spectrum in our evaluation datasets, we retrieve 

the most similar spectrum in our training dataset as follows: for each query spectrum's LSM1-MS2 

molecular embedding, we find the cosine similarity of this embedding to all the molecular embeddings in 

the training set. We then narrow down our training set search space to a threshold of the query's precursor 

m/z, since the precursor mass is always known for data dependent acquisition of MS/MS spectra. Finally, 

we return the molecule in the precursor-filtered training dataset with the highest cosine similarity to the 

query. 

For the Known and Unknown test datasets the LSM fine-tuned model outperforms conventional cosine 

similarity. However, for the challenging CASMI 2022 dataset, cosine similarity outperforms the LSM 

(Figure 4). Finally, it is worth mentioning that although modified cosine had comparable results for 

many of our metrics on this task, we believe that LSM1-MS2 still is the superior method due to its speed. 

For the spectral lookup task, our modified cosine similarity took roughly 27.4 seconds per sample, with a 

spectral database of size 742,049, compared to 2 milliseconds per sample using LSM1-MS2 (~13,700x 

speedup). Thus, this significant increase in speed makes LSM1-MS2 much more scalable, agile, and useful 

for large quantities of data - and demonstrates its potential for use in on-the-fly decision making during 

spectral acquisition. Finally, given the rise of sophisticated vector search algorithms and databases being 

used with Large Language Models (LLMs) for Retrieval Augmented Generation (RAG)24–26, the LSM1-

MS2 embeddings can easily be utilized in any of these frameworks for very advanced queries and 

substantially faster lookups at immense scale (billions of spectra if needed). 
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Figure 4: Database Spectral Lookup. LSM generally performs better than cosine similarity for a) Known and b) Unknown 

datasets but slightly worse for c) CASMI 2022. d) Tanimoto score predictions drop as the dataset becomes more out of 

distribution (Known -> Unknown -> CASMI). N=1,000 for Known, N=12,274 for Unknown and N=464 for CASMI. Error 

bars represent standard deviations. 

 

2.4) Experimentally Useful De Novo Molecular Generation 

The holy grail of Mass Spectrometry based identification is the ability to directly infer molecular identities 

from the "dark" metabolic space. To this end, we've adapted the LSM1-MS2 to perform de novo molecular 

generation. The process begins by converting molecules from SMILES to SELFIES27, using SELFIES 

tokens as the vocabulary for subsequent models. We then train a BERT-style encoder-decoder model3 to 

predict masked SELFIES tokens (Figure 5a). With a fixed-weight BERT encoder, we proceed to train a 

conditional GPT-2 decoder. This decoder generates initial predictions based on context embeddings from 

the BERT encoder and learns in an autoregressive manner (Figure 5b). Next, we align the LSM1-MS2 

embeddings with the BERT encoder embeddings and feed the LSM1-MS2 embeddings into the pre-trained 

GPT-2 decoder as context embeddings (Figure 5c). This allows the model to learn autoregressively. 
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Ultimately, this training enables the LSM1-MS2 and GPT-2 decoder to predict de novo molecular 

identities from LSM1-MS2 spectral embeddings during inference. 

While ideally, molecular generative capabilities would perform optimally with single-shot generations, 

they still hold tremendous value in experimental settings by limiting the space of possibilities and 

informing meaningful downstream validation experiments. To evaluate generative performance, we use 

beam search to generate 100 SMILES representations and then re-rank them based on simple precursor 

mass (see methods). We consider the top 1, top 10, and top 100 candidates. We assess the quality of the 

generations by calculating the maximum Tanimoto score achieved in each setting with respect to the 

ground truth query molecule (Figure 5d). For in-distribution data exemplified by the Unknown dataset, 

we achieve a mean maximum Tanimoto score of 0.63 for the top 100 predictions and 0.48 for the top 1 

prediction. For the more challenging CASMI 2017 dataset, we achieve a score of 0.46, and for CASMI 

2022, a score of 0.38 for the top 100. While the score requirements vary by application, a Tanimoto score 

of greater than 0.5 is generally considered useful. In experiments focused on automatic synthesis, there is 

a singular question of synthetic success. In these experiments, both the presence and absence of 

substructures are of high value, as they can significantly influence the synthetic feasibility and overall 

success rate of the generated molecules. 

 

Figure 5: De Novo Generation. a) An autoencoder is trained on SELFIES representations using masked language 

modeling. b) A GPT-like decoder model is trained to produce a SELFIES representation based on context embeddings from the 

autoencoder. c)  During training we finetune the GPT-like decoder model using MS2-LSM embeddings, which we simultaneously 

align with the corresponding masked language model embeddings, as our context embeddings. During inference, we generate de 

novo SELFIES representations using the MS2-LSM embeddings as context embeddings. d) Maximum Tanimoto score achieved 

for a given dataset based on 1, 10 and 100 de novo generations. Higher scores can be achieved with more generations. 

N=12,274 for Unknown, N=243 for CASMI 2017 and N=464 for CASMI 2022. 
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The development of a robust method for predicting molecular structures from mass spectra acknowledges 

that the correct structure may not be obtained from a single point prediction, but rather from an ensemble 

approach where the user triangulates the correct structure through commonalities across the top N 

predicted structures. For this purpose, we have employed a consensus scoring method to evaluate the 

reliability of structural predictions. The consensus score for a given substructure is defined as the fraction 

of generated predictions that include the substructure, providing a normalized measure from 0 (no 

agreement) to 1 (unanimous agreement). A high consensus score must indicate a high probability that 

the given substructure is present, and a low consensus score must indicate the reverse. For all three 

datasets, the 100 top generated predictions have a high consensus score when the substructure is present 

and a low score when not present indicating the ability to predict substructures reliably (Figure 6a). A 

breakdown of the 18 curated substructures shows that certain substructures are much easier to predict 

than others (Figure 6b) in terms of both true positive predictions (high consensus when present) and 

false positive predictions (high consensus when not present). For example, c1ccccc1 tends to be reliably 

identified when present, but [CX3](=O)[NX3H2] is challenging. Additionally, another example is 

something like [OX2H] which tends to be falsely identified as present when not. 

 

Figure 6: Substructure Consensus. a) The consensus score for each of the datasets representing what percent of the 100 

predicted structures contained the pre-determined sub-structure in the ground truth molecule. If a substructure is present there 

is a high consensus score agreeing of its presence in all dataset, conversely, if a substructure is not present there is a low 

consensus score (of it being not present) in all datasets. Results include all 18 pre-determined substructures. b) A breakdown of 

the 18 substructures shown. Only substructures that have at least 5 occurrences in the test data are shown. N=12,274 for 
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Unknown, N=243 for CASMI 2017 and N=464 for CASMI 2022. The number of occurrences of a certain substructure vary 

between 5 and 216. 

 

2.5) Pre-Training Allows Smaller Datasets for Fine-Tuning 

One of the key benefits of our self-supervised approach is that it requires significantly less fine-tuning 

data for MS2-based downstream tasks. We show this benefit where we evaluate dataset size against 

downstream performance on our three datasets for a property prediction task on continuous properties 

(Figure 7). We fine-tune our pre-trained LSM1-MS2 using 1, 5, 10, 25, and 50% of our full annotated 

training data (7,420, 37,102, 74,204, 185,512 and 371,024 spectra respectively). For the Known dataset 

we match the performance of all other approaches by fine-tuning on as little as 50% of their training data. 

For the Unknown dataset we surpass cosine performance with as little as 1% and the supervised models 

with as little as 10%. For the challenging CASMI 2022 dataset we match the supervised transformer 

model with only 5% of the training data and our LSM supervised-only version with slightly less than 50% 

of the training data. Additionally, we train a single linear layer on top of the fixed embeddings to better 

understand the representation being captured, while end-to-end fine-tuning in all cases offers substantially 

better performance, if a limited dataset is being used (<7,420) then fixed embeddings give equal 

performance and would be preferred given the reduced compute requirements and reduced overfitting 

potential. 

 

Figure 7: Performance with Dataset Size. LSM1-MS2 achieved similar or superior performance to fully supervised state 

of the art models with substantially less data. For both Known and Unknown datasets, 50% of the fine-tuning dataset gives 

equal performance to all other approaches. For the challenging CASMI 2022 dataset, our approach matches the previously 

published supervised transformer model with as little as 5% of the fine-tuning data. LSM supervised, LSM fine-tuned and LSM 

fixed are all based on the same architecture. The supervised variant is not pre-trained, and fixed variant is not fine-tuned. 

 

3) Discussion 
The results of this study underscore the transformative potential of the LSM1-MS2 model in tandem mass 

spectrometry. By leveraging a self-supervised pre-training approach, LSM1-MS2 significantly enhances 

performance in downstream applications such as spectral lookup, enables broader use of property 

prediction, and paves the way for de novo molecular generation. 
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One of the primary strengths of LSM1-MS2 lies in its robust pre-training methodology. The 

reconstruction-based masked-signal-modeling technique used for pre-training enabled the model to 

generalize well across different datasets, including the Known, Unknown, and CASMI datasets. This 

foundational training provided a substantial boost to the model's performance in fine-tuning tasks, 

demonstrating the effectiveness of this approach in handling the complexity and diversity of mass 

spectrometry data. 

The results indicate significant improvements in predicting continuous RDKit properties compared to 

baseline methods such as cosine similarity and state of the art deep learning models such as MS2Prop. 

The fine-tuned LSM1-MS2 model outperformed these methods across all datasets, particularly excelling 

in the Known dataset while maintaining robust performance in the Unknown and CASMI datasets. This 

underscores the model's ability to capture meaningful chemical information that generalizes well across 

different data distributions, a critical feature for practical applications in metabolomics and drug 

discovery. 

A key advantage of LSM1-MS2 is its efficiency in spectral lookup tasks. The fine-tuned model not only 

outperformed traditional cosine similarity methods in terms of accuracy but also achieved substantial 

speed improvements. Reducing the evaluation time by several orders of magnitude makes LSM1-MS2 

highly scalable and suitable for real-time applications. This efficiency is crucial for large-scale spectral 

databases and high-throughput screening, where quick and accurate identification of compounds is 

essential. 

The capability of LSM1-MS2 for de novo molecular generation further highlights its potential. By 

leveraging a BERT-style encoder-decoder architecture and fine-tuning on MS/MS spectra, the model can 

generate novel molecular structures with relatively high accuracy in both the case of predicting the 

presence of a certain substructure and the absence of. This ability is particularly valuable for exploring 

the "dark" chemical space, where traditional methods often fail to identify unknown compounds. Our 

evaluation shows that LSM1-MS2 performs well in both in-distribution and somewhat in out-of-

distribution settings, making it a powerful tool for discovering new molecules. 

Despite its strengths, LSM1-MS2 has several limitations that warrant further research. The current pre-

training dataset, although large, is still a fraction of the size used in large language models (LLMs), 

suggesting that performance could improve with more extensive pre-training. Additionally, incorporating 

more detailed experimental parameters such as ionization modes, adduct charge states, and collision 

energies could enhance the model's accuracy. Exploring alternative spectrum embedding strategies, 

including multiple input spectra, and increasing sequence length are other promising avenues for future 

work. The use of ALiBi28 positional encoding should facilitate these improvements, allowing for longer 

sequences without a significant computational overhead. With regards to using such a model, given that 

it is capable of three tasks (property prediction, spectral look-up and de novo molecular generation) one 

can envision using all three jointly to improve identification-based applications. For example, one can 

condition the de novo generation on the predicted properties and/or closest spectral match. This we 

believe would significantly improve the generative performance, but we leave that for future work. 
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The broader implications of adopting pre-trained foundation models in mass spectrometry are profound. 

The LSM1-MS2 model sets the stage for broader adoption of pre-trained models, enabling high-

performance machine learning applications even with limited labeled data. Future research should focus 

on scaling the pre-training datasets, optimizing hyperparameters, and integrating additional experimental 

data to further enhance the model's capabilities. Potential applications extend beyond those explored in 

this study, such as on-the-fly decision-making during spectral acquisition and integration with 

sophisticated vector search algorithms for advanced queries. 

In conclusion, the LSM1-MS2 model represents a significant advancement in the application of machine 

learning to mass spectrometry. By demonstrating strong results in spectral lookup, property prediction, 

and de novo molecular generation, LSM1-MS2 exemplifies the potential of pre-trained foundation models 

in this field. Future work should continue to build on these foundations, expanding the scope and 

performance of these models to fully realize their potential in diverse applications within mass 

spectrometry and beyond. 

4) Methods 

4.1) Dataset Preparation 

For fine-tuning, we created a labeled dataset consisting of 1,282,758 spectra from MassBank of North 

America29 and CompMS MS-DIAL30,31.  Filtering to exclude any spectra missing sufficient identity 

information and to exclude any spectra whose precursor molecular mass was above 1,000 m/z resulted in 

a total of 790,713 labeled spectra. From the molecular identity of these labeled spectra, we further 

annotated the 790,713 spectra with 209 chemical property descriptors obtained via the RDKit package23. 

After this initial dataset preparation, we curated our datasets similarly to the procedures described 

MS2Prop7 and MS2DeepScore12. Additionally, a large, diverse, unlabeled, dataset was used for pre-

training. 

For evaluation, we created three separate datasets to mimic common metabolomics workflows. The first 

dataset is an ‘Unknown’ dataset, which is both spectral disjoint and molecular disjoint - meaning all 

molecules (and hence any relevant spectral data) are not present in any form in the training dataset. This 

Unknown dataset includes 12,274 spectra of 2,026 molecules. Many molecules in our dataset have more 

than one representative experimental spectrum. This multiplicity is caused by each spectrum representing 

a unique collision energy, ionization mode, liquid chromatography method or other unique experimental 

variable. Also, separate instances of the same molecule may appear in multiple databanks. We ensure 

molecule disjointedness for our Unknown dataset by splitting on the first 14 keys of the InChiKey32. 

Evaluation on this dataset is analogous to performing analysis on a completely unseen set of data (i.e., 

new molecular matter). Our next dataset is a ‘Known’ dataset, which consists of 1,000 spectra randomly 

sampled from our dataset. This dataset is spectral disjoint, meaning the experimental instance of the 

spectra themselves are not in the training dataset, however, it is not molecular disjoint - meaning other 

experimental instances of the same molecules are. This Known dataset mimics an experiment where the 

set of possible molecules analyzed are known but data distributions may be different to the test set. Our 
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third dataset was the ‘CASMI 2022 dataset’ - used in the field of metabolomics as a challenge dataset20. 

We were able to extract 464 of the 500 CASMI 2022 molecules. For generative tasks we also used the 

CASMI 201721 dataset created in the same manner. While pre-processing, we also ensured that none of 

the CASMI 2022 or 2017 datasets were present in the training dataset to prevent leakage. 

4.2) Spectrum Tokenization 

A key component of our model is the tokenization strategy for MS data. Given the continuous and large 

range of m/z and intensity of peaks in mass spectrometry, common tokenization strategies in NLP and 

CV struggle to properly encode MS spectra. Prior papers approach the tokenization of MS spectra through 

binning12, sinusoidal position embedding11, or a codebook for integer (nominal mass) and decimal (mass 

defect) parts of m/z and intensity values8 . We choose to adopt the last of these tokenization strategies 

(with some slight modifications). We first sort spectra by m/z and prune fragment peaks over 1,000 m/z. 

Then for each peak in a spectrum, we embed the integer and decimal parts of each m/z peak separately 

using a learnable codebook. Furthermore, we use a codebook to embed the intensity values of the peaks, 

which are scaled to a maximum of 1,000. Finally, for each peak we concatenate the integer m/z embedding, 

decimal m/z embedding, and intensity embedding, then pass this concatenated embedding vector through 

a single linear layer to create a peak token embedding. Each spectrum is represented by a sequence of 

these tokens corresponding to its peaks. Furthermore, we prepend a special precursor token to the 

beginning of every spectrum token sequence. We generate the precursor token similarly to other peak 

tokens. However, all precursors have a precursor-unique preset intensity value of 2,000. 

4.3) Pre-Training 

We tokenize our input spectra and if any of the spectra have fewer than 64 peaks, we also pad the sequence 

with 0 values to reach 64 (the padded values are not attended to during training). Then, we randomly 

mask 25% of peaks with a learnable mask token. We pass this partially masked token sequence through 

transformer layers. Finally, we pass each token in the transformer output through three heads, which 

predict an integer m/z, decimal m/z, and intensity value. The cross-entropy loss between the predicted 

and ground-truth for all non-pad peak integer m/z, decimal m/z, and intensity values are aggregated into 

our final pre-training loss function: 

𝐿𝑓𝑖𝑛𝑎𝑙 = 𝜆 ⋅ 𝐿𝑚𝑧𝐼 + 𝛽 ⋅ 𝐿𝑚𝑧𝐷 + 𝛾 ⋅ 𝐿𝐼𝑛𝑡 

𝐿𝑚𝑧𝐼, 𝐿𝑚𝑧𝐷, and 𝐿𝐼𝑛𝑡  are the integer m/z, decimal m/z, and intensity losses respectively, furthermore 𝜆,  

𝛽 and 𝛾 are weights applied to the parts of our loss function. We set 𝜆 = 100, 𝛽 = 1 and 𝛾 = 1 

respectively. Finally, for all fine-tuning tasks, we use the pre-training model checkpoint with the lowest 

total loss, 𝐿𝑓𝑖𝑛𝑎𝑙, on our unseen molecule validation dataset. Model hyperparameters were as follows: 

Parameter  Selected Value  

max_input_peaks 64 

learning_rate 1x10-6 

batch_size 448 

d_model 1,024 

encoder_layers 16 
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encoder_attn_heads 16 

mask_pct 0.25 

alpha 100 

beta 1.0 

omega 1.0 

 

4.4) Fine-Tuning 

4.4.1) Chemical Properties Prediction 

To fine-tune our model for property prediction given a SMILES-labeled spectrum, we pass this spectrum 

through our pre-trained LSM1-MS2 to generate an output spectrum embedding. The mean of all these 

token values (including the precursor) is computed, and the resultant embedding is passed through a 

single linear-layer classification head, which outputs a vector size of 209, which represents the number of 

properties predicted. These predicted properties are then compared to the ground-truth properties vector 

computed by RDKit on the SMILES identifier of the MS/MS spectrum. Each property is normalized 

between 0 and 1 to ensure that our model does not overfit certain properties. The loss for this fine-tuning 

task is calculated via the Mean Square Error (MSE) of these two resultant vectors.  

For property prediction, we use three baseline methods, a re-implementation of MS2Prop, a supervised-

only version of our LSM1-MS2 model, and modified cosine similarity. In our re-implementation of 

MS2Prop, we train a transformer model using the hyperparameters and token embedding strategy 

described in their paper7. Namely, our transformer backbone uses 32 heads, 6 layers, a hidden dimension 

of 512, and no positional encoding. Furthermore, we embed MS/MS peaks into tokens as follows. We first 

round peak m/z values to the nearest 0.1, then we feed these values through a learnable lookup table, 

then we concatenate the intensity value (normalized to 1.0 for non-precursor tokens and 2.0 for precursor 

tokens) to the m/z embedding, then we finally pass this concatenated token vector through a linear layer 

of depth 1 to project it to the hidden dimension. We also use the first token in the sequence as a 

classification token.7 It is worth noting that this re-implementation of MS2Prop has 3 key differences from 

the original implementation: the training dataset, training hyperparameters (batch size, learning rate, 

number of epochs), and the number of outputs (we predict on 209 properties instead of 10). Given that 

the MS2Prop paper does not indicate what learning rate or number of epochs is used, we use a learning 

rate of 0.00025 for 50 epochs. This learning rate was selected after performing a learning rate grid-search 

to minimize Mean Absolute Error (MAE) in our unknown validation dataset. For our supervised-only 

baseline model, we use the same hyperparameters as in our fine-tuned LSM. Finally, to evaluate cosine 

similarity baseline, we retrieve the most similar spectrum in the training dataset for every query spectrum 

in our test dataset. Then, we impute the query's molecular properties with the properties of the retrieved 

molecule. In our results, we only report best-in-class performance. Thus, given that our MS2Prop and 

supervised-only LSMs are similar supervised-only transformer architectures, we only report the top 

performing representation (MS2Prop). 
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4.4.2) Database Spectral Lookup 

For the spectral lookup task our inputs are two SMILES-labeled spectra. We pass each of these spectra 

through the LSM, generating two spectrum embeddings. Then we take the mean of all the tokens and 

pass the resulting vector through a single linear-layer head, which creates a dimensionally smaller 

molecular embedding. Finally, we calculate the cosine similarity of the two molecular embeddings. We 

calculate the loss of this fine-tuning task by taking the mean-square error of the predicted cosine similarity 

versus the ground-truth Tanimoto similarity. Ground-truth similarity is calculated using RDKit with 

2048-bit Morgan fingerprints and a maximum atomic radius of 2. 

DL-based library spectral lookup techniques involve the comparison of two annotated spectra from the 

dataset. These spectra are embedded into a latent space, and are trained to minimize the Tanimoto 

similarity of the respective compounds they represent12–14. From here, one can perform database retrieval 

on the most similar embedding to a given query molecule. Most current approaches to MS/MS analysis 

rely on spectral lookup within annotated MS/MS spectra databases. Query spectra are matched against 

annotated spectra in databases using heuristic algorithms to find close molecular matches, which then 

serve to identify the query molecules. One such heuristic algorithm is known as modified cosine similarity. 

Modified cosine similarity aligns the peaks of a query spectrum with the peaks of reference spectra based 

on a Dalton value threshold. Subsequently, the cosine similarity of the aligned peaks' intensities is 

calculated, with the most similar reference spectrum, and thus the identified molecule, being returned as 

the output33,34 . We use the Matchms35,36 modified cosine to evaluate modified cosine similarity. 

4.4.3) De Novo Molecular Generation 

Firstly, we convert our molecules from SMILES into SELFIES representations27,37, and use SELFIES 

tokens as our vocabulary for subsequent models. Then, we train a BERT-style encoder-decoder model 

which takes in these SELFIES tokens and learns to predict masked tokens. Using a fixed-weight version 

of this encoder, we then train a conditional GPT-2 decoder38. This decoder learns auto-regressively using 

the BERT embedding as context. The BERT embedding is analogous to the context created from a 

prompt in an NLP setting. This decoder is adapted from an open-source implementation39. We then learn 

to align the LSM1-MS2 embeddings with the BERT encoder embeddings and feed the LSM1-MS2 

embeddings into our pre-trained decoder as context embeddings to learn auto-regressively from. Thus, we 

train the LSM1-MS2 and GPT decoder4,38 to predict de novo molecular identities from just an LSM1-

MS2 embedding of a spectrum. Finally, given that our decoder can generate multiple different molecules 

for a single sample, we leverage a heuristic re-ranker for evaluating performance at different number of 

generations. The reranking of generated molecules is achieved by minimizing the absolute difference 

between the mass of the generated molecule 𝑀𝑔 and the precursor's mass with adduct 

adjustments ∆𝑀𝑎𝑑𝑑𝑢𝑐𝑡. For a given adduct, the equation for the mass difference: 

∆𝑀 = 𝑚𝑖𝑛𝑎𝑑𝑑𝑢𝑐𝑡𝑠|𝑀𝑔 − (𝑀𝑝 +  ∆𝑀𝑎𝑑𝑑𝑢𝑐𝑡)| 

where 𝑀𝑝 is the precursor mass from the mass spectrometry data and ∆𝑀𝑎𝑑𝑑𝑢𝑐𝑡 is the mass adjustment 

for a specific adduct, which may involve addition or subtraction of the adduct's mass. The possible adducts 
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are: [M]+, [M+H]+, [M+Na]+, [M+K]+, [M+NH4]+, [M+2H]2+, [M+H+Na]2+, [M+2Na]2+, [M-H]-, 

[M+Cl]-, [M+FA]-,[M+Br]-. 

The generated molecule with the smallest ∆𝑀 is considered the best match to the precursor ion. We use 

supplemental data to train the BERT and conditional GPT models. We use subset of 100M molecules40 

to train these models. We convert this subset from SMILES to SELFIES representations, then train the 

model as described above. Furthermore, we evaluate this model on three datasets of unknown molecules, 

both in and out-of-distribution settings. In the in-distribution evaluation, our de novo molecular 

generation model is tasked with identifying molecules from our Unknown dataset. The challenge presented 

by the Unknown dataset is comparable to inferring the structures of novel molecules based on spectral 

signatures obtained under experimental parameters previously encountered during the LSM's fine-tuning 

phase. This setup simulates a practical scenario in which a model is applied to identify new molecules 

using an LSM1-MS2 version which has been fine-tuned on a spectral library created under familiar 

experimental conditions. Furthermore, we also use two out-of-distribution evaluation datasets, the CASMI 

2017 and 2022 challenge sets. The distribution and molecules in these datasets do not exist in our training 

data. Thus, this setup simulates a practical scenario where de novo molecular generation is inferred from 

completely novel experimental settings. For validation during training, we use the unknown validation 

dataset as described in prior parts of this paper. Furthermore, we report performance results for n=1, 10, 

and 100 generations per spectrum. 

Substructure consensus metrics were calculated based on a compiled list of 18 substructures. These 

substructures were selected by an MS expert user for their plausible observability via standard 

fragmentation mechanisms in mass spectrometry. The substructures are specified as SMARTS41, a 

language designed to describe molecular substructures and run substructure queries. Not meant to be 

exhaustive, this list is to be adapted to a user’s needs based on substructures they expect to find that will 

help them prioritize between structural predictions. For example, a user can prioritize structural 

predictions containing the [OH]c1ccccc1 substructure if they expect the structure to contain a phenol 

group. Next, we generated 100 predictions using the LSM-MS2 structure generation task for every 

structure in the CASMI 2017, CASMI 2022, and the Unknown datasets. Using the RDKit 

HasSubstructureMatch function, which queries the presence of a particular substructure in a given 

molecule, we determined whether each of the substructures is present in the set of 100 predictions 

generated for every structure. 

4.5) Statistical Analysis 

Figure 2: N=5,000 randomly sampled peaks from each dataset are presented in both masked and 

unmasked scenarios. A non-parametric one-way ANOVA (Kruskal-Wallis test) with Dunn’s multiple 

comparisons correction is carried out to compare each dataset against every other dataset.  

Figure 3: A set of 209 properties are considered, if for a given test dataset there are <=2 unique possible 

values it is treated as a binary task and balanced accuracy is used as the metric. If a property has >2 

unique possible values then it is treated as a continuous output and R2 (coefficient of determination) is 

used as a metric. N~=160 for continuous properties and N=~49 for binary properties (both vary by 

dataset). A non-parametric one-way ANOVA (Friedman test) with Dunn’s multiple comparisons 
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correction is carried out to compare each approach (LSM fine-tuned, Supervised transformer and Cosine 

similarity) to every approach. For the summary figures, comparing performance across datasets (Known, 

Unknown and CASMI 2022), a two-way ANOVA with Tukey’s multiple comparisons correction is carried 

out. 

Figure 4: The sample size (number of unique MS2 spectra) varied by dataset (Known=1,000, 

Unknown=12,274 and CASMI 2022=464). For all three datasets a paired non-parametric t-test (Wilcoxon 

test) was used to compare LSM vs Cosine for each dataset. For the comparison figure, comparing 

performance across datasets (Known, Unknown and CASMI), a two-way ANOVA with Tukey’s multiple 

comparisons correction is carried out. 

Figure 5: The sample size (number of unique MS2 spectra) varied by dataset (Unknown=12,274, CASMI 

2017=243 and CASMI 2022=464). For all three datasets a non-paired non-parametric one-way ANOVA 

(Kruskal-Wallis test) with Dunn’s multiple comparisons correction is carried out to compare each of the 

number of top rankings to each other. 

Figure 6: For the Unknown dataset N=44,075 for ‘present’ and 164,583 for ‘not present’. For CASMI 2017 

N=806 and 3,325 respectively, and for CASMI 2022 N=1,662 and 6,226 respectively. The number of 

substructures being assessed varied where there were as little none present in the dataset for a particular 

substructure to as much as 216 for c1ccccc1. 

In all cases if p>0.05 (NS) no asterisk or relation line is shown, otherwise: p=0.01-0.05 (*), p=0.001-0.01 

(**), p=0.0001-0.001 (***) and p<0.0001 (****). The solid black bar in the middle of the violin plot 

represents the median. 
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