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Abstract

Accurate and complete microkinetic models (MKMs) are powerful for anticipating

the behavior of complex chemical systems at di↵erent operating conditions. In hetero-

geneous catalysis, they can be further used for the rapid development and screening

of new catalysts. Density functional theory (DFT) is often used to calculate the pa-

rameters used in MKMs with relatively high fidelity. However, given the high cost

of DFT calculations for adsorbates in heterogeneous catalysis, linear scaling relations

(LSRs) and machine learning (ML) models were developed to give rapid estimates of

the parameters in MKM. Regardless of the method, few studies have attempted to

quantify the uncertainty in catalytic MKMs, as the uncertainties are often orders of

magnitude larger than those for gas phase models. This study explores uncertainty

quantification and Bayesian Parameter Estimation (BPE) for thermodynamic param-

eters calculated by DFT, LSRs, and GEMNET, a ML model developed under the

Open Catalyst Project. A model for catalytic partial oxidation of methane (CPOX)
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on Rhodium was chosen as a case study, in which the model’s thermodynamic pa-

rameters and their associated uncertainties were determined using DFT, LSR, and

GEMNET. Markov Chain Monte Carlo coupled with Ensemble Slice Sampling was

used to sample the highest probability density (HPD) region of the posterior and de-

termine the maximum of the a posteriori (MAP) for each thermodynamic parameter

included. The optimized microkinetic models for each of the three estimation methods

had quite similar mechanisms and agreed well with the experimental data for gas phase

mole fractions. Exploration of the HPD region of the posterior further revealed that

adsorbed hydroxide and oxygen likely bind on facets other than Rhodium 111. The

demonstrated workflow addresses the issue of inaccuracies arising from the integration

of data from multiple sources by considering both experimental and computational un-

certainties, and further reveals information about the active site that would not have

been discovered without considering the posterior.

Keywords

Micro-Kinetic Modeling, Bayesian Parameter Optimization, Linear Scaling, Machine Learn-

ing, Uncertainty Quantification

1 Introduction

The significance of heterogeneous catalysis extends across fields such as energy production,1

carbon dioxide conversion,2,3 and the synthesis of numerous chemicals,4,5 underlining its

indispensable role in advancing sustainable and economically viable chemical processes.6,7

Accurate chemical models are important, especially in the context of catalyst screening and

discovery, where having an accurate model prior to synthesizing a new catalyst could save

time, money, and resources. Mean field microkinetic modeling (MKM) is a valuable tool to

quantitatively describe the reaction rates and intermediates’ thermodynamics of a process,
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as it is less computationally taxing compared to spatially-resolved methods like Kinetic

Monte Carlo.8,9 Therefore, MKM is often used for process design10 and theoretical catalyst

screening.11,12

To determine thermodynamics in MKM, Density Functional Theory (DFT) is a widely ac-

knowledged quantum mechanical approach to study the energy of intermediates in a model.

However, its computational expense for solid-state matter poses a challenge. Surrogates

such as linear scaling relationships (LSRs)13–15 and machine learning (ML) models16,17 are

developed to approximate the DFT results at much lower cost. LSRs connect the molecular

binding energy to the binding energy of the atom(s) in a molecule that are bonded to the

surface. They can be used to estimate the di↵erence in adsorption energy of an adsorbate

between one metal surface and another. In the context of MKM, LSRs help provide energy es-

timates for intermediates on di↵erent surfaces, so the material search space can be expanded

for catalyst discovery. Previous studies show that LSRs can be applied in modeling many

commercially important systems such as synthesis gas conversion,18 oxygen reduction,19 etc.

However, LSRs are sometimes limited by the morphology of catalysts and the coverage of

the adsorbates, and they appeared to fail on some alloy systems due to the site specificity

and lateral interactions.15 In addition, utilizing LSRs still requires conducting a few Density

Functional Theory (DFT) calculations on similar adsorption systems to establish the linear

relationship.

Given the limitation of LSRs, machine learning (ML) models have been developed to

estimate the molecular or atomic energy in a wider range of materials. There are various

ML models to help accelerate heterogeneous catalysis modeling.20 This includes ML-aided

potential energy surface construction,21,22 atomistic structure and potential estimation,23–25

and material designs (finding the optimal composition of materials).26,27 Both kinetics and

thermodynamics evaluations in MKM can substantially benefit from ML models. In this

study, ML-predicted thermodynamics are used. A neural network named GEMNET,28 de-

veloped under Open Catalyst Project (OCP),16 was picked to carry out the task. OCP has
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been demonstrated to have good accuracy for energy and force estimation, and has been

used in several works.29,30

DFT, LSRs, and ML models all have uncertainty associated with their predictions of

species properties, which can be propagated forward through a MKM to reveal the uncer-

tainty in quantities of interest such as turnover frequency, conversion, selectivity, etc. Previ-

ous studies have highlighted the importance of propagating energetic parameter uncertainties

to industrial operating conditions.30–32 Beyond simply determining a “most probable” mech-

anism, analyzing possible reaction pathways within a given uncertainty space can reveal

entirely di↵erent reaction pathways and active sites.33–36

Bayes theorem proposes a method for incorporating the prior uncertainties of a model

and the marginal probability of observed data as a means of generating a most probably

set of parameters. The process for obtaining these credible values is referred to as Bayesian

Parameter Estimation (BPE). BPE can also be used to generate the highest probability

density (HPD) region around the most likely parameters, which in essence is an uncertainty

that has been informed both by prior knowledge and experimental data. This requires

comprehensively exploring the parameter space within the model, which can be di�cult for

a complex system with a large number of parameters. Various methods can be used to

e�ciently explore the uncertainty space, including surrogate models like polynomial chaos

expansion,37 grid based approaches,38 and Monte Carlo simulation based methods.35 Monte

Carlo methods are expensive, but they are applicable to almost any model, and can be

made more e�cient through sophisticated sampling methods.39 Markov Chain Monte Carlo

(MCMC) is particularly useful for model uncertainty quantification, because it implements

a probability based approach to sampling, where the “jump” to the next sampled point is

based on the probability relative to the previous point. BPE coupled with MCMC has been

used successfully for surface chemistry models already in several studies, proving that it is a

robust, albeit expensive, method for generating posteriors for catalytic systems.35,36

In this study, BPE was performed via MCMC sampling to reveal posterior uncertainties
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in both the input species binding energies and the output molar flow rates. Quantifying

the uncertainties in models generated using di↵erent thermodynamic calculation method

(DFT, LSRs, and GEMNET model) provided a more informed basis for comparing them

than simply analyzing the initial, unoptimized models.

This study establishes a workflow to optimize the model according to experimental and

computational uncertainties. Data from varied sources are often incorporated in MKMs to

reduce the number of DFT calculations or experimental values required, but this integration

can introduce inaccuracies and inconsistencies. The proposed workflow improves the coher-

ence of data calculated through di↵erent techniques, yielding results that align more closely

with experimental observations than simply amalgamating the data without modification.

The findings also illustrate that Bayesian Parameter Estimation (BPE) serves as a valuable

tool for pinpointing species with inaccurate thermodynamics, paving the way for subsequent

fine-tuning through DFT.

2 Methods

2.1 Microkinetic Model

The microkinetic model used was adapted from the original model developed by Mazeau

et al.12,40 Briefly, this model was constructed using the Reaction Mechanism Generator

(RMG),41 a Python-based tool for automatically constructing microkinetic models. For

details on both the original CPOX model and how RMG works, one can refer to the previ-

ously cited papers. The model has 19 gas-phase species, 13 adsorbates, and 80 elementary

reactions.

Following the adjustments of thermodynamic parameters according to DFT, LSRs, and

GEMNET, the kinetics in the model were adjusted to account for the change in the activation

energies as the adsorbate enthalpies of formation were varied. A well-accepted method

for this is to use Brønsted-Evans-Polanyi (BEP) relations to linearly adjust the activation
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energy for a given reaction based on the enthalpy change of the reaction. Doing this after

the intermediates’ energies are estimated creates a dynamic MKM where changes in the

species’ thermodynamics have a realistic e↵ect on the activation energies. Unfortunately,

the data for BEP relationships is often scarce for catalytic reactions because it relies on

the calculation of multiple transition states, which can be a lengthy and expensive process

for surface systems. Instead, this study used the Blowers-Masel approximation (BMA) to

modify the reaction barriers,42 as shown in Equation 1 and 2 below. The derivation of

BMA parameters only needs the activation energy and reaction enthalpy of one reaction,

circumventing issues related to data sparsity. A previous study has successfully implemented

BMA in heterogeneous catalysis modeling.40

The model from Mazeau et al. was modified so that all of the surface reaction used

Blowers-Masel relationships for dynamically calculating the activation energy,42 instead of

using a static activation energy:

Ea =

8
>>>>>>>>><

>>>>>>>>>:

0 for �Hrxn < �4E0
a

�Hrxn for �Hrxn > 4E0
a

(w0+
�Hrxn

2 )(VP�2w0+�Hrxn)2

V 2
P
�4w2

0+�H2
rxn

otherwise

(1)

where

Vp = 2w0
w0 + E

0
a

w0 � E0
a

(2)

E
0
a is the intrinsic energy and equals the activation energy when �Hrxn = 0, and w0 is a

parameter that, in the original derivation, represents the average of the bond dissociation

energy of the broken bond and the bond being formed. Xu et al. showed that the activation

energy Ea is highly insensitive to w0, so the only parameter that needs to be derived is E0
a.

The parameters used in the BPE were the enthalpies of formation for each surface species.

Defining the relationship between the activation energy and the enthalpy of each reaction
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allowed the model to realistically change the kinetics of the microkinetic model. A complete

BPE analysis could in theory include all of the parameters in the model, including the Ea

and pre-exponential factor for each reaction. However, an analysis of this scale would be

both computationally expensive and not useful for the task at hand, namely comparing the

associated uncertainty for thermodynamic estimation methods.

2.2 Species Thermodynamics

2.2.1 Density Functional Theory Calculations

Density functional theory (DFT) calculations were performed with Quantum Espresso (QE)

version 7.043,44 on 13 species on Rh(111) and 2 species on Rh(211). A complete list of these

species and their prior uncertainties can be found in Table 1. The BEEF-vdW functional

was used for structure relaxations and uncertainty quantification.45 The molecular structures

were constructed with Atomic Simulation Environment (ASE).46 Equation of state47 was

used to determine the lattice constant of the Rh cell with a wave function kinetic energy

cuto↵ of 60 Ry and a well-converged Monkhorst-Pack mesh of (15⇥ 15⇥ 15). The electron

orbitals were broadened using the Mazari-Vanderbilt smearing method with the value of

0.01 Ry. The lattice constant was estimated as 3.85 Å, aligning well with the literature

value.48 3⇥ 3⇥ 4 Rh(111) and Rh(211) slabs were made with vacuum of 13 Å. The bottom

2 layers were fixed, and the top 2 layers in the slabs were relaxed by QE with a (5⇥ 5⇥ 1)

k-point grid and the same energy cuto↵ and smearing conditions as used for the lattice

constant calculation. The adsorbates’ gas-phase counterparts were relaxed in a gamma-

centered 13⇥ 13⇥ 13 Å
3
cell until the forces fell below 0.01 eV/ Å. The functional, energy

cuto↵, and the smearing methods were the same as for the slab calculations.

The relaxed gas-phase molecules were then placed on the ontop, bridge, fcc and hcp sites

on the 111 surface and relaxed with the OCP calculator16 with the pre-trained GEMNET-

OC-L-F28 model until the atomic forces were under 0.05 eV/ Å. All the unique sites on

the 211 surfaces were identified by Pymatgen,49 and relaxed by the same OCP calculator.
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The lowest energy structures were further relaxed with QE using the same settings as the

slab relaxation until the atomic forces were under 0.01 eV/ Å. The vibration analyses were

performed using ASE, and imaginary frequencies for physisorbed species were approximated

as 12 cm�1 as discussed in Ref.29,50 The Rh(211) slab and adsorbate DFT calculations used

the same settings as the Rh(111) surfaces.

The microkinetic models used the NASA 7-coe�cient polynomial parameterization to

describe heat of formation �H, entropy S, and temperature-dependent heat capacity Cp at

low and high temperature ranges.51 The polynomial parameters can be determined from heat

of formation at 0 K and vibrational frequencies through partition functions. The routine

reported by Blondal et al. 52 was used in this study to generate the parameters. For the cases

where the first 2 frequencies are less than 100 cm�1, a 2D gas model was applied instead

of the harmonic oscillator approximation.53 To calculate heat of formation at 0 K of an

adsorbate, the energy of its gas-phase precursor is calculated and corrected to align with

Active Thermochemical Tables (ATcT),54 and the zero-point corrected adsorption energy

is added on top of the ATcT corrected energy of the gas-phase precursor. As reported by

Klippenstein et al.,55 a reference reaction should be used to reduce the error introduced by

di↵erent wave functions. Therefore, a similar hypothetical reaction shown in Eq. 3, was used

to describe the heat of formation of any species formed by a combination of H, C, N, and O.

aCH4(g) + bH2O(g) + cNH3(g) + (
d

2
� 2a� b� 3c

2
)H2(g) ��! CaObNcHd(g) (3)

The heat of formation of the hypothetical reaction Eq. 3 can be written as Eq. 4

�Hrxn,DFT(g) = E
CaObNcHd(g)
DFT �aE

CH4(g)
DFT � bE

H2O(g)
DFT � cE

NH3(g)
DFT � (

d

2
�2a� b� 3c

2
)E

H2(g)
DFT (4)

where E
species(g)
DFT is the zero-point-corrected energy of a species calculated by DFT, in this

case the BEEF-vdW functional. The heat of formation of species CaObNcHd corrected by
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ATcT reference values can be calculated using Eq. 5.

�fH
�,CaObNcHd(g)
0K,DFT = �Hrxn,DFT(g) + a�fH

�,CH4(g)
0K,ATcT + b�fH

�,H2O(g)
0K,ATcT+

c�fH
�,NH3(g)
0K,ATcT + (

d

2
� 2a� b� 3c

2
)�fH

�,H2(g)
0K,ATcT (5)

The heat of formation of the adsorbed CaObNcHd is then calculated by Eq. 6

�fH
CaObNcHd⇤
0K,DFT = �fH

�,CaObNcHd(g)
0K,DFT + �H

CaObNcHd⇤
0K,ads + �fH

�
ref,metal (6)

�fH
�
ref,metal = 0 for rhodium and platinum because they are not included in ATcT. �H

CaObNcHd⇤
0K,ads

is the adsorption energy of CaObNcHd⇤ which can be calculated through Eq. 7

�H
CaObNcHd⇤
0K,ads = E

CaObNcHd⇤
ZPE � E

metal � E
CaObNcHd(g) (7)

E
CaObNcHd⇤
ZPE is the zero-point corrected energy of the adsorbed CaObNcHd⇤ calculated by

DFT, Emetal is the DFT-calculated metal slab energy, ECaObNcHd(g) is the DFT-calculated

energy of the gas-phase species.

2.2.2 Linear Scaling Relations

The model for methane catalytic partial oxidation model on Rh(111) from Mazeau et al.
12

was initially developed with RMG using linear scaling relations (LSR) to scale the species’

binding energies from Pt(111) data. The thermodynamics on Pt(111) were obtained using a

calculator di↵erent from the one used in this work,52 and the uncertainties were not reported.

To make the LSR-estimated thermodynamic data and uncertainties consistent with the DFT

calculations on Rh in this work, the species’ thermodynamic parameters on platinum were

recalculated using the same workflow discussed in Section 2.2.1. The polynomial parameters

for each species were then modified to describe the thermodynamics based on the LSR

correction from Pt to Rh, using Equation 8:
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Espec,Rh = Espec,P t +

✓
X �Xm

Xm

◆
(EA,Pt � EA,Rh) (8)

Where Espec is the binding energy of the specific species, and EA is the binding energy

of the adatom (C, H or O). X and Xm are the bond order and the total possible bond order

for the adatom (XC=4, XH=1, XO=2) on Pt(111). The four physisorbed species were not

scaled from Pt(111) to Rh(111) because traditional LSRs cannot be applied to those species.

Since the binding for each of these species is relatively weak (i.e. X=0), the values and

uncertainties were kept the same across all of the models used in this study.

2.2.3 Open Catalyst Project Neural Network Calculator

The relaxed slab and gas-phase molecules were prepared as described in Section 2.2.1. The

gas-phase molecules were placed on the top of the Rh(111) slab, and the OCP calculator

loaded with the GEMNET-OC-L-F model28 was used in ASE to relax the structures16 until

the forces were below 0.01 eV/ Å. The vibrational analyses were performed in ASE with

the same OCP calculator. For the calculation of adsorbate heat of formation at 0 K, The

OCP project16 reported di↵erent reference molecules to calculate the heat of formation of

gas-phase molecules, so the hypothetical equation was changed to Equation 9

aCO(g) + (b� a)H2O(g) + (
d

2
� b+ a)H2(g) +

c

2
N2(g) ��! CaObNcHd(g) (9)

As the result, the workflow described in 2.2.1 was changed accordingly.

2.3 Reactor Simulation

The resulting models with thermodynamics derived from DFT, LSR, and OCP were loaded

into a simulated packed bed reactor in Cantera.56 This reactor was modeled after the experi-

mental setup used by Horn et al..57 Currently Cantera cannot solve the di↵erential algebraic

equations to simulate a packed bed reactor directly, so a series of 700 continuously stirred
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tank reactors containing a set catalyst surface area were used to approximate the capillary

reactor used in the Horn experiments. The reactor had an inner diameter of 16.5 mm, and

a length of 70 mm. The catalyst foam occupied 10 mm of the total reactor length, start-

ing after a 10 mm inlet, and followed by a 50 mm outlet, both containing no catalyst. The

porosity of the catalyst was 0.81, and the surface area to volume ratio was 1.6⇥10�4 m2/m3.

The gas feed to the reactor was stoichiometric, meaning the ratio of the molar flow rate

of CH4 to the molar flow rate of O2 was 0.5. Argon was used as an inert carrier gas, with

an Ar/O2 ratio of 79/21. The total feed flow rate was 4.7 slpm (0.208 mol/min).

The heat transfer for the reactor used by Horn et al. was actually quite complex, as

noted in reference 12. Including a fully resolved energy equation for this system would

have required assuming a heat transfer model, then iteratively solving the heat transfer

equation down the reactor to produce a wall temperature profile, and then resolving this

wall temperature with the energy generated within the reactor due to chemical reactions.

This iterative approach would have been prohibitively time-consuming for BPE using Monte

Carlo methods. Instead, the experimental temperature profile observed by Horn was imposed

on the Cantera reactor, and the energy equation was turned o↵ for the simulation.

2.4 Prior and Experimental Uncertainties

2.4.1 Prior Uncertainties

The posterior uncertainties for the surface species in the CPOX model were determined using

Bayesian Parameter Estimation (BPE), which is discussed later in Section 2.5. A wrapper

for the Cantera model was constructed that accepted the enthalpies of formation (H�
f ) for

each of the 13 surface species in the model, along with the uncertainties associated with the

method used (DFT, LSR, OCP) for that particular species. The model outputs were the

flowrates for gas-phase CH4, CO2, CO, O2, and H2. Only readings over the catalyst bed

were taken into account (10mm to 20mm), due to the lack of change in the concentrations

over the rest of the reactor.
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Because BEEF-vdW is a Bayesian estimation based approach, the uncertainty can be

estimated with 2000 perturbations on the exchange-correlation functional.45 A Gaussian

distribution was constructed with the 2000 energy ensemble, and the 2� of this distribution

was used as the uncertainty for the DFT calculations. The DFT uncertainties were calcu-

lated for the gas-phase species used in the work function (Eqation 3), the slabs, and the

asorbates. The uncertainties were then propagated through Eq. 7 to calculate the binding

energy uncertainty. BEEF-vdW was trained using diverse datasets representing bonding in

both chemical and condensed matter systems, so the uncertainty of adsorption systems tends

to be overestimated. As such, a factor of 0.683, employed in prior studies,30,58 was used to

correct the binding energy uncertainty.

For this study, the uncertainty of the species’ entropy was not taken into account, al-

though it should be noted that this value is not zero59 60.61 However, for this model, all of

the surface species are small molecules with relatively constrained degrees of freedom, so

it was deemed reasonable to neglect. Thus, only the uncertainty in the species enthalpy

was considered. The enthalpic portion of the uncertainty was quantified by determining the

uncertainty in each species binding energy, and then using that as the uncertainty in the

H
�298
f for each species. The uncertainty in the binding energy was supplied as P (✓) to the

DFT model. The average 2� error for species calculated using DFT was 0.299 eV.

For linear scaling the uncertainties were estimated as follows. There were two sources for

the uncertainty: the actual DFT measurements for atomic and species binding energies, and

the uncertainty of the linear scaling relations themselves. The values for the uncertainty in

the linear scaling trends were derived from the original Abild-Pedersen paper.13 This was

simply the sample standard deviation for the trend line residuals for CH, CH2, CH3, and

OH. An example of a linear scaling plot for CH3, along with its residuals, is shown in Figure

1.

The aggregate uncertainty was calculated by propagating the error through Equation 8
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Figure 1: The CH3 linear scaling relationship plot with data from Abild-Pedersen et al.
13

(top plot, black circles), along with the residuals for each metal (bottom plot, red crosses)
and their standard deviation.
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for the species enthalpy:

�(Espec,Rh) =

r
�2(Espec,P t) +RLSR +

Xm �X

Xm
(�2(EA,Rh) + �2(EA,Pt)) (10)

Where RLSR is the residual uncertainty mentioned for the bound atom and bond order

corresponding to each species. The average 2� error for species calculated using the LSR

model was 0.424 eV.

The uncertainty for the Open Catalyst Project model was estimated using the MAE for

the GEMNET-OC-L-F model reported in the OC20 dataset.16 To account for the underlying

uncertainty in the original DFT calculations used to train the model, the model MAE (0.239

eV) was added to the DFT error for each species:

�(Espec) =

s

(

r
⇡

2
⇤MAEOCP )2 + �(Espec,DFT )2 (11)

The factor of ⇡
2 was included to convert the MAE to a standard deviation, assuming all

of the model errors are normally distributed. The average 2� error for species calculated

using the OCP model was 0.381 eV. The priors for all three models (DFT, LSR, OCP) can

be found in Figure 4 and Table 1. The overall thermodynamic uncertainty workflows for the

DFT, LSR, and OCP models are shown in Figure 2

2.4.2 Experimental Uncertainties

The error for the output molar flow rates were all taken to be 5% of the total molar flow

rate. Horn et al57 report uncertainties in the atom balances for H, C, and O, which gave

uncertainties between 1% and 13% for each atom. Unfortunately, there are no details for

specific uncertainties at each point in the reactor. Selection of 5% error for all species was

somewhat arbitrary, but a convergence study was performed using 10% and 2.5% error,

with negligible di↵erences between the models. Details of this study can be found in the

supplementary data.
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(a) DFT and OCP workflows

(b) LSR workflow

Figure 2: Figures of uncertainty estimation and BPE workflows for LSR, DFT, and OCP
models, (a) shows the workflow for DFT and OCP estimated thermodynamics, (b) shows
the workflow for LSR estimated thermodynamics
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2.4.3 Covariance Matrix Generation

Many parameter errors are correlated in surface chemistry models.32,62 To investigate the

e↵ect of accounting for the correlation between parameters, this study was conducted using

both the uncorrelated 2� prior uncertainties and a prior covariance matrix. Since BEEF-vdW

supplies an ensemble of 2000 values, an estimate of covariance can be obtained by performing

the calculations referenced in Equations 4 through 7 on each of the energies obtained in the

2000 energy ensemble. This results in 2000 values of �H0K,ads for each species. Equation 12

was used for each of the 169 pairs of species, resulting in a 13x13 grid of values.

cov(x, y) =

Pn
i=1(xi � x̄)(yi � ȳ)

n� 1
(12)

Where x and y are the �H0K,ads entries for each pair of species in the model, and n

corresponds to the ensemble of 2000 energies generated using the BEEF-vdW functional. The

LSR model used a similar method to calculate the covariance matrix, using the ensemble

of values generated for each species on platinum instead of rhodium. The residual error

from linear scaling (RLSR) in Equation 10 was not used as a single value in the uncertainty

calculations. Instead, each member of the 2000 member ensemble was run through the linear

scaling equation 2 million times, using a random sample from a normal distribution with

� = RLSR in place of the single value used for the residual error. The resulting ensembles

of binding energies for each species were then run through Equation 12 to generate the

covariance matrix.

2.5 Parameter Estimation and Uncertainty Quantification

Bayesian Parameter Estimation (BPE) requires prior knowledge of uncertainties for both

the model inputs and outputs, as can be seen in Bayes theorem (Equation 13):

P (✓|D) =
P (D|✓)P (✓)

P (D)
(13)
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In this case ✓ represents a vector of the surface species enthalpies of formation (H�
f ) and

D is the observed output flow rates for CH4, CO2, CO, O2, and H2. P (✓), or the prior,

represents the probability distribution of the species enthalpies of formation from Section

2.4.1 and P (D) represents the probability distribution of the experimental mole fractions

determined in Section 2.4.2. The likelihood P (D|✓) and the posterior P (✓|D) are both

distributions themselves, and can be generated by creating successive samples of the prior

values and running them through the simulated reactor specified in Section 2.3. Sampling of

the posterior was performed using Markov Chain Monte Carlo (MCMC), an algorithm that

proposes random jumps in parameter space and either proceeds with the jump or does not

based on the probability of the jump destination. This algorithm was used to sample the

highest probability density (HPD) region of the posterior. MCMC sampling was performed

using the Zeus package,39 which used a modification of the MCMC algorithm known as

Ensemble Slice Sampling (ESS).63 This approach allowed MCMC chains to run in parallel,

and communicates information about all active chains (i.e. the ensemble) to determine the

direction of the next jump in parameter space. The Zeus package, as well as utilities for

inputting priors, experimental data, and other parameters necessary for BPE, are conve-

niently wrapped in the Parameter Estimation and Uncertainty Quantification for Science

and Engineering (PEUQSE) package,64 which was employed for this study. 52 independent

MCMC chains ran in parallel on 52 CPU cores, with an initial distribution spread of 0.25

and a filter coe�cient of 1.0.

For a well sampled system, the maximum of the a posteriori distribution (MAP), i.e. the

most likely values for a given parameter set, should fall within the HPD region. For Bayesian

parameter estimation, the MAP values and their corresponding HPD regions represent the

“feasable set” of values and their uncertainties when both the experimental data and prior

uncertainties are considered. The quality of sampling was quantified by examining the

autocorrelation time (ACT) for each chain, along with observations that the HPD region

and MAP were converged at stable values.
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Most of the posterior distributions were deemed to be well-sampled within ⇠100,000 sam-

ples post burn in. The one outlier was the correlated DFT model, which required ⇠1,000,000

samples before the ACT assumed a stable value for all chains. The ACT plots for each model

can be found in the supplementary data.

3 Results and Discussion

3.1 Thermodynamic Data

There are 13 adsorbates in the model, none of which are larger than C1. As mentioned in

Section 2.4.1, small molecules adsorbed on a surface generally have negligible contributions

from their rotational and translational modes, so the uncertainty in the entropy was not

considered. Consequently, only the uncertainties of species enthalpy were estimated and

considered in the reactor simulations. The full thermodynamic data estimated by the DFT,

OCP and LSR models for each species can be found in the supplementary material.

Similar to the enthalpy for adsorbed CH2 in Figure 3a, the enthalpy obtained through

DFT, LSR and OCP were within the DFT uncertainty for most of the species in the model.

However, the enthalpy estimated by LSR and OCP for adsorbed carbon monoxide (CO*) and

hydroxide (CH3*) are outside of the DFT uncertainties as shown in Figure 3b and 3c. The

CO* enthalpy of formation di↵erence is about 40 kJ/mol between OCP and DFT, whereas

the LSR estimation agrees well with DFT. The enthalpy disagreement for CH3* is 40 kJ/mol

between LSR and DFT and about 20 kJ/mol between OCP and DFT. It is clear that using

the LSR and OCP models to generate the thermodynamic data in micro-kinetic modeling

is reasonably reliable compared to DFT results for small molecules, considering the relative

uncertainties inherent in DFT. The largest enthalpy disagreement of LSR and OCP to DFT

is about 60 kJ/mol among all the species in the model. The thermodynamic comparison for

the rest of species in the model can be found in the supplementary material.

Figure 4 and table 1 compare the binding energy and the uncertainty of each species
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(a) CH2*

(b) CO*

(c) CH3*

Figure 3: Heat capacity, enthalpy, and entropy comparison for three species estimated
through DFT (blue), LSR (orange), and OCP (green), the blue band represents the un-
certainty of the DFT method
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Figure 4: The binding energy and uncertainty of each species estimated by DFT, LSR and
OCP methods. The 2� values of the prior distribution are used as the error bars in black
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Table 1: Prior values and 2� uncertainties for all surface species in the DFT, LSR, and OCP
models.

Species DFT Prior (eV) LSR Prior (eV) OCP Prior (eV)

H* -2.68 ± 0.13 -2.55 ± 0.19 -2.52 ± 0.33
CO2* -0.17 ± 0.25 -0.17 ± 0.25 -0.17 ± 0.25
CO* -1.62 ± 0.29 -1.76 ± 0.54 -1.49 ± 0.42
CH4* -0.13 ± 0.16 -0.13 ± 0.16 -0.13 ± 0.16

O* (111) -4.96 ± 0.33 -5.01 ± 0.61 -4.41 ± 0.45
O* (211) -4.92 ± 0.50 -5.09 ± 0.61 -4.45 ± 0.58
CH2* -4.37 ± 0.26 -4.71 ± 0.53 -3.89 ± 0.40
CH3* -1.46 ± 0.30 -1.96 ± 0.41 -1.33 ± 0.42
CH* -6.34 ± 0.38 -6.82 ± 0.67 -6.42 ± 0.49
C* -6.92 ± 0.42 -7.32 ± 0.87 -7.18 ± 0.51
H2* -0.058 ± 0.095 -0.058 ± 0.095 -0.058 ± 0.095

OH* (111) -2.87 ± 0.30 -2.66 ± 0.46 -2.16 ± 0.42
OH* (211) -3.22 ± 0.52 -3.28 ± 0.49 -2.60 ± 0.60

H2O* -0.21 ± 0.26 -0.21 ± 0.26 -0.21 ± 0.26
CHO* -2.65 ± 0.33 -2.84 ± 0.44 -3.31 ± 0.44

estimated by the three methods. The convention recommended by Ruscic 65 for thermo-

chemical uncertainties is used in Figure 4 and throughout this paper, i.e. reporting the 2�

values as the uncertainties, since they encompass approximately 95% of a normal distribu-

tion. These uncertainties were used as the prior distribution in the Bayesian Parameter

Estimation (BPE), as described in Section 2.5.

As noted earlier, the DFT calculated values were used for all of the physisorbed species,

namely CO2*, CH4*, H2*, and H2O*. The binding energies agree well among the 3 methods

for species H*, CO*, and C*, but some of the LSR and OCP values fall outside the 2� DFT

uncertainty range for the remaining species. The largest di↵erence between the DFT and the

LSR model was CH3* with a di↵erence of 0.5 eV. The largest di↵erence between the DFT

and OCP calculated binding energies was OH* on Rh(111), with a di↵erence of 0.71 eV.

Note that the adsorbed hydroxide and adsorbed oxygen are shown for both the the Rh(111)

and Rh(211) surfaces. The details will be discussed further in Section 3.2, but generally this

was done to determine which was the most likely binding site for these species. Overall,

the binding energy estimated by LSR is closer to DFT than OCP is to DFT, and the OCP
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uncertainties are higher than LSR and DFT uncertainties. Given the lack of a sophisticated

method for calculating the priors, the binding energy uncertainty of OCP method are likely

overestimated.

3.2 Optimized Thermodynamics

The prior and posterior probability densities for each of the species used in the model can

be found in Figure 5, along with the MAP values for the species binding energies.

Figure 5: Prior distribution (blue shaded area), posterior distribution (pink shaded area)
and the MAP value (red vertical line) for every adsorbed species in the model.
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On the whole, the posteriors for all of the species are symmetric, with the exception of

OH* and O*, which are suspected to have an alternative binding site, and will be discussed

momentarily. It is quite surprising that these species are the only ones with asymmetric

posteriors, which are quite common in similar studies35,36,66 due to the complex and nonlinear

dependence of reaction rates on the species enthalpies. For some species, the lack of skewness

and kurtosis in the posterior can be explained by examining the sensitivities of the species

within the model. In general, physisorbed hydrogen (H2*) and methane (CH4*), along with

adsorbed carbon (C*), methylidine (CH*), and formyl (CHO*) have little e↵ect on the

outlet molar flow rates or model observables. Figure 6 shows the first order sensitivities

of the methane conversion to all of the species in the model. The sensitivity plots for a

number of other observables (CO/CO2 selectivity, O2 conversion, etc.) can be found in the

supplementary material, but overall a lack of sensitivity to these species was observed for all

benchmarks used. Since the model is insensitive to these species, their posterior distributions

are very similar to their prior distributions.

Figure 6: Sensitivity plot of CH4 conversion to the binding energy of each species

There is a trend in the CH3* posteriors to have a slightly stronger binding energy than

predicted a priori for all three models. Prior studies with �-Al2O3 supported rhodium
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nanoparticles show evidence that 1) the active sites are on the metal surface for this mech-

anism, not the support,67,68 and 2) CH4 conversion both with and without gas-phase O2 in-

creases with decreasing particle size, which indicates that the active sites are likely edge/step

sites. The lower coordination of the step sites means that species will likely bind more tightly

to them.

The opposite trend is observed for CO*, with the posteriors showing a slightly weaker

binding energy than the priors. It is possible that this is due to coverage dependence not

being included in the microkinetic model. Higher oxygen coverage at earlier times in the

reactor would limit the rate of formation of CO and the adsorption of CH4. Since the model

was optimized only with respect to the species binding energies, the CO binding energy may

have been weakened to account for this. Nevertheless, the di↵erences in both the CO and

CH3 species was slight for the DFT model, indicating that the initial DFT calculations were

at least close to the values predicted by the model.

The posterior distributions of OH* and O* for the initial model using Rh(111) showed

much stronger binding energies than the priors supplied, indicating that these species may

have an alternative binding site. It was also reported by Yang et al.
69 that methane has

a higher selectivity on Rh(211) compared to Rh(111) during the conversion of synthesis

gas into methane, so the possibility of these species having an alternative binding site was

considered. As such, the DFT, LSR, and OCP models were updated with calculations for

these species on their corresponding lowest energy binding site on Rh(211). A comparison

of the priors and posteriors using both the Rh(111) and Rh(211) binding energies for these

species can be found below in Figure 7.

The calculations for OH* show a dramatic shift in the posterior when the 211 site is

considered, with the MAP value changing by approximately 0.4 eV between the 111 and 211

posteriors in the DFT model. The shift for O* was less dramatic, changing by only 0.11 eV.

Literature values show a less dramatic shift as well for oxygen13,70 which is likely due to its

hollow binding site on both 211 and 111, versus OH which prefers the 211 step edge.50 The
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(a) (b)

(c) (d)

Figure 7: The comparisons of the prior and posterior distributions for OH* (left) and O*
(right) on rhodium 111 (top) and 211 (bottom) sites. The prior distributions are shown in
blue, the posterior distributions are shown in red, and the blue vertical lines represent the
literature data on rhodium 111 sites,70 or the literature data on rhodium 211 sites.13
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binding energy values optimized through BPE closely align with those reported for the 211

site on rhodium by Abild-Pedersen et al., although given the priors, it could be said that

the actual lowest energy site may have an even higher binding energy, such as a defect site.

Further study is required to validate this claim, but the simple result of this work shows

that both O* and OH* prefer a lower energy site than initially predicted in the 111 model,

which is a useful result.

It is worth mentioning that the optimal binding energy in the OCP model using the

Rh(111) priors actually underpredicted the binding energies for O* and OH*, relative to

the DFT and LSR models. This may be simply due to the nature of how the MCMC/ESS

algorithm was executed. Analyzing the ACT plots for the Rh(111) OCP model, and taking

into account the irregular shape of the posteriors, indicates that the HPD region may not

have been adequately sampled. Given enough time, it is possible that this mechanism would

have explored a stronger binding site, and found a new MAP value that aligned better with

the predictions from the LSR and DFT models.

It is noteworthy to highlight that the Bayesian Parameter Estimation (BPE) performed

using the Rh(211) DFT, LSR, and OCP models values show very similar posteriors, despite

the di↵erences in their priors. This convergence signifies a high level of confidence in the

optimized value.

3.3 Simulated Responses

The sampling of the HPD was used to generate the posterior distribution for the gas phase

species profiles within the catalyst bed, as seen in Figure 8. All three thermodynamic

estimation methods converged on very similar profiles, with the main di↵erence between

them being the posterior uncertainties.

The initial model generated using LSRs is quite close to the experimental profiles com-

pared to the DFT and OCP models. This may be due to how the original model from

Mazeau et al. et al.
12 was constructed. All models constructed by the Reaction Mechanism
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Figure 8: Gas phase flow rates observed in the unoptimized model (green marker), the
optimized model (orange marker), and the experimental data reported by Horn et al.57 The
shaded regions are the 2� (95% confidence) intervals for the uncertainty in the experimental
data (light blue region) and the MAP outputs (light orange region)
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Generator use linear scaling relations on di↵erent transition metal surfaces, which may have

led to selecting rate rules, reaction trees, and thermodynamic trees that generate slightly

more accurate results with thermodynamics generated from linear scaling relations.

The OCP model, in contrast, has the worst initial model, and also exhibited the largest

uncertainty in the outlet molar flow rates. This can be traced back to the prior distributions

for the binding energies as shown in Figure 5. The initial values from the OCP model had

a particularly stark disagreement with DFT binding energies. This is not surprising, given

the current training data for the open catalyst project. The focus generally has been on

alloys and oxides, with a relatively small amount of training data for pure transition metal

surfaces. Additionally, the RPBE functional71 was used to generate all of the DFT training

data in the OCP model. This functional has a tendency to under-predict binding energies

for certain adsorbates compared to its dispersion corrected GGA counterparts like RPBE-D3

and BEEF-vdW.72,73 Despite all of this, using BPE to optimize the model revealed essentially

the same MAP mechanism for all three thermodynamic calculation methods. Had the OCP

model used the BEEF-vdw functional for the training data, the initial model would have

likely been much closer to the DFT and LSR models.

The pathways of three optimized models can be found in the supplementary data. All

the pathways were the same with almost identical conversion rates. This further confirmed

that the optimized models converged on similar mechanisms.

3.4 Covariance

All of the runs mentioned in the preceding sections used uncorrelated uncertainties for all of

the mechanisms analyzed. This is not reflective of the true system, especially for the case of

linear scaling relations, where species share a very clear linear correlation with other species

bound through the same atom. The covariance matrices for the DFT and LSR mechanisms

were constructed using the BEEF-vdW ensembles mentioned previously. As described in

Section 2.4.3, each of the equations in Section 2.2.1 were applied for all 2000 rows of the
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ensemble calculations, and then the covariance was calculated for each species from the

resulting 2000 heats of formation. The resulting prior and posterior covariance matrices

can be found in the supplementary data. The OCP model could not be supplied with a

covariance matrix.

For the LSR model, the posteriors were all very similar to the uncorrelated case, with

MAP values all falling within ±0.1 eV for each model parameter. The DFT model showed

more significant deviations when correlated priors were used. Detailed contour plots can

be found for all of the DFT and LSR models in the supplementary data. The di↵erences

between the prior and posterior were quantified using the Kullback-Leibler (KL) divergence

test.74 Comparing the relative KL divergences gives a quantitative measure of the information

gained from the experimental data.

Figure 9 shows a comparison between the information gained from using covariance for

the DFT model (Figure 9a) and the LSR model (Figure 9b). In general, the LSR models

with and without covariance were quite similar. This is unsurprising, due to how close the

initial model simulated outputs are to the experimental data. The binding energies within

the LSR model required less adjusting to generate a model that matched the experimental

data.

(a) (b)

Figure 9: comparison between the KL divergence statistics for (a) the DFT models and (b)
the LSR models. Blue bars are the KL divergence statistic for the models with no covariance
in the prior. Orange are the statistics for the models including covariance.
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One interesting trend in the information gain is the fact that most of the species in the

DFT model gain more information from the experimental data when covariance is included.

The opposite is true for the LSR models. The priors and posteriors for the DFT models

(Figure 10) and LSR models (Figure 11) for C*, CH*, CH2* and CH3* illustrate why this

trend in information gain occurs.

(a) (b)

Figure 10: Contour plots for carbon bound species in the DFT models (a) without covariance
and (b) with covariance. On the diagonal are the prior distribution (blue) and the posterior
distribution (pink). Decreasing contours show a 20% decrease in probability.

The LSR model, as can be seen in Figure 8, is very close to the MAP model discovered

via BPE, whereas the DFT model is slightly farther away. The correlation introduced by the

covariance matrix further constrains the probability of our posterior, meaning MAP values

may lie in a lower probability region of the prior distribution. For example, in the case of

CH2* and CH*, the posterior is only slightly shifted from the prior, whereas the posterior for

the DFT model has a larger o↵set and is more strongly correlated. Even if the MAP binding

energies shifted by the same amount as the LSR model, the higher degree of correlation in

the DFT model means that the final answer will fall within a lower probability region of the

prior distribution.
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(a) (b)

Figure 11: Contour plots for carbon bound species in the LSR models (a) without covariance
and (b) with covariance. On the diagonal are the prior distribution (blue) and the posterior
distribution (pink). Decreasing contours show a 20% decrease in probability.

The remainder of the posterior distributions for the models including covariance can be

found in the supplementary data. Overall, the inclusion of covariance did not change any of

the conclusions about the LSR and DFT models concerning the alternative binding sites for

O* and OH*, and in fact reinforced them. The correlated posterior distributions for O* and

OH* had slightly stronger MAP binding energies than was predicted by the uncorrelated

models. Supplying a covariance matrix for the OCP data, if it were possible, would likely

not have changed our answers significantly.

3.5 Conclusions

The first goal of this study was to analyze the uncertainty inherent in di↵erent thermody-

namic estimation methods for adsorbed species. It is clear that the ML (OCP) model is less

accurate than linear scaling relations for this CPOX case study, but the thermodynamics

did not require any expensive DFT calculations up front, which cannot be said for the other
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two models. Knowing the uncertainty of the predictions from a calculator before using it to

screen thousands of catalysts is vital for any method. Given the large shifts from the prior

values to the MAP values for all 3 models, the increase in uncertainty for the OCP calculator

is made up for by its speed compared to DFT and universality compared to LSRs. Further,

for the system at hand, we showed that while supplying covariance data was useful for having

slightly more accurate posteriors, it did not significantly change the final MAP values or the

optimized models. This is encouraging, as the data necessary to determine covariance are

not always available, especially when dealing with mechanisms that use data from a variety

of sources, for example those generated by the Reaction Mechanism Generator.

The secondary goal was to validate that BPE used in conjunction with tools like the

OCP calculator could be useful for catalyst screening. The finding that OH and O likely

have stronger binding energies than the values reported on Rh(111) shows how informed

optimization can improve a microkinetic model that was initially constructed from chemi-

cal intuition or automated construction methods. Coupling uncertainties calculated using

BPE with rapid screening methods would allow for a more informed exploration of complex

chemical spaces, as opposed to using the baseline values from surrogate models like linear

scaling relations and the OCP calculator.

Finally, It should be noted that Monte Carlo methods are almost always the most taxing

way to optimize a model and quantify error. While this study does show the computational

e�ciency of using a Machine Learning calculator to replace DFT, exploring the uncertainty

space of the resulting model was costly. Specifically, the chain length required for convergence

on each model (approximately one million points) took 52 CPU cores approximately 3 days

of computing time. In light of this, it would be impractical to run BPE for every point

within a screening study. It is more important to apply it to experimental data that are well

known, and then using the error bars obtained to extrapolate to di↵erent systems.

The exploration of the HPD region would be required regardless of the thermodynamic

calculation method used, so it is worth mentioning how well each method compares when
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examining the raw time needed to get the initial estimates. The cost of the DFT calculations

on Rhodium was about 1500 GPU hours and 10600 CPU hours, and the cost of the DFT

calculations on Platinum for LSR fitting was about the 1200 GPU hours and 8000 CPU

hours. In comparison, the expense of the OCP calculations can be essentially neglected, as

they can give a structure and energy in minutes with minimal resources. Considering the

convergence of BPE to a similar optimized model across all three estimation methods, using

ML-aided estimation is considerably more e�cient. While some species will require DFT

calibration, initiating from OCP estimations serves as a valuable starting point, o↵ering

substantial time and computational resource savings.
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Skúlason, E.; Bligaard, T.; Nørskov, J. K. Scaling properties of adsorption energies

for hydrogen-containing molecules on transition-metal surfaces. Physical Review Letters

2007, 99, 4–7, DOI: 10.1103/PhysRevLett.99.016105.

14. Greeley, J. Theoretical Heterogeneous Catalysis: Scaling Relationships and Computa-

tional Catalyst Design. Annual Review of Chemical and Biomolecular Engineering 2016,

7, 605–635, DOI: 10.1146/annurev-chembioeng-080615-034413.

15. Montemore, M. M.; Medlin, J. W. Scaling relations between adsorption energies for

computational screening and design of catalysts. Catal. Sci. Technol. 2014, 4, 3748–

3761, DOI: 10.1039/C4CY00335G.

16. Tran, R.; Lan, J.; Shuaibi, M.; Wood, B. M.; Goyal, S.; Das, A.; Heras-Domingo, J.;

Kolluru, A.; Rizvi, A.; Shoghi, N.; Sriram, A.; Therrien, F.; Abed, J.; Voznyy, O.;

Sargent, E. H.; Ulissi, Z.; Zitnick, C. L. The Open Catalyst 2022 (OC22) Dataset and

Challenges for Oxide Electrocatalysts. ACS Catalysis 2023, 13, 3066–3084, DOI: 10.

1021/acscatal.2c05426.
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